ept_idle_native_pagewalk.c 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
// SPDX-License-Identifier: GPL-2.0
// Copied from kernel mm/pagewalk.c, modified by yuan.yao@intel.com

#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/hugetlb.h>
#include "ept_idle_common.h"

#ifdef CONFIG_HUGETLB_PAGE
int pmd_huge(pmd_t pmd)
{
	return !pmd_none(pmd) &&
		(pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
}

int pud_huge(pud_t pud)
{
	return !!(pud_val(pud) & _PAGE_PSE);
}

/*
 * ept_idle_huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
pte_t *ept_idle_huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;

	pgd = pgd_offset(mm, addr);
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;

	pud = pud_offset(p4d, addr);
	if (sz != PUD_SIZE && pud_none(*pud))
		return NULL;
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
		return (pte_t *)pud;

	pmd = pmd_offset(pud, addr);
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
}

#else // #ifdef CONFIG_HUGETLB_PAGE
#define pud_huge(x) 0
#define pmd_huge(x) 0
#define ept_idle_huge_pte_offset(mm, address, sz)	0
#endif

#ifndef VM_BUG_ON_VMA
#define VM_BUG_ON_VMA(cond, vma)					\
	do {								\
		if (unlikely(cond)) {					\
			BUG();						\
		}							\
	} while (0)

#endif


#ifndef VM_BUG_ON_MM
#define VM_BUG_ON_MM VM_BUG_ON_VMA
#endif

static inline int ept_idle_p4d_none_or_clear_bad(p4d_t *p4d)
{
	if (p4d_none(*p4d))
		return 1;
	if (unlikely(p4d_bad(*p4d))) {
		p4d_clear_bad(p4d);
		return 1;
	}
	return 0;
}


static inline spinlock_t *ept_idle_pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	VM_BUG_ON_VMA(!rwsem_is_locked(&vma->vm_mm->mmap_sem), vma);

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

void p4d_clear_bad(p4d_t *p4d)
{
	p4d_ERROR(*p4d);
	p4d_clear(p4d);
}

void pmd_clear_bad(pmd_t *pmd)
{
	pmd_ERROR(*pmd);
	pmd_clear(pmd);
}

#ifdef _EPT_IDLE_SPLIT_PMD_
static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	pte_t *pte;
	int err = 0;

	pte = pte_offset_map(pmd, addr);
	for (;;) {
		err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
		if (err)
		       break;
		addr += PAGE_SIZE;
		if (addr == end)
			break;
		pte++;
	}

	pte_unmap(pte);
	return err;
}
#endif

static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	pmd_t *pmd;
	unsigned long next;
	int err = 0;

	pmd = pmd_offset(pud, addr);
	do {
#ifdef _EPT_IDLE_SPLIT_PMD_
 again:
#endif
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd) || !walk->vma) {
			if (walk->pte_hole)
				err = walk->pte_hole(addr, next, walk);
			if (err)
				break;
			continue;
		}
		/*
		 * This implies that each ->pmd_entry() handler
		 * needs to know about pmd_trans_huge() pmds
		 */
		if (walk->pmd_entry)
			err = walk->pmd_entry(pmd, addr, next, walk);
		if (err)
			break;

#ifdef _EPT_IDLE_SPLIT_PMD_
		/*
		 * Check this here so we only break down trans_huge
		 * pages when we _need_ to
		 */
		if (!walk->pte_entry)
			continue;

		split_huge_pmd(walk->vma, pmd, addr);
		if (pmd_trans_unstable(pmd))
			goto again;

		err = walk_pte_range(pmd, addr, next, walk);
		if (err)
			break;
#endif
	} while (pmd++, addr = next, addr != end);

	return err;
}

static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	pud_t *pud;
	unsigned long next;
	int err = 0;

	pud = pud_offset(p4d, addr);
	do {
#ifdef _EPT_IDLE_SPLIT_PUD_
 again:
#endif
		next = pud_addr_end(addr, end);
		if (pud_none(*pud) || !walk->vma) {
			if (walk->pte_hole)
				err = walk->pte_hole(addr, next, walk);
			if (err)
				break;
			continue;
		}

		if (walk->pud_entry) {
			spinlock_t *ptl = ept_idle_pud_trans_huge_lock(pud, walk->vma);

			if (ptl) {
				err = walk->pud_entry(pud, addr, next, walk);
				spin_unlock(ptl);
				if (err)
					break;
				continue;
			}
		}
#ifdef _EPT_IDLE_SPLIT_PUD_
		split_huge_pud(walk->vma, pud, addr);
		if (pud_none(*pud))
			goto again;
#endif

		if (walk->pmd_entry || walk->pte_entry)
			err = walk_pmd_range(pud, addr, next, walk);
		if (err)
			break;

	} while (pud++, addr = next, addr != end);

	return err;
}

static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	p4d_t *p4d;
	unsigned long next;
	int err = 0;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (ept_idle_p4d_none_or_clear_bad(p4d)) {
			if (walk->pte_hole)
				err = walk->pte_hole(addr, next, walk);
			if (err)
				break;
			continue;
		}
		if (walk->pmd_entry || walk->pte_entry)
			err = walk_pud_range(p4d, addr, next, walk);
		if (err)
			break;
	} while (p4d++, addr = next, addr != end);

	return err;
}

static int walk_pgd_range(unsigned long addr, unsigned long end,
			  struct mm_walk *walk)
{
	pgd_t *pgd;
	unsigned long next;
	int err = 0;

	pgd = pgd_offset(walk->mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd)) {
			if (walk->pte_hole)
				err = walk->pte_hole(addr, next, walk);
			if (err)
				break;
			continue;
		}
		if (walk->pmd_entry || walk->pte_entry)
			err = walk_p4d_range(pgd, addr, next, walk);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);

	return err;
}

#ifdef CONFIG_HUGETLB_PAGE
static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
				       unsigned long end)
{
	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
	return boundary < end ? boundary : end;
}

static int walk_hugetlb_range(unsigned long addr, unsigned long end,
			      struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->vma;
	struct hstate *h = hstate_vma(vma);
	unsigned long next;
	unsigned long hmask = huge_page_mask(h);
	unsigned long sz = huge_page_size(h);
	pte_t *pte;
	int err = 0;

	do {
		next = hugetlb_entry_end(h, addr, end);
		pte = ept_idle_huge_pte_offset(walk->mm, addr & hmask, sz);

		if (pte)
			err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
		else if (walk->pte_hole)
			err = walk->pte_hole(addr, next, walk);

		if (err)
			break;
	} while (addr = next, addr != end);

	return err;
}

#else /* CONFIG_HUGETLB_PAGE */
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
			      struct mm_walk *walk)
{
	return 0;
}

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * Decide whether we really walk over the current vma on [@start, @end)
 * or skip it via the returned value. Return 0 if we do walk over the
 * current vma, and return 1 if we skip the vma. Negative values means
 * error, where we abort the current walk.
 */
static int walk_page_test(unsigned long start, unsigned long end,
			struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->vma;

	if (walk->test_walk)
		return walk->test_walk(start, end, walk);

	/*
	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
	 * range, so we don't walk over it as we do for normal vmas. However,
	 * Some callers are interested in handling hole range and they don't
	 * want to just ignore any single address range. Such users certainly
	 * define their ->pte_hole() callbacks, so let's delegate them to handle
	 * vma(VM_PFNMAP).
	 */
	if (vma->vm_flags & VM_PFNMAP) {
		int err = 1;
		if (walk->pte_hole)
			err = walk->pte_hole(start, end, walk);
		return err ? err : 1;
	}
	return 0;
}

static int __walk_page_range(unsigned long start, unsigned long end,
			struct mm_walk *walk)
{
	int err = 0;
	struct vm_area_struct *vma = walk->vma;

	if (vma && is_vm_hugetlb_page(vma)) {
		if (walk->hugetlb_entry)
			err = walk_hugetlb_range(start, end, walk);
	} else
		err = walk_pgd_range(start, end, walk);

	return err;
}

/**
 * walk_page_range - walk page table with caller specific callbacks
 * @start: start address of the virtual address range
 * @end: end address of the virtual address range
 * @walk: mm_walk structure defining the callbacks and the target address space
 *
 * Recursively walk the page table tree of the process represented by @walk->mm
 * within the virtual address range [@start, @end). During walking, we can do
 * some caller-specific works for each entry, by setting up pmd_entry(),
 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
 * callbacks, the associated entries/pages are just ignored.
 * The return values of these callbacks are commonly defined like below:
 *
 *  - 0  : succeeded to handle the current entry, and if you don't reach the
 *         end address yet, continue to walk.
 *  - >0 : succeeded to handle the current entry, and return to the caller
 *         with caller specific value.
 *  - <0 : failed to handle the current entry, and return to the caller
 *         with error code.
 *
 * Before starting to walk page table, some callers want to check whether
 * they really want to walk over the current vma, typically by checking
 * its vm_flags. walk_page_test() and @walk->test_walk() are used for this
 * purpose.
 *
 * struct mm_walk keeps current values of some common data like vma and pmd,
 * which are useful for the access from callbacks. If you want to pass some
 * caller-specific data to callbacks, @walk->private should be helpful.
 *
 * Locking:
 *   Callers of walk_page_range() and walk_page_vma() should hold
 *   @walk->mm->mmap_sem, because these function traverse vma list and/or
 *   access to vma's data.
 */
int ept_idle_walk_page_range(unsigned long start, unsigned long end,
		    struct mm_walk *walk)
{
	int err = 0;
	unsigned long next;
	struct vm_area_struct *vma;

	if (start >= end)
		return -EINVAL;

	if (!walk->mm)
		return -EINVAL;

	VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm);

	vma = find_vma(walk->mm, start);
	do {
		if (!vma) { /* after the last vma */
			walk->vma = NULL;
			next = end;
		} else if (start < vma->vm_start) { /* outside vma */
			walk->vma = NULL;
			next = min(end, vma->vm_start);
		} else { /* inside vma */
			walk->vma = vma;
			next = min(end, vma->vm_end);
			vma = vma->vm_next;

			err = walk_page_test(start, next, walk);
			if (err > 0) {
				/*
				 * positive return values are purely for
				 * controlling the pagewalk, so should never
				 * be passed to the callers.
				 */
				err = 0;
				continue;
			}
			if (err < 0)
				break;
		}
		if (walk->vma || walk->pte_hole)
			err = __walk_page_range(start, next, walk);
		if (err)
			break;
	} while (start = next, start < end);
	return err;
}