nvdimm.c 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * NVDIMM ACPI Implementation
 *
 * Copyright(C) 2015 Intel Corporation.
 *
 * Author:
 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *
 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
 * and the DSM specification can be found at:
 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
 *
 * Currently, it only supports PMEM Virtualization.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>
 */

P
Peter Maydell 已提交
29
#include "qemu/osdep.h"
30 31
#include "hw/acpi/acpi.h"
#include "hw/acpi/aml-build.h"
32
#include "hw/acpi/bios-linker-loader.h"
33
#include "hw/nvram/fw_cfg.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
#include "hw/mem/nvdimm.h"

static int nvdimm_plugged_device_list(Object *obj, void *opaque)
{
    GSList **list = opaque;

    if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
        DeviceState *dev = DEVICE(obj);

        if (dev->realized) { /* only realized NVDIMMs matter */
            *list = g_slist_append(*list, DEVICE(obj));
        }
    }

    object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
    return 0;
}

/*
 * inquire plugged NVDIMM devices and link them into the list which is
 * returned to the caller.
 *
 * Note: it is the caller's responsibility to free the list to avoid
 * memory leak.
 */
static GSList *nvdimm_get_plugged_device_list(void)
{
    GSList *list = NULL;

    object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
                         &list);
    return list;
}

#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
   { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
     (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
     (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }

/*
 * define Byte Addressable Persistent Memory (PM) Region according to
 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
 */
static const uint8_t nvdimm_nfit_spa_uuid[] =
      NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
                     0x18, 0xb7, 0x8c, 0xdb);

/*
 * NVDIMM Firmware Interface Table
 * @signature: "NFIT"
 *
 * It provides information that allows OSPM to enumerate NVDIMM present in
 * the platform and associate system physical address ranges created by the
 * NVDIMMs.
 *
 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
 */
struct NvdimmNfitHeader {
    ACPI_TABLE_HEADER_DEF
    uint32_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitHeader NvdimmNfitHeader;

/*
 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
 * Interface Table (NFIT).
 */

/*
 * System Physical Address Range Structure
 *
 * It describes the system physical address ranges occupied by NVDIMMs and
 * the types of the regions.
 */
struct NvdimmNfitSpa {
    uint16_t type;
    uint16_t length;
    uint16_t spa_index;
    uint16_t flags;
    uint32_t reserved;
    uint32_t proximity_domain;
    uint8_t type_guid[16];
    uint64_t spa_base;
    uint64_t spa_length;
    uint64_t mem_attr;
} QEMU_PACKED;
typedef struct NvdimmNfitSpa NvdimmNfitSpa;

/*
 * Memory Device to System Physical Address Range Mapping Structure
 *
 * It enables identifying each NVDIMM region and the corresponding SPA
 * describing the memory interleave
 */
struct NvdimmNfitMemDev {
    uint16_t type;
    uint16_t length;
    uint32_t nfit_handle;
    uint16_t phys_id;
    uint16_t region_id;
    uint16_t spa_index;
    uint16_t dcr_index;
    uint64_t region_len;
    uint64_t region_offset;
    uint64_t region_dpa;
    uint16_t interleave_index;
    uint16_t interleave_ways;
    uint16_t flags;
    uint16_t reserved;
} QEMU_PACKED;
typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;

/*
 * NVDIMM Control Region Structure
 *
 * It describes the NVDIMM and if applicable, Block Control Window.
 */
struct NvdimmNfitControlRegion {
    uint16_t type;
    uint16_t length;
    uint16_t dcr_index;
    uint16_t vendor_id;
    uint16_t device_id;
    uint16_t revision_id;
    uint16_t sub_vendor_id;
    uint16_t sub_device_id;
    uint16_t sub_revision_id;
    uint8_t reserved[6];
    uint32_t serial_number;
    uint16_t fic;
    uint16_t num_bcw;
    uint64_t bcw_size;
    uint64_t cmd_offset;
    uint64_t cmd_size;
    uint64_t status_offset;
    uint64_t status_size;
    uint16_t flags;
    uint8_t reserved2[6];
} QEMU_PACKED;
typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;

/*
 * Module serial number is a unique number for each device. We use the
 * slot id of NVDIMM device to generate this number so that each device
 * associates with a different number.
 *
 * 0x123456 is a magic number we arbitrarily chose.
 */
static uint32_t nvdimm_slot_to_sn(int slot)
{
    return 0x123456 + slot;
}

/*
 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 * by ACPI device _ADR method.
 *
 * We generate the handle with the slot id of NVDIMM device and reserve
 * 0 for NVDIMM root device.
 */
static uint32_t nvdimm_slot_to_handle(int slot)
{
    return slot + 1;
}

/*
 * index uniquely identifies the structure, 0 is reserved which indicates
 * that the structure is not valid or the associated structure is not
 * present.
 *
 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 * nfit_dc which are generated by the slot id of NVDIMM device.
 */
static uint16_t nvdimm_slot_to_spa_index(int slot)
{
    return (slot + 1) << 1;
}

/* See the comments of nvdimm_slot_to_spa_index(). */
static uint32_t nvdimm_slot_to_dcr_index(int slot)
{
    return nvdimm_slot_to_spa_index(slot) + 1;
}

/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
static void
nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
{
    NvdimmNfitSpa *nfit_spa;
    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
                                            NULL);
    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
                                            NULL);
    uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
                                            NULL);
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                            NULL);

    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));

    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
                                      Structure */);
    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));

    /*
     * Control region is strict as all the device info, such as SN, index,
     * is associated with slot id.
     */
    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
                                       management during hot add/online
                                       operation */ |
                                  2 /* Data in Proximity Domain field is
                                       valid*/);

    /* NUMA node. */
    nfit_spa->proximity_domain = cpu_to_le32(node);
    /* the region reported as PMEM. */
    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
           sizeof(nvdimm_nfit_spa_uuid));

    nfit_spa->spa_base = cpu_to_le64(addr);
    nfit_spa->spa_length = cpu_to_le64(size);

    /* It is the PMEM and can be cached as writeback. */
    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
                                     0x8000ULL /* EFI_MEMORY_NV */);
}

/*
 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 * Structure
 */
static void
nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
{
    NvdimmNfitMemDev *nfit_memdev;
    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
                                            NULL);
    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
                                            NULL);
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                            NULL);
    uint32_t handle = nvdimm_slot_to_handle(slot);

    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));

    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
                                         Range Map Structure*/);
    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
    nfit_memdev->nfit_handle = cpu_to_le32(handle);

    /*
     * associate memory device with System Physical Address Range
     * Structure.
     */
    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
    /* associate memory device with Control Region Structure. */
    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));

    /* The memory region on the device. */
    nfit_memdev->region_len = cpu_to_le64(size);
    nfit_memdev->region_dpa = cpu_to_le64(addr);

    /* Only one interleave for PMEM. */
    nfit_memdev->interleave_ways = cpu_to_le16(1);
}

/*
 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 */
static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
{
    NvdimmNfitControlRegion *nfit_dcr;
    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                       NULL);
    uint32_t sn = nvdimm_slot_to_sn(slot);

    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));

    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));

    /* vendor: Intel. */
    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
    nfit_dcr->device_id = cpu_to_le16(1);

    /* The _DSM method is following Intel's DSM specification. */
    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
                                             in ACPI 6.0 is 1. */);
    nfit_dcr->serial_number = cpu_to_le32(sn);
    nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
                                         2: NVDIMM Device Specific Method
                                         (DSM) in DSM Spec Rev1.*/);
}

static GArray *nvdimm_build_device_structure(GSList *device_list)
{
    GArray *structures = g_array_new(false, true /* clear */, 1);

    for (; device_list; device_list = device_list->next) {
        DeviceState *dev = device_list->data;

        /* build System Physical Address Range Structure. */
        nvdimm_build_structure_spa(structures, dev);

        /*
         * build Memory Device to System Physical Address Range Mapping
         * Structure.
         */
        nvdimm_build_structure_memdev(structures, dev);

        /* build NVDIMM Control Region Structure. */
        nvdimm_build_structure_dcr(structures, dev);
    }

    return structures;
}

static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
356
                              GArray *table_data, BIOSLinker *linker)
357 358
{
    GArray *structures = nvdimm_build_device_structure(device_list);
359
    unsigned int header;
360 361 362 363

    acpi_add_table(table_offsets, table_data);

    /* NFIT header. */
364 365
    header = table_data->len;
    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
366 367 368
    /* NVDIMM device structures. */
    g_array_append_vals(table_data, structures->data, structures->len);

369 370
    build_header(linker, table_data,
                 (void *)(table_data->data + header), "NFIT",
371
                 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
372 373 374
    g_array_free(structures, true);
}

375 376 377 378 379 380
struct NvdimmDsmIn {
    uint32_t handle;
    uint32_t revision;
    uint32_t function;
    /* the remaining size in the page is used by arg3. */
    union {
381
        uint8_t arg3[4084];
382 383 384
    };
} QEMU_PACKED;
typedef struct NvdimmDsmIn NvdimmDsmIn;
385
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
386 387 388 389

struct NvdimmDsmOut {
    /* the size of buffer filled by QEMU. */
    uint32_t len;
390
    uint8_t data[4092];
391 392
} QEMU_PACKED;
typedef struct NvdimmDsmOut NvdimmDsmOut;
393
QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
394

X
Xiao Guangrong 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
struct NvdimmDsmFunc0Out {
    /* the size of buffer filled by QEMU. */
     uint32_t len;
     uint32_t supported_func;
} QEMU_PACKED;
typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;

struct NvdimmDsmFuncNoPayloadOut {
    /* the size of buffer filled by QEMU. */
     uint32_t len;
     uint32_t func_ret_status;
} QEMU_PACKED;
typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;

409 410 411
static uint64_t
nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
{
X
Xiao Guangrong 已提交
412
    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
413 414 415 416 417 418
    return 0;
}

static void
nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
X
Xiao Guangrong 已提交
419 420 421 422 423 424 425 426 427 428
    NvdimmDsmIn *in;
    hwaddr dsm_mem_addr = val;

    nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);

    /*
     * The DSM memory is mapped to guest address space so an evil guest
     * can change its content while we are doing DSM emulation. Avoid
     * this by copying DSM memory to QEMU local memory.
     */
429 430
    in = g_new(NvdimmDsmIn, 1);
    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
X
Xiao Guangrong 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

    le32_to_cpus(&in->revision);
    le32_to_cpus(&in->function);
    le32_to_cpus(&in->handle);

    nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
                 in->handle, in->function);

    /*
     * function 0 is called to inquire which functions are supported by
     * OSPM
     */
    if (in->function == 0) {
        NvdimmDsmFunc0Out func0 = {
            .len = cpu_to_le32(sizeof(func0)),
             /* No function supported other than function 0 */
            .supported_func = cpu_to_le32(0),
        };
        cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof func0);
    } else {
        /* No function except function 0 is supported yet. */
        NvdimmDsmFuncNoPayloadOut out = {
            .len = cpu_to_le32(sizeof(out)),
            .func_ret_status = cpu_to_le32(1)  /* Not Supported */,
        };
        cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
    }

    g_free(in);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
}

static const MemoryRegionOps nvdimm_dsm_ops = {
    .read = nvdimm_dsm_read,
    .write = nvdimm_dsm_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4,
    },
};

void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
                            FWCfgState *fw_cfg, Object *owner)
{
    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
                          "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
    memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);

    state->dsm_mem = g_array_new(false, true /* clear */, 1);
480
    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
481 482 483 484
    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
                    state->dsm_mem->len);
}

485
#define NVDIMM_COMMON_DSM      "NCAL"
486
#define NVDIMM_ACPI_MEM_ADDR   "MEMA"
487 488 489

static void nvdimm_build_common_dsm(Aml *dev)
{
490
    Aml *method, *ifctx, *function, *dsm_mem, *unpatched, *result_size;
491 492
    uint8_t byte_list[1];

493
    method = aml_method(NVDIMM_COMMON_DSM, 4, AML_SERIALIZED);
494
    function = aml_arg(2);
495 496 497 498 499 500 501
    dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);

    /*
     * do not support any method if DSM memory address has not been
     * patched.
     */
    unpatched = aml_if(aml_equal(dsm_mem, aml_int(0x0)));
502 503 504 505 506 507 508 509

    /*
     * function 0 is called to inquire what functions are supported by
     * OSPM
     */
    ifctx = aml_if(aml_equal(function, aml_int(0)));
    byte_list[0] = 0 /* No function Supported */;
    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
510
    aml_append(unpatched, ifctx);
511 512 513

    /* No function is supported yet. */
    byte_list[0] = 1 /* Not Supported */;
514 515
    aml_append(unpatched, aml_return(aml_buffer(1, byte_list)));
    aml_append(method, unpatched);
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    /*
     * The HDLE indicates the DSM function is issued from which device,
     * it is not used at this time as no function is supported yet.
     * Currently we make it always be 0 for all the devices and will set
     * the appropriate value once real function is implemented.
     */
    aml_append(method, aml_store(aml_int(0x0), aml_name("HDLE")));
    aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
    aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));

    /*
     * tell QEMU about the real address of DSM memory, then QEMU
     * gets the control and fills the result in DSM memory.
     */
    aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));

    result_size = aml_local(1);
    aml_append(method, aml_store(aml_name("RLEN"), result_size));
    aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
                                 result_size));
    aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
                                        result_size, "OBUF"));
    aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
                                       aml_arg(6)));
    aml_append(method, aml_return(aml_arg(6)));
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    aml_append(dev, method);
}

static void nvdimm_build_device_dsm(Aml *dev)
{
    Aml *method;

    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
    aml_append(method, aml_return(aml_call4(NVDIMM_COMMON_DSM, aml_arg(0),
                                  aml_arg(1), aml_arg(2), aml_arg(3))));
    aml_append(dev, method);
}

static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
{
    for (; device_list; device_list = device_list->next) {
        DeviceState *dev = device_list->data;
        int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
                                           NULL);
        uint32_t handle = nvdimm_slot_to_handle(slot);
        Aml *nvdimm_dev;

        nvdimm_dev = aml_device("NV%02X", slot);

        /*
         * ACPI 6.0: 9.20 NVDIMM Devices:
         *
         * _ADR object that is used to supply OSPM with unique address
         * of the NVDIMM device. This is done by returning the NFIT Device
         * handle that is used to identify the associated entries in ACPI
         * table NFIT or _FIT.
         */
        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));

        nvdimm_build_device_dsm(nvdimm_dev);
        aml_append(root_dev, nvdimm_dev);
    }
}

static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
582
                              GArray *table_data, BIOSLinker *linker)
583
{
584
    Aml *ssdt, *sb_scope, *dev, *field;
585
    int mem_addr_offset, nvdimm_ssdt;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    acpi_add_table(table_offsets, table_data);

    ssdt = init_aml_allocator();
    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));

    sb_scope = aml_scope("\\_SB");

    dev = aml_device("NVDR");

    /*
     * ACPI 6.0: 9.20 NVDIMM Devices:
     *
     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
     * NVDIMM interface device. Platform firmware is required to contain one
     * such device in _SB scope if NVDIMMs support is exposed by platform to
     * OSPM.
     * For each NVDIMM present or intended to be supported by platform,
     * platform firmware also exposes an ACPI Namespace Device under the
     * root device.
     */
    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));

609 610 611 612
    /* map DSM memory and IO into ACPI namespace. */
    aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
               aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
    aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
613
               aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

    /*
     * DSM notifier:
     * NTFI: write the address of DSM memory and notify QEMU to emulate
     *       the access.
     *
     * It is the IO port so that accessing them will cause VM-exit, the
     * control will be transferred to QEMU.
     */
    field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("NTFI",
               sizeof(uint32_t) * BITS_PER_BYTE));
    aml_append(dev, field);

    /*
     * DSM input:
     * HDLE: store device's handle, it's zero if the _DSM call happens
     *       on NVDIMM Root Device.
     * REVS: store the Arg1 of _DSM call.
     * FUNC: store the Arg2 of _DSM call.
     * ARG3: store the Arg3 of _DSM call.
     *
     * They are RAM mapping on host so that these accesses never cause
     * VM-EXIT.
     */
    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("HDLE",
               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("REVS",
               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("FUNC",
               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("ARG3",
647
               (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    aml_append(dev, field);

    /*
     * DSM output:
     * RLEN: the size of the buffer filled by QEMU.
     * ODAT: the buffer QEMU uses to store the result.
     *
     * Since the page is reused by both input and out, the input data
     * will be lost after storing new result into ODAT so we should fetch
     * all the input data before writing the result.
     */
    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
    aml_append(field, aml_named_field("RLEN",
               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
    aml_append(field, aml_named_field("ODAT",
663
               (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
664 665
    aml_append(dev, field);

666 667 668 669 670 671 672
    nvdimm_build_common_dsm(dev);
    nvdimm_build_device_dsm(dev);

    nvdimm_build_nvdimm_devices(device_list, dev);

    aml_append(sb_scope, dev);
    aml_append(ssdt, sb_scope);
673 674 675

    nvdimm_ssdt = table_data->len;

676 677
    /* copy AML table into ACPI tables blob and patch header there */
    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
678 679 680
    mem_addr_offset = build_append_named_dword(table_data,
                                               NVDIMM_ACPI_MEM_ADDR);

681
    bios_linker_loader_alloc(linker, NVDIMM_DSM_MEM_FILE, sizeof(NvdimmDsmIn),
682 683 684 685 686
                             false /* high memory */);
    bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
                                   NVDIMM_DSM_MEM_FILE, table_data,
                                   table_data->data + mem_addr_offset,
                                   sizeof(uint32_t));
687
    build_header(linker, table_data,
688 689
        (void *)(table_data->data + nvdimm_ssdt),
        "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
690 691 692
    free_aml_allocator();
}

693
void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
694
                       BIOSLinker *linker)
695 696 697 698 699 700 701 702 703
{
    GSList *device_list;

    /* no NVDIMM device is plugged. */
    device_list = nvdimm_get_plugged_device_list();
    if (!device_list) {
        return;
    }
    nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
704
    nvdimm_build_ssdt(device_list, table_offsets, table_data, linker);
705 706
    g_slist_free(device_list);
}