- 23 10月, 2010 1 次提交
-
-
由 KOSAKI Motohiro 提交于
Andrew Morton pointed out almost all sched_setscheduler() callers are using fixed parameters and can be converted to static. It reduces runtime memory use a little. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reported-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NJames Morris <jmorris@namei.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 19 10月, 2010 3 次提交
-
-
由 Venkatesh Pallipadi 提交于
s390/powerpc/ia64 have support for CONFIG_VIRT_CPU_ACCOUNTING which does the fine granularity accounting of user, system, hardirq, softirq times. Adding that option on archs like x86 will be challenging however, given the state of TSC reliability on various platforms and also the overhead it will add in syscall entry exit. Instead, add a lighter variant that only does finer accounting of hardirq and softirq times, providing precise irq times (instead of timer tick based samples). This accounting is added with a new config option CONFIG_IRQ_TIME_ACCOUNTING so that there won't be any overhead for users not interested in paying the perf penalty. This accounting is based on sched_clock, with the code being generic. So, other archs may find it useful as well. This patch just adds the core logic and does not enable this logic yet. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-5-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
To account softirq time cleanly in scheduler, we need to identify whether softirq is invoked in ksoftirqd context or softirq at hardirq tail context. Add PF_KSOFTIRQD for that purpose. As all PF flag bits are currently taken, create space by moving one of the infrequently used bits (PF_THREAD_BOUND) down in task_struct to be along with some other state fields. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-4-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
Peter Zijlstra found a bug in the way softirq time is accounted in VIRT_CPU_ACCOUNTING on this thread: http://lkml.indiana.edu/hypermail//linux/kernel/1009.2/01366.html The problem is, softirq processing uses local_bh_disable internally. There is no way, later in the flow, to differentiate between whether softirq is being processed or is it just that bh has been disabled. So, a hardirq when bh is disabled results in time being wrongly accounted as softirq. Looking at the code a bit more, the problem exists in !VIRT_CPU_ACCOUNTING as well. As account_system_time() in normal tick based accouting also uses softirq_count, which will be set even when not in softirq with bh disabled. Peter also suggested solution of using 2*SOFTIRQ_OFFSET as irq count for local_bh_{disable,enable} and using just SOFTIRQ_OFFSET while softirq processing. The patch below does that and adds API in_serving_softirq() which returns whether we are currently processing softirq or not. Also changes one of the usages of softirq_count in net/sched/cls_cgroup.c to in_serving_softirq. Looks like many usages of in_softirq really want in_serving_softirq. Those changes can be made individually on a case by case basis. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-2-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 9月, 2010 1 次提交
-
-
由 Dave Young 提交于
PF_ALIGNWARN is not implemented and it is for 486 as the comment. It is not likely someone will implement this flag feature. So here remove this flag and leave the valuable 0x00000001 for future use. Signed-off-by: NDave Young <hidave.darkstar@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <20100913121903.GB22238@darkstar> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 9月, 2010 3 次提交
-
-
由 Peter Zijlstra 提交于
Since software events are always schedulable, mixing them up with hardware events (who are not) can lead to funny scheduling oddities. Giving them their own context solves this. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus <paulus@samba.org> Cc: stephane eranian <eranian@googlemail.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Yanmin <yanmin_zhang@linux.intel.com> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Provide the infrastructure for multiple task contexts. A more flexible approach would have resulted in more pointer chases in the scheduling hot-paths. This approach has the limitation of a static number of task contexts. Since I expect most external PMUs to be system wide, or at least node wide (as per the intel uncore unit) they won't actually need a task context. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus <paulus@samba.org> Cc: stephane eranian <eranian@googlemail.com> Cc: Robert Richter <robert.richter@amd.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Lin Ming <ming.m.lin@intel.com> Cc: Yanmin <yanmin_zhang@linux.intel.com> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Heiko Carstens 提交于
On top of the SMT and MC scheduling domains this adds the BOOK scheduling domain. This is useful for NUMA like machines which do not have an interface which tells which piece of memory is attached to which node or where the hardware performs striping. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100831082844.253053798@de.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 20 8月, 2010 3 次提交
-
-
由 Paul E. McKenney 提交于
Implement a small-memory-footprint uniprocessor-only implementation of preemptible RCU. This implementation uses but a single blocked-tasks list rather than the combinatorial number used per leaf rcu_node by TREE_PREEMPT_RCU, which reduces memory consumption and greatly simplifies processing. This version also takes advantage of uniprocessor execution to accelerate grace periods in the case where there are no readers. The general design is otherwise broadly similar to that of TREE_PREEMPT_RCU. This implementation is a step towards having RCU implementation driven off of the SMP and PREEMPT kernel configuration variables, which can happen once this implementation has accumulated sufficient experience. Removed ACCESS_ONCE() from __rcu_read_unlock() and added barrier() as suggested by Steve Rostedt in order to avoid the compiler-reordering issue noted by Mathieu Desnoyers (http://lkml.org/lkml/2010/8/16/183). As can be seen below, CONFIG_TINY_PREEMPT_RCU represents almost 5Kbyte savings compared to CONFIG_TREE_PREEMPT_RCU. Of course, for non-real-time workloads, CONFIG_TINY_RCU is even better. CONFIG_TREE_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 6170 825 28 7023 kernel/rcutree.o ---- 7026 Total CONFIG_TINY_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 2081 81 8 2170 kernel/rcutiny.o ---- 2183 Total CONFIG_TINY_RCU (non-preemptible) text data bss dec filename 13 0 0 13 kernel/rcupdate.o 719 25 0 744 kernel/rcutiny.o --- 757 Total Requested-by: NLoïc Minier <loic.minier@canonical.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Arnd Bergmann 提交于
Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Acked-by: NDavid Howells <dhowells@redhat.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Arnd Bergmann 提交于
Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NPaul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 18 8月, 2010 1 次提交
-
-
由 David Howells 提交于
Make do_execve() take a const filename pointer so that kernel_execve() compiles correctly on ARM: arch/arm/kernel/sys_arm.c:88: warning: passing argument 1 of 'do_execve' discards qualifiers from pointer target type This also requires the argv and envp arguments to be consted twice, once for the pointer array and once for the strings the array points to. This is because do_execve() passes a pointer to the filename (now const) to copy_strings_kernel(). A simpler alternative would be to cast the filename pointer in do_execve() when it's passed to copy_strings_kernel(). do_execve() may not change any of the strings it is passed as part of the argv or envp lists as they are some of them in .rodata, so marking these strings as const should be fine. Further kernel_execve() and sys_execve() need to be changed to match. This has been test built on x86_64, frv, arm and mips. Signed-off-by: NDavid Howells <dhowells@redhat.com> Tested-by: NRalf Baechle <ralf@linux-mips.org> Acked-by: NRussell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 8月, 2010 1 次提交
-
-
由 David Rientjes 提交于
This a complete rewrite of the oom killer's badness() heuristic which is used to determine which task to kill in oom conditions. The goal is to make it as simple and predictable as possible so the results are better understood and we end up killing the task which will lead to the most memory freeing while still respecting the fine-tuning from userspace. Instead of basing the heuristic on mm->total_vm for each task, the task's rss and swap space is used instead. This is a better indication of the amount of memory that will be freeable if the oom killed task is chosen and subsequently exits. This helps specifically in cases where KDE or GNOME is chosen for oom kill on desktop systems instead of a memory hogging task. The baseline for the heuristic is a proportion of memory that each task is currently using in memory plus swap compared to the amount of "allowable" memory. "Allowable," in this sense, means the system-wide resources for unconstrained oom conditions, the set of mempolicy nodes, the mems attached to current's cpuset, or a memory controller's limit. The proportion is given on a scale of 0 (never kill) to 1000 (always kill), roughly meaning that if a task has a badness() score of 500 that the task consumes approximately 50% of allowable memory resident in RAM or in swap space. The proportion is always relative to the amount of "allowable" memory and not the total amount of RAM systemwide so that mempolicies and cpusets may operate in isolation; they shall not need to know the true size of the machine on which they are running if they are bound to a specific set of nodes or mems, respectively. Root tasks are given 3% extra memory just like __vm_enough_memory() provides in LSMs. In the event of two tasks consuming similar amounts of memory, it is generally better to save root's task. Because of the change in the badness() heuristic's baseline, it is also necessary to introduce a new user interface to tune it. It's not possible to redefine the meaning of /proc/pid/oom_adj with a new scale since the ABI cannot be changed for backward compatability. Instead, a new tunable, /proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may be used to polarize the heuristic such that certain tasks are never considered for oom kill while others may always be considered. The value is added directly into the badness() score so a value of -500, for example, means to discount 50% of its memory consumption in comparison to other tasks either on the system, bound to the mempolicy, in the cpuset, or sharing the same memory controller. /proc/pid/oom_adj is changed so that its meaning is rescaled into the units used by /proc/pid/oom_score_adj, and vice versa. Changing one of these per-task tunables will rescale the value of the other to an equivalent meaning. Although /proc/pid/oom_adj was originally defined as a bitshift on the badness score, it now shares the same linear growth as /proc/pid/oom_score_adj but with different granularity. This is required so the ABI is not broken with userspace applications and allows oom_adj to be deprecated for future removal. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 7月, 2010 1 次提交
-
-
由 David Howells 提交于
Fix __task_cred()'s lockdep check by removing the following validation condition: lockdep_tasklist_lock_is_held() as commit_creds() does not take the tasklist_lock, and nor do most of the functions that call it, so this check is pointless and it can prevent detection of the RCU lock not being held if the tasklist_lock is held. Instead, add the following validation condition: task->exit_state >= 0 to permit the access if the target task is dead and therefore unable to change its own credentials. Fix __task_cred()'s comment to: (1) discard the bit that says that the caller must prevent the target task from being deleted. That shouldn't need saying. (2) Add a comment indicating the result of __task_cred() should not be passed directly to get_cred(), but rather than get_task_cred() should be used instead. Also put a note into the documentation to enforce this point there too. Signed-off-by: NDavid Howells <dhowells@redhat.com> Acked-by: NJiri Olsa <jolsa@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 7月, 2010 1 次提交
-
-
由 Frederic Weisbecker 提交于
Special traces type was only used by sysprof. Lets remove it now that sysprof ftrace plugin has been dropped. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Acked-by: NSoeren Sandmann <sandmann@daimi.au.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Li Zefan <lizf@cn.fujitsu.com>
-
- 17 7月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Norbert reported that nohz_ratelimit() causes his laptop to burn about 4W (40%) extra. For now back out the change and see if we can adjust the power management code to make better decisions. Reported-by: NNorbert Preining <preining@logic.at> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NMike Galbraith <efault@gmx.de> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 7月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Commit 0224cf4c (sched: Intoduce get_cpu_iowait_time_us()) broke things by not making sure preemption was indeed disabled by the callers of nr_iowait_cpu() which took the iowait value of the current cpu. This resulted in a heap of preempt warnings. Cure this by making nr_iowait_cpu() take a cpu number and fix up the callers to pass in the right number. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Maxim Levitsky <maximlevitsky@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: linux-pm@lists.linux-foundation.org LKML-Reference: <1277968037.1868.120.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 6月, 2010 5 次提交
-
-
由 Michael Neuling 提交于
Check to see if the group is packed in a sched doman. This is primarily intended to used at the sibling level. Some cores like POWER7 prefer to use lower numbered SMT threads. In the case of POWER7, it can move to lower SMT modes only when higher threads are idle. When in lower SMT modes, the threads will perform better since they share less core resources. Hence when we have idle threads, we want them to be the higher ones. This adds a hook into f_b_g() called check_asym_packing() to check the packing. This packing function is run on idle threads. It checks to see if the busiest CPU in this domain (core in the P7 case) has a higher CPU number than what where the packing function is being run on. If it is, calculate the imbalance and return the higher busier thread as the busiest group to f_b_g(). Here we are assuming a lower CPU number will be equivalent to a lower SMT thread number. It also creates a new SD_ASYM_PACKING flag to enable this feature at any scheduler domain level. It also creates an arch hook to enable this feature at the sibling level. The default function doesn't enable this feature. Based heavily on patch from Peter Zijlstra. Fixes from Srivatsa Vaddagiri. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <20100608045702.2936CCC897@localhost.localdomain> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Srivatsa Vaddagiri 提交于
Handle cpu capacity being reported as 0 on cores with more number of hardware threads. For example on a Power7 core with 4 hardware threads, core power is 1177 and thus power of each hardware thread is 1177/4 = 294. This low power can lead to capacity for each hardware thread being calculated as 0, which leads to tasks bouncing within the core madly! Fix this by reporting capacity for hardware threads as 1, provided their power is not scaled down significantly because of frequency scaling or real-time tasks usage of cpu. Signed-off-by: NSrivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@linux.intel.com> LKML-Reference: <20100608045702.21D03CC895@localhost.localdomain> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
In the new push model, all idle CPUs indeed go into nohz mode. There is still the concept of idle load balancer (performing the load balancing on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz balancer when any of the nohz CPUs need idle load balancing. The kickee CPU does the idle load balancing on behalf of all idle CPUs instead of the normal idle balance. This addresses the below two problems with the current nohz ilb logic: * the idle load balancer continued to have periodic ticks during idle and wokeup frequently, even though it did not have any rebalancing to do on behalf of any of the idle CPUs. * On x86 and CPUs that have APIC timer stoppage on idle CPUs, this periodic wakeup can result in a periodic additional interrupt on a CPU doing the timer broadcast. Also currently we are migrating the unpinned timers from an idle to the cpu doing idle load balancing (when all the cpus in the system are idle, there is no idle load balancing cpu and timers get added to the same idle cpu where the request was made. So the existing optimization works only on semi idle system). And In semi idle system, we no longer have periodic ticks on the idle load balancer CPU. Using that cpu will add more delays to the timers than intended (as that cpu's timer base may not be uptodate wrt jiffies etc). This was causing mysterious slowdowns during boot etc. For now, in the semi idle case, use the nearest busy cpu for migrating timers from an idle cpu. This is good for power-savings anyway. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
For people who otherwise get to write: cpu_clock(smp_processor_id()), there is now: local_clock(). Also, as per suggestion from Andrew, provide some documentation on the various clock interfaces, and minimize the unsigned long long vs u64 mess. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jens Axboe <jaxboe@fusionio.com> LKML-Reference: <1275052414.1645.52.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Tejun Heo 提交于
Concurrency managed workqueue needs to know when workers are going to sleep and waking up. Using these two hooks, cmwq keeps track of the current concurrency level and throttles execution of new works if it's too high and wakes up another worker from the sleep hook if it becomes too low. This patch introduces PF_WQ_WORKER to identify workqueue workers and adds the following two hooks. * wq_worker_waking_up(): called when a worker is woken up. * wq_worker_sleeping(): called when a worker is going to sleep and may return a pointer to a local task which should be woken up. The returned task is woken up using try_to_wake_up_local() which is simplified ttwu which is called under rq lock and can only wake up local tasks. Both hooks are currently defined as noop in kernel/workqueue_sched.h. Later cmwq implementation will replace them with proper implementation. These hooks are hard coded as they'll always be enabled. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Ingo Molnar <mingo@elte.hu>
-
- 28 5月, 2010 7 次提交
-
-
由 Oleg Nesterov 提交于
No functional changes, just s/atomic_t count/int nr_threads/. With the recent changes this counter has a single user, get_nr_threads() And, none of its callers need the really accurate number of threads, not to mention each caller obviously races with fork/exit. It is only used to report this value to the user-space, except first_tid() uses it to avoid the unnecessary while_each_thread() loop in the unlikely case. It is a bit sad we need a word in struct signal_struct for this, perhaps we can change get_nr_threads() to approximate the number of threads using signal->live and kill ->nr_threads later. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Now that task->signal can't go away get_nr_threads() doesn't need ->siglock to read signal->count. Also, make it inline, move into sched.h, and convert 2 other proc users of signal->count to use this (now trivial) helper. Henceforth get_nr_threads() is the only valid user of signal->count, we are ready to turn it into "int nr_threads" or, perhaps, kill it. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Howells <dhowells@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Kill the empty thread_group_cputime_free() helper. It was needed to free the per-cpu data which we no longer have. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Roland McGrath <roland@redhat.com> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Now that task->signal can't go away we can revert the horrible hack added by ad474cac ("fix for account_group_exec_runtime(), make sure ->signal can't be freed under rq->lock"). And we can do more cleanups sched_stats.h/posix-cpu-timers.c later. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Alan Cox <alan@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
We have a lot of problems with accessing task_struct->signal, it can "disappear" at any moment. Even current can't use its ->signal safely after exit_notify(). ->siglock helps, but it is not convenient, not always possible, and sometimes it makes sense to use task->signal even after this task has already dead. This patch adds the reference counter, sigcnt, into signal_struct. This reference is owned by task_struct and it is dropped in __put_task_struct(). Perhaps it makes sense to export get/put_signal_struct() later, but currently I don't see the immediate reason. Rename __cleanup_signal() to free_signal_struct() and unexport it. With the previous changes it does nothing except kmem_cache_free(). Change __exit_signal() to not clear/free ->signal, it will be freed when the last reference to any thread in the thread group goes away. Note: - when the last thead exits signal->tty can point to nowhere, see the next patch. - with or without this patch signal_struct->count should go away, or at least it should be "int nr_threads" for fs/proc. This will be addressed later. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Alan Cox <alan@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
Change zap_other_threads() to return the number of other sub-threads found on ->thread_group list. Other changes are cosmetic: - change the code to use while_each_thread() helper - remove the obsolete comment about SIGKILL/SIGSTOP Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NRoland McGrath <roland@redhat.com> Cc: Veaceslav Falico <vfalico@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jack Steiner 提交于
We have observed several workloads running on multi-node systems where memory is assigned unevenly across the nodes in the system. There are numerous reasons for this but one is the round-robin rotor in cpuset_mem_spread_node(). For example, a simple test that writes a multi-page file will allocate pages on nodes 0 2 4 6 ... Odd nodes are skipped. (Sometimes it allocates on odd nodes & skips even nodes). An example is shown below. The program "lfile" writes a file consisting of 10 pages. The program then mmaps the file & uses get_mempolicy(..., MPOL_F_NODE) to determine the nodes where the file pages were allocated. The output is shown below: # ./lfile allocated on nodes: 2 4 6 0 1 2 6 0 2 There is a single rotor that is used for allocating both file pages & slab pages. Writing the file allocates both a data page & a slab page (buffer_head). This advances the RR rotor 2 nodes for each page allocated. A quick confirmation seems to confirm this is the cause of the uneven allocation: # echo 0 >/dev/cpuset/memory_spread_slab # ./lfile allocated on nodes: 6 7 8 9 0 1 2 3 4 5 This patch introduces a second rotor that is used for slab allocations. Signed-off-by: NJack Steiner <steiner@sgi.com> Acked-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Paul Menage <menage@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 5月, 2010 2 次提交
-
-
由 Alexey Dobriyan 提交于
- C99 knows about USHRT_MAX/SHRT_MAX/SHRT_MIN, not USHORT_MAX/SHORT_MAX/SHORT_MIN. - Make SHRT_MIN of type s16, not int, for consistency. [akpm@linux-foundation.org: fix drivers/dma/timb_dma.c] [akpm@linux-foundation.org: fix security/keys/keyring.c] Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NWANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miao Xie 提交于
Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 5月, 2010 3 次提交
-
-
由 Frederic Weisbecker 提交于
Fix forgotten CONFIG_DETECT_SOFTLOCKUP -> CONFIG_LOCKUP_DETECTOR in sched.h Fixes: arch/x86/built-in.o: In function `touch_nmi_watchdog': (.text+0x1bd59): undefined reference to `touch_softlockup_watchdog' kernel/built-in.o: In function `show_state_filter': (.text+0x10d01): undefined reference to `touch_all_softlockup_watchdogs' kernel/built-in.o: In function `sched_clock_idle_wakeup_event': (.text+0x362f9): undefined reference to `touch_softlockup_watchdog' kernel/built-in.o: In function `timekeeping_resume': timekeeping.c:(.text+0x38757): undefined reference to `touch_softlockup_watchdog' kernel/built-in.o: In function `tick_nohz_handler': tick-sched.c:(.text+0x3e5b9): undefined reference to `touch_softlockup_watchdog' kernel/built-in.o: In function `tick_sched_timer': tick-sched.c:(.text+0x3e671): undefined reference to `touch_softlockup_watchdog' kernel/built-in.o: In function `tick_check_idle': (.text+0x3e90b): undefined reference to `touch_softlockup_watchdog' Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com>
-
由 Don Zickus 提交于
Just some code cleanup to make touch_softlockup clearer and remove the softlockup_tick function as it is no longer needed. Also remove the /proc softlockup_thres call as it has been changed to watchdog_thres. Signed-off-by: NDon Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-3-git-send-email-dzickus@redhat.com> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
-
由 Don Zickus 提交于
The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: NDon Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
-
- 12 5月, 2010 1 次提交
-
-
由 Robin Holt 提交于
Originally, commit d899bf7b ("procfs: provide stack information for threads") attempted to introduce a new feature for showing where the threadstack was located and how many pages are being utilized by the stack. Commit c44972f1 ("procfs: disable per-task stack usage on NOMMU") was applied to fix the NO_MMU case. Commit 89240ba0 ("x86, fs: Fix x86 procfs stack information for threads on 64-bit") was applied to fix a bug in ia32 executables being loaded. Commit 9ebd4eba ("procfs: fix /proc/<pid>/stat stack pointer for kernel threads") was applied to fix a bug which had kernel threads printing a userland stack address. Commit 1306d603 ('proc: partially revert "procfs: provide stack information for threads"') was then applied to revert the stack pages being used to solve a significant performance regression. This patch nearly undoes the effect of all these patches. The reason for reverting these is it provides an unusable value in field 28. For x86_64, a fork will result in the task->stack_start value being updated to the current user top of stack and not the stack start address. This unpredictability of the stack_start value makes it worthless. That includes the intended use of showing how much stack space a thread has. Other architectures will get different values. As an example, ia64 gets 0. The do_fork() and copy_process() functions appear to treat the stack_start and stack_size parameters as architecture specific. I only partially reverted c44972f1 ("procfs: disable per-task stack usage on NOMMU") . If I had completely reverted it, I would have had to change mm/Makefile only build pagewalk.o when CONFIG_PROC_PAGE_MONITOR is configured. Since I could not test the builds without significant effort, I decided to not change mm/Makefile. I only partially reverted 89240ba0 ("x86, fs: Fix x86 procfs stack information for threads on 64-bit") . I left the KSTK_ESP() change in place as that seemed worthwhile. Signed-off-by: NRobin Holt <holt@sgi.com> Cc: Stefani Seibold <stefani@seibold.net> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 4月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Dave reported that his large SPARC machines spend lots of time in hweight64(), try and optimize some of those needless cpumask_weight() invocations (esp. with the large offstack cpumasks these are very expensive indeed). Reported-by: NDavid Miller <davem@davemloft.net> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 03 4月, 2010 3 次提交
-
-
由 Peter Zijlstra 提交于
In order to reduce the dependency on TASK_WAKING rework the enqueue interface to support a proper flags field. Replace the int wakeup, bool head arguments with an int flags argument and create the following flags: ENQUEUE_WAKEUP - the enqueue is a wakeup of a sleeping task, ENQUEUE_WAKING - the enqueue has relative vruntime due to having sched_class::task_waking() called, ENQUEUE_HEAD - the waking task should be places on the head of the priority queue (where appropriate). For symmetry also convert sched_class::dequeue() to a flags scheme. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Oleg noticed a few races with the TASK_WAKING usage on fork. - since TASK_WAKING is basically a spinlock, it should be IRQ safe - since we set TASK_WAKING (*) without holding rq->lock it could be there still is a rq->lock holder, thereby not actually providing full serialization. (*) in fact we clear PF_STARTING, which in effect enables TASK_WAKING. Cure the second issue by not setting TASK_WAKING in sched_fork(), but only temporarily in wake_up_new_task() while calling select_task_rq(). Cure the first by holding rq->lock around the select_task_rq() call, this will disable IRQs, this however requires that we push down the rq->lock release into select_task_rq_fair()'s cgroup stuff. Because select_task_rq_fair() still needs to drop the rq->lock we cannot fully get rid of TASK_WAKING. Reported-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Oleg Nesterov 提交于
_cpu_down() changes the current task's affinity and then recovers it at the end. The problems are well known: we can't restore old_allowed if it was bound to the now-dead-cpu, and we can race with the userspace which can change cpu-affinity during unplug. _cpu_down() should not play with current->cpus_allowed at all. Instead, take_cpu_down() can migrate the caller of _cpu_down() after __cpu_disable() removes the dying cpu from cpu_online_mask. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NRafael J. Wysocki <rjw@sisk.pl> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100315091023.GA9148@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 26 3月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Support for the PMU's BTS features has been upstreamed in v2.6.32, but we still have the old and disabled ptrace-BTS, as Linus noticed it not so long ago. It's buggy: TIF_DEBUGCTLMSR is trampling all over that MSR without regard for other uses (perf) and doesn't provide the flexibility needed for perf either. Its users are ptrace-block-step and ptrace-bts, since ptrace-bts was never used and ptrace-block-step can be implemented using a much simpler approach. So axe all 3000 lines of it. That includes the *locked_memory*() APIs in mm/mlock.c as well. Reported-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Roland McGrath <roland@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Markus Metzger <markus.t.metzger@intel.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andrew Morton <akpm@linux-foundation.org> LKML-Reference: <20100325135413.938004390@chello.nl> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-