fp-bench.c 17.0 KB
Newer Older
E
Emilio G. Cota 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * fp-bench.c - A collection of simple floating point microbenchmarks.
 *
 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
 *
 * License: GNU GPL, version 2 or later.
 *   See the COPYING file in the top-level directory.
 */
#ifndef HW_POISON_H
#error Must define HW_POISON_H to work around TARGET_* poisoning
#endif

#include "qemu/osdep.h"
#include <math.h>
#include <fenv.h>
#include "qemu/timer.h"
#include "fpu/softfloat.h"

/* amortize the computation of random inputs */
#define OPS_PER_ITER     50000

#define MAX_OPERANDS 3

#define SEED_A 0xdeadfacedeadface
#define SEED_B 0xbadc0feebadc0fee
#define SEED_C 0xbeefdeadbeefdead

enum op {
    OP_ADD,
    OP_SUB,
    OP_MUL,
    OP_DIV,
    OP_FMA,
    OP_SQRT,
    OP_CMP,
    OP_MAX_NR,
};

static const char * const op_names[] = {
    [OP_ADD] = "add",
    [OP_SUB] = "sub",
    [OP_MUL] = "mul",
    [OP_DIV] = "div",
    [OP_FMA] = "mulAdd",
    [OP_SQRT] = "sqrt",
    [OP_CMP] = "cmp",
    [OP_MAX_NR] = NULL,
};

enum precision {
    PREC_SINGLE,
    PREC_DOUBLE,
    PREC_FLOAT32,
    PREC_FLOAT64,
    PREC_MAX_NR,
};

enum rounding {
    ROUND_EVEN,
    ROUND_ZERO,
    ROUND_DOWN,
    ROUND_UP,
    ROUND_TIEAWAY,
    N_ROUND_MODES,
};

static const char * const round_names[] = {
    [ROUND_EVEN] = "even",
    [ROUND_ZERO] = "zero",
    [ROUND_DOWN] = "down",
    [ROUND_UP] = "up",
    [ROUND_TIEAWAY] = "tieaway",
};

enum tester {
    TESTER_SOFT,
    TESTER_HOST,
    TESTER_MAX_NR,
};

static const char * const tester_names[] = {
    [TESTER_SOFT] = "soft",
    [TESTER_HOST] = "host",
    [TESTER_MAX_NR] = NULL,
};

union fp {
    float f;
    double d;
    float32 f32;
    float64 f64;
    uint64_t u64;
};

struct op_state;

typedef float (*float_func_t)(const struct op_state *s);
typedef double (*double_func_t)(const struct op_state *s);

union fp_func {
    float_func_t float_func;
    double_func_t double_func;
};

typedef void (*bench_func_t)(void);

struct op_desc {
    const char * const name;
};

#define DEFAULT_DURATION_SECS 1

static uint64_t random_ops[MAX_OPERANDS] = {
    SEED_A, SEED_B, SEED_C,
};
static float_status soft_status;
static enum precision precision;
static enum op operation;
static enum tester tester;
static uint64_t n_completed_ops;
static unsigned int duration = DEFAULT_DURATION_SECS;
static int64_t ns_elapsed;
/* disable optimizations with volatile */
static volatile union fp res;

/*
 * From: https://en.wikipedia.org/wiki/Xorshift
 * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
 * guaranteed to be >= INT_MAX).
 */
static uint64_t xorshift64star(uint64_t x)
{
    x ^= x >> 12; /* a */
    x ^= x << 25; /* b */
    x ^= x >> 27; /* c */
    return x * UINT64_C(2685821657736338717);
}

static void update_random_ops(int n_ops, enum precision prec)
{
    int i;

    for (i = 0; i < n_ops; i++) {
        uint64_t r = random_ops[i];

        if (prec == PREC_SINGLE || PREC_FLOAT32) {
            do {
                r = xorshift64star(r);
            } while (!float32_is_normal(r));
        } else if (prec == PREC_DOUBLE || PREC_FLOAT64) {
            do {
                r = xorshift64star(r);
            } while (!float64_is_normal(r));
        } else {
            g_assert_not_reached();
        }
        random_ops[i] = r;
    }
}

static void fill_random(union fp *ops, int n_ops, enum precision prec,
                        bool no_neg)
{
    int i;

    for (i = 0; i < n_ops; i++) {
        switch (prec) {
        case PREC_SINGLE:
        case PREC_FLOAT32:
            ops[i].f32 = make_float32(random_ops[i]);
            if (no_neg && float32_is_neg(ops[i].f32)) {
                ops[i].f32 = float32_chs(ops[i].f32);
            }
            /* raise the exponent to limit the frequency of denormal results */
            ops[i].f32 |= 0x40000000;
            break;
        case PREC_DOUBLE:
        case PREC_FLOAT64:
            ops[i].f64 = make_float64(random_ops[i]);
            if (no_neg && float64_is_neg(ops[i].f64)) {
                ops[i].f64 = float64_chs(ops[i].f64);
            }
            /* raise the exponent to limit the frequency of denormal results */
            ops[i].f64 |= LIT64(0x4000000000000000);
            break;
        default:
            g_assert_not_reached();
        }
    }
}

/*
 * The main benchmark function. Instead of (ab)using macros, we rely
 * on the compiler to unfold this at compile-time.
 */
static void bench(enum precision prec, enum op op, int n_ops, bool no_neg)
{
    int64_t tf = get_clock() + duration * 1000000000LL;

    while (get_clock() < tf) {
        union fp ops[MAX_OPERANDS];
        int64_t t0;
        int i;

        update_random_ops(n_ops, prec);
        switch (prec) {
        case PREC_SINGLE:
            fill_random(ops, n_ops, prec, no_neg);
            t0 = get_clock();
            for (i = 0; i < OPS_PER_ITER; i++) {
                float a = ops[0].f;
                float b = ops[1].f;
                float c = ops[2].f;

                switch (op) {
                case OP_ADD:
                    res.f = a + b;
                    break;
                case OP_SUB:
                    res.f = a - b;
                    break;
                case OP_MUL:
                    res.f = a * b;
                    break;
                case OP_DIV:
                    res.f = a / b;
                    break;
                case OP_FMA:
                    res.f = fmaf(a, b, c);
                    break;
                case OP_SQRT:
                    res.f = sqrtf(a);
                    break;
                case OP_CMP:
                    res.u64 = isgreater(a, b);
                    break;
                default:
                    g_assert_not_reached();
                }
            }
            break;
        case PREC_DOUBLE:
            fill_random(ops, n_ops, prec, no_neg);
            t0 = get_clock();
            for (i = 0; i < OPS_PER_ITER; i++) {
                double a = ops[0].d;
                double b = ops[1].d;
                double c = ops[2].d;

                switch (op) {
                case OP_ADD:
                    res.d = a + b;
                    break;
                case OP_SUB:
                    res.d = a - b;
                    break;
                case OP_MUL:
                    res.d = a * b;
                    break;
                case OP_DIV:
                    res.d = a / b;
                    break;
                case OP_FMA:
                    res.d = fma(a, b, c);
                    break;
                case OP_SQRT:
                    res.d = sqrt(a);
                    break;
                case OP_CMP:
                    res.u64 = isgreater(a, b);
                    break;
                default:
                    g_assert_not_reached();
                }
            }
            break;
        case PREC_FLOAT32:
            fill_random(ops, n_ops, prec, no_neg);
            t0 = get_clock();
            for (i = 0; i < OPS_PER_ITER; i++) {
                float32 a = ops[0].f32;
                float32 b = ops[1].f32;
                float32 c = ops[2].f32;

                switch (op) {
                case OP_ADD:
                    res.f32 = float32_add(a, b, &soft_status);
                    break;
                case OP_SUB:
                    res.f32 = float32_sub(a, b, &soft_status);
                    break;
                case OP_MUL:
                    res.f = float32_mul(a, b, &soft_status);
                    break;
                case OP_DIV:
                    res.f32 = float32_div(a, b, &soft_status);
                    break;
                case OP_FMA:
                    res.f32 = float32_muladd(a, b, c, 0, &soft_status);
                    break;
                case OP_SQRT:
                    res.f32 = float32_sqrt(a, &soft_status);
                    break;
                case OP_CMP:
                    res.u64 = float32_compare_quiet(a, b, &soft_status);
                    break;
                default:
                    g_assert_not_reached();
                }
            }
            break;
        case PREC_FLOAT64:
            fill_random(ops, n_ops, prec, no_neg);
            t0 = get_clock();
            for (i = 0; i < OPS_PER_ITER; i++) {
                float64 a = ops[0].f64;
                float64 b = ops[1].f64;
                float64 c = ops[2].f64;

                switch (op) {
                case OP_ADD:
                    res.f64 = float64_add(a, b, &soft_status);
                    break;
                case OP_SUB:
                    res.f64 = float64_sub(a, b, &soft_status);
                    break;
                case OP_MUL:
                    res.f = float64_mul(a, b, &soft_status);
                    break;
                case OP_DIV:
                    res.f64 = float64_div(a, b, &soft_status);
                    break;
                case OP_FMA:
                    res.f64 = float64_muladd(a, b, c, 0, &soft_status);
                    break;
                case OP_SQRT:
                    res.f64 = float64_sqrt(a, &soft_status);
                    break;
                case OP_CMP:
                    res.u64 = float64_compare_quiet(a, b, &soft_status);
                    break;
                default:
                    g_assert_not_reached();
                }
            }
            break;
        default:
            g_assert_not_reached();
        }
        ns_elapsed += get_clock() - t0;
        n_completed_ops += OPS_PER_ITER;
    }
}

#define GEN_BENCH(name, type, prec, op, n_ops)          \
    static void __attribute__((flatten)) name(void)     \
    {                                                   \
        bench(prec, op, n_ops, false);                  \
    }

#define GEN_BENCH_NO_NEG(name, type, prec, op, n_ops)   \
    static void __attribute__((flatten)) name(void)     \
    {                                                   \
        bench(prec, op, n_ops, true);                   \
    }

#define GEN_BENCH_ALL_TYPES(opname, op, n_ops)                          \
    GEN_BENCH(bench_ ## opname ## _float, float, PREC_SINGLE, op, n_ops) \
    GEN_BENCH(bench_ ## opname ## _double, double, PREC_DOUBLE, op, n_ops) \
    GEN_BENCH(bench_ ## opname ## _float32, float32, PREC_FLOAT32, op, n_ops) \
    GEN_BENCH(bench_ ## opname ## _float64, float64, PREC_FLOAT64, op, n_ops)

GEN_BENCH_ALL_TYPES(add, OP_ADD, 2)
GEN_BENCH_ALL_TYPES(sub, OP_SUB, 2)
GEN_BENCH_ALL_TYPES(mul, OP_MUL, 2)
GEN_BENCH_ALL_TYPES(div, OP_DIV, 2)
GEN_BENCH_ALL_TYPES(fma, OP_FMA, 3)
GEN_BENCH_ALL_TYPES(cmp, OP_CMP, 2)
#undef GEN_BENCH_ALL_TYPES

#define GEN_BENCH_ALL_TYPES_NO_NEG(name, op, n)                         \
    GEN_BENCH_NO_NEG(bench_ ## name ## _float, float, PREC_SINGLE, op, n) \
    GEN_BENCH_NO_NEG(bench_ ## name ## _double, double, PREC_DOUBLE, op, n) \
    GEN_BENCH_NO_NEG(bench_ ## name ## _float32, float32, PREC_FLOAT32, op, n) \
    GEN_BENCH_NO_NEG(bench_ ## name ## _float64, float64, PREC_FLOAT64, op, n)

GEN_BENCH_ALL_TYPES_NO_NEG(sqrt, OP_SQRT, 1)
#undef GEN_BENCH_ALL_TYPES_NO_NEG

#undef GEN_BENCH_NO_NEG
#undef GEN_BENCH

#define GEN_BENCH_FUNCS(opname, op)                             \
    [op] = {                                                    \
        [PREC_SINGLE]    = bench_ ## opname ## _float,          \
        [PREC_DOUBLE]    = bench_ ## opname ## _double,         \
        [PREC_FLOAT32]   = bench_ ## opname ## _float32,        \
        [PREC_FLOAT64]   = bench_ ## opname ## _float64,        \
    }

static const bench_func_t bench_funcs[OP_MAX_NR][PREC_MAX_NR] = {
    GEN_BENCH_FUNCS(add, OP_ADD),
    GEN_BENCH_FUNCS(sub, OP_SUB),
    GEN_BENCH_FUNCS(mul, OP_MUL),
    GEN_BENCH_FUNCS(div, OP_DIV),
    GEN_BENCH_FUNCS(fma, OP_FMA),
    GEN_BENCH_FUNCS(sqrt, OP_SQRT),
    GEN_BENCH_FUNCS(cmp, OP_CMP),
};

#undef GEN_BENCH_FUNCS

static void run_bench(void)
{
    bench_func_t f;

    f = bench_funcs[operation][precision];
    g_assert(f);
    f();
}

/* @arr must be NULL-terminated */
static int find_name(const char * const *arr, const char *name)
{
    int i;

    for (i = 0; arr[i] != NULL; i++) {
        if (strcmp(name, arr[i]) == 0) {
            return i;
        }
    }
    return -1;
}

static void usage_complete(int argc, char *argv[])
{
    gchar *op_list = g_strjoinv(", ", (gchar **)op_names);
    gchar *tester_list = g_strjoinv(", ", (gchar **)tester_names);

    fprintf(stderr, "Usage: %s [options]\n", argv[0]);
    fprintf(stderr, "options:\n");
    fprintf(stderr, " -d = duration, in seconds. Default: %d\n",
            DEFAULT_DURATION_SECS);
    fprintf(stderr, " -h = show this help message.\n");
    fprintf(stderr, " -o = floating point operation (%s). Default: %s\n",
            op_list, op_names[0]);
    fprintf(stderr, " -p = floating point precision (single, double). "
            "Default: single\n");
    fprintf(stderr, " -r = rounding mode (even, zero, down, up, tieaway). "
            "Default: even\n");
    fprintf(stderr, " -t = tester (%s). Default: %s\n",
            tester_list, tester_names[0]);
    fprintf(stderr, " -z = flush inputs to zero (soft tester only). "
            "Default: disabled\n");
    fprintf(stderr, " -Z = flush output to zero (soft tester only). "
            "Default: disabled\n");

    g_free(tester_list);
    g_free(op_list);
}

static int round_name_to_mode(const char *name)
{
    int i;

    for (i = 0; i < N_ROUND_MODES; i++) {
        if (!strcmp(round_names[i], name)) {
            return i;
        }
    }
    return -1;
}

static void QEMU_NORETURN die_host_rounding(enum rounding rounding)
{
    fprintf(stderr, "fatal: '%s' rounding not supported on this host\n",
            round_names[rounding]);
    exit(EXIT_FAILURE);
}

static void set_host_precision(enum rounding rounding)
{
    int rhost;

    switch (rounding) {
    case ROUND_EVEN:
        rhost = FE_TONEAREST;
        break;
    case ROUND_ZERO:
        rhost = FE_TOWARDZERO;
        break;
    case ROUND_DOWN:
        rhost = FE_DOWNWARD;
        break;
    case ROUND_UP:
        rhost = FE_UPWARD;
        break;
    case ROUND_TIEAWAY:
        die_host_rounding(rounding);
        return;
    default:
        g_assert_not_reached();
    }

    if (fesetround(rhost)) {
        die_host_rounding(rounding);
    }
}

static void set_soft_precision(enum rounding rounding)
{
    signed char mode;

    switch (rounding) {
    case ROUND_EVEN:
        mode = float_round_nearest_even;
        break;
    case ROUND_ZERO:
        mode = float_round_to_zero;
        break;
    case ROUND_DOWN:
        mode = float_round_down;
        break;
    case ROUND_UP:
        mode = float_round_up;
        break;
    case ROUND_TIEAWAY:
        mode = float_round_ties_away;
        break;
    default:
        g_assert_not_reached();
    }
    soft_status.float_rounding_mode = mode;
}

static void parse_args(int argc, char *argv[])
{
    int c;
    int val;
    int rounding = ROUND_EVEN;

    for (;;) {
        c = getopt(argc, argv, "d:ho:p:r:t:zZ");
        if (c < 0) {
            break;
        }
        switch (c) {
        case 'd':
            duration = atoi(optarg);
            break;
        case 'h':
            usage_complete(argc, argv);
            exit(EXIT_SUCCESS);
        case 'o':
            val = find_name(op_names, optarg);
            if (val < 0) {
                fprintf(stderr, "Unsupported op '%s'\n", optarg);
                exit(EXIT_FAILURE);
            }
            operation = val;
            break;
        case 'p':
            if (!strcmp(optarg, "single")) {
                precision = PREC_SINGLE;
            } else if (!strcmp(optarg, "double")) {
                precision = PREC_DOUBLE;
            } else {
                fprintf(stderr, "Unsupported precision '%s'\n", optarg);
                exit(EXIT_FAILURE);
            }
            break;
        case 'r':
            rounding = round_name_to_mode(optarg);
            if (rounding < 0) {
                fprintf(stderr, "fatal: invalid rounding mode '%s'\n", optarg);
                exit(EXIT_FAILURE);
            }
            break;
        case 't':
            val = find_name(tester_names, optarg);
            if (val < 0) {
                fprintf(stderr, "Unsupported tester '%s'\n", optarg);
                exit(EXIT_FAILURE);
            }
            tester = val;
            break;
        case 'z':
            soft_status.flush_inputs_to_zero = 1;
            break;
        case 'Z':
            soft_status.flush_to_zero = 1;
            break;
        }
    }

    /* set precision and rounding mode based on the tester */
    switch (tester) {
    case TESTER_HOST:
        set_host_precision(rounding);
        break;
    case TESTER_SOFT:
        set_soft_precision(rounding);
        switch (precision) {
        case PREC_SINGLE:
            precision = PREC_FLOAT32;
            break;
        case PREC_DOUBLE:
            precision = PREC_FLOAT64;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

static void pr_stats(void)
{
    printf("%.2f MFlops\n", (double)n_completed_ops / ns_elapsed * 1e3);
}

int main(int argc, char *argv[])
{
    parse_args(argc, argv);
    run_bench();
    pr_stats();
    return 0;
}
新手
引导
客服 返回
顶部