- 24 2月, 2020 18 次提交
-
-
由 Ard Biesheuvel 提交于
The systab member in struct efi has outlived its usefulness, now that we have better ways to access the only piece of information we are interested in after init, which is the EFI runtime services table address. So instead of instantiating a doctored copy at early boot with lots of mangled values, and switching the pointer when switching into virtual mode, let's grab the values we need directly, and get rid of the systab pointer entirely. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Instead of going through the EFI system table each time, just copy the runtime services table pointer into struct efi directly. This is the last use of the system table pointer in struct efi, allowing us to drop it in a future patch, along with a fair amount of quirky handling of the translated address. Note that usually, the runtime services pointer changes value during the call to SetVirtualAddressMap(), so grab the updated value as soon as that call returns. (Mixed mode uses a 1:1 mapping, and kexec boot enters with the updated address in the system table, so in those cases, we don't need to do anything here) Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
There is some code that exposes physical addresses of certain parts of the EFI firmware implementation via sysfs nodes. These nodes are only used on x86, and are of dubious value to begin with, so let's move their handling into the x86 arch code. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
config_parse_tables() is a jumble of pointer arithmetic, due to the fact that on x86, we may be dealing with firmware whose native word size differs from the kernel's. This is not a concern on other architectures, and doesn't quite justify the state of the code, so let's clean it up by adding a non-x86 code path, constifying statically allocated tables and replacing preprocessor conditionals with IS_ENABLED() checks. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The efi_config_init() routine is no longer shared with ia64 so let's move it into the x86 arch code before making further x86 specific changes to it. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We have three different versions of the code that checks the EFI system table revision and copies the firmware vendor string, and they are mostly equivalent, with the exception of the use of early_memremap_ro vs. __va() and the lowest major revision to warn about. Let's move this into common code and factor out the commonalities. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
There is no need for struct efi to carry the address of the memreserve table and share it with the world. So move it out and make it __initdata as well. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The memory attributes table is only used at init time by the core EFI code, so there is no need to carry its address in struct efi that is shared with the world. So move it out, and make it __ro_after_init as well, considering that the value is set during early boot. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Move the rng_seed table address from struct efi into a static global variable in efi.c, which is the only place we ever refer to it anyway. This reduces the footprint of struct efi, which is a r/w data structure that is shared with the world. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The UGA table is x86 specific (its handling was introduced when the EFI support code was modified to accommodate IA32), so there is no need to handle it in generic code. The EFI properties table is not strictly x86 specific, but it was deprecated almost immediately after having been introduced, due to implementation difficulties. Only x86 takes it into account today, and this is not going to change, so make this table x86 only as well. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The HCDP and MPS tables are Itanium specific EFI config tables, so move their handling to ia64 arch code. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Some plumbing exists to handle a UEFI configuration table of type BOOT_INFO but since we never match it to a GUID anywhere, we never actually register such a table, or access it, for that matter. So simply drop all mentions of it. Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64 Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
There are currently two ways to specify the initrd to be passed to the Linux kernel when booting via the EFI stub: - it can be passed as a initrd= command line option when doing a pure PE boot (as opposed to the EFI handover protocol that exists for x86) - otherwise, the bootloader or firmware can load the initrd into memory, and pass the address and size via the bootparams struct (x86) or device tree (ARM) In the first case, we are limited to loading from the same file system that the kernel was loaded from, and it is also problematic in a trusted boot context, given that we cannot easily protect the command line from tampering without either adding complicated white/blacklisting of boot arguments or locking down the command line altogether. In the second case, we force the bootloader to duplicate knowledge about the boot protocol which is already encoded in the stub, and which may be subject to change over time, e.g., bootparams struct definitions, memory allocation/alignment requirements for the placement of the initrd etc etc. In the ARM case, it also requires the bootloader to modify the hardware description provided by the firmware, as it is passed in the same file. On systems where the initrd is measured after loading, it creates a time window where the initrd contents might be manipulated in memory before handing over to the kernel. Address these concerns by adding support for loading the initrd into memory by invoking the EFI LoadFile2 protocol installed on a vendor GUIDed device path that specifically designates a Linux initrd. This addresses the above concerns, by putting the EFI stub in charge of placement in memory and of passing the base and size to the kernel proper (via whatever means it desires) while still leaving it up to the firmware or bootloader to obtain the file contents, potentially from other file systems than the one the kernel itself was loaded from. On platforms that implement measured boot, it permits the firmware to take the measurement right before the kernel actually consumes the contents. Acked-by: NLaszlo Ersek <lersek@redhat.com> Tested-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Acked-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
In preparation of adding support for loading the initrd via a special device path, add the struct definition of a vendor GUIDed device path node to efi.h. Since we will be producing these data structures rather than just consumsing the ones instantiated by the firmware, refactor the various device path node definitions so we can take the size of each node using sizeof() rather than having to resort to opaque arithmetic in the static initializers. While at it, drop the #if IS_ENABLED() check for the declaration of efi_get_device_by_path(), which is unnecessary, and constify its first argument as well. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Add the protocol definitions, GUIDs and mixed mode glue so that the EFI loadfile protocol can be used from the stub. This will be used in a future patch to load the initrd. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Move all the declarations that are only used in stub code from linux/efi.h to efistub.h which is only included locally. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Align the naming of efi_file_io_interface_t and efi_file_handle_t with the UEFI spec, and call them efi_simple_file_system_protocol_t and efi_file_protocol_t, respectively, using the same convention we use for all other type definitions that originate in the UEFI spec. While at it, move the definitions to efistub.h, so they are only seen by code that needs them. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The implementation of efi_high_alloc() uses a complicated way of traversing the memory map to find an available region that is located as close as possible to the provided upper limit, and calls AllocatePages subsequently to create the allocation at that exact address. This is precisely what the EFI_ALLOCATE_MAX_ADDRESS allocation type argument to AllocatePages() does, and considering that EFI_ALLOC_ALIGN only exceeds EFI_PAGE_SIZE on arm64, let's use AllocatePages() directly and implement the alignment using code that the compiler can remove if it does not exceed EFI_PAGE_SIZE. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 09 2月, 2020 1 次提交
-
-
由 Linus Torvalds 提交于
This makes the pipe code use separate wait-queues and exclusive waiting for readers and writers, avoiding a nasty thundering herd problem when there are lots of readers waiting for data on a pipe (or, less commonly, lots of writers waiting for a pipe to have space). While this isn't a common occurrence in the traditional "use a pipe as a data transport" case, where you typically only have a single reader and a single writer process, there is one common special case: using a pipe as a source of "locking tokens" rather than for data communication. In particular, the GNU make jobserver code ends up using a pipe as a way to limit parallelism, where each job consumes a token by reading a byte from the jobserver pipe, and releases the token by writing a byte back to the pipe. This pattern is fairly traditional on Unix, and works very well, but will waste a lot of time waking up a lot of processes when only a single reader needs to be woken up when a writer releases a new token. A simplified test-case of just this pipe interaction is to create 64 processes, and then pass a single token around between them (this test-case also intentionally passes another token that gets ignored to test the "wake up next" logic too, in case anybody wonders about it): #include <unistd.h> int main(int argc, char **argv) { int fd[2], counters[2]; pipe(fd); counters[0] = 0; counters[1] = -1; write(fd[1], counters, sizeof(counters)); /* 64 processes */ fork(); fork(); fork(); fork(); fork(); fork(); do { int i; read(fd[0], &i, sizeof(i)); if (i < 0) continue; counters[0] = i+1; write(fd[1], counters, (1+(i & 1)) *sizeof(int)); } while (counters[0] < 1000000); return 0; } and in a perfect world, passing that token around should only cause one context switch per transfer, when the writer of a token causes a directed wakeup of just a single reader. But with the "writer wakes all readers" model we traditionally had, on my test box the above case causes more than an order of magnitude more scheduling: instead of the expected ~1M context switches, "perf stat" shows 231,852.37 msec task-clock # 15.857 CPUs utilized 11,250,961 context-switches # 0.049 M/sec 616,304 cpu-migrations # 0.003 M/sec 1,648 page-faults # 0.007 K/sec 1,097,903,998,514 cycles # 4.735 GHz 120,781,778,352 instructions # 0.11 insn per cycle 27,997,056,043 branches # 120.754 M/sec 283,581,233 branch-misses # 1.01% of all branches 14.621273891 seconds time elapsed 0.018243000 seconds user 3.611468000 seconds sys before this commit. After this commit, I get 5,229.55 msec task-clock # 3.072 CPUs utilized 1,212,233 context-switches # 0.232 M/sec 103,951 cpu-migrations # 0.020 M/sec 1,328 page-faults # 0.254 K/sec 21,307,456,166 cycles # 4.074 GHz 12,947,819,999 instructions # 0.61 insn per cycle 2,881,985,678 branches # 551.096 M/sec 64,267,015 branch-misses # 2.23% of all branches 1.702148350 seconds time elapsed 0.004868000 seconds user 0.110786000 seconds sys instead. Much better. [ Note! This kernel improvement seems to be very good at triggering a race condition in the make jobserver (in GNU make 4.2.1) for me. It's a long known bug that was fixed back in June 2017 by GNU make commit b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to avoid hangs."). But there wasn't a new release of GNU make until 4.3 on Jan 19 2020, so a number of distributions may still have the buggy version. Some have backported the fix to their 4.2.1 release, though, and even without the fix it's quite timing-dependent whether the bug actually is hit. ] Josh Triplett says: "I've been hammering on your pipe fix patch (switching to exclusive wait queues) for a month or so, on several different systems, and I've run into no issues with it. The patch *substantially* improves parallel build times on large (~100 CPU) systems, both with parallel make and with other things that use make's pipe-based jobserver. All current distributions (including stable and long-term stable distributions) have versions of GNU make that no longer have the jobserver bug" Tested-by: NJosh Triplett <josh@joshtriplett.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 2月, 2020 13 次提交
-
-
由 Zenghui Yu 提交于
Currently, we will not set vpe_l1_page for the current RD if we can inherit the vPE configuration table from another RD (or ITS), which results in an inconsistency between RDs within the same CommonLPIAff group. Let's rename it to vpe_l1_base to indicate the base address of the vPE configuration table of this RD, and set it properly for *all* v4.1 redistributors. Signed-off-by: NZenghui Yu <yuzenghui@huawei.com> Signed-off-by: NMarc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200206075711.1275-3-yuzenghui@huawei.com
-
由 Al Viro 提交于
called errorfc/infofc/warnfc/invalfc Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Don't bother with "mixed" options that would allow both the form with and without argument (i.e. both -o foo and -o foo=bar). Rather than trying to shove both into a single fs_parameter_spec, allow having with-argument and no-argument specs with the same name and teach fs_parse to handle that. There are very few options of that sort, and they are actually easier to handle that way - callers end up with less postprocessing. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
The former contains nothing but a pointer to an array of the latter... Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Eric Sandeen 提交于
Unused now. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Acked-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
... turning it into struct p_log embedded into fs_context. Initialize the prefix with fs_type->name, turning fs_parse() into a trivial inline wrapper for __fs_parse(). This makes fs_parameter_description->name completely unused. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
... and now errorf() et.al. are never called with NULL fs_context, so we can get rid of conditional in those. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
fs_parse() analogue taking p_log instead of fs_context. fs_parse() turned into a wrapper, callers in ceph_common and rbd switched to __fs_parse(). As the result, fs_parse() never gets NULL fs_context and neither do fs_context-based logging primitives Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
primitives for prefixed logging Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Its behaviour is identical to that of fs_value_is_filename. It makes no sense, anyway - LOOKUP_EMPTY affects nothing whatsoever once the pathname has been imported from userland. And both fs_value_is_filename and fs_value_is_filename_empty carry an already imported pathname. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Have the arrays of constant_table self-terminated (by NULL ->name in the final entry). Simplifies lookup_constant() and allows to reuse the search for enum params as well. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 07 2月, 2020 5 次提交
-
-
由 Damien Le Moal 提交于
zonefs is a very simple file system exposing each zone of a zoned block device as a file. Unlike a regular file system with zoned block device support (e.g. f2fs), zonefs does not hide the sequential write constraint of zoned block devices to the user. Files representing sequential write zones of the device must be written sequentially starting from the end of the file (append only writes). As such, zonefs is in essence closer to a raw block device access interface than to a full featured POSIX file system. The goal of zonefs is to simplify the implementation of zoned block device support in applications by replacing raw block device file accesses with a richer file API, avoiding relying on direct block device file ioctls which may be more obscure to developers. One example of this approach is the implementation of LSM (log-structured merge) tree structures (such as used in RocksDB and LevelDB) on zoned block devices by allowing SSTables to be stored in a zone file similarly to a regular file system rather than as a range of sectors of a zoned device. The introduction of the higher level construct "one file is one zone" can help reducing the amount of changes needed in the application as well as introducing support for different application programming languages. Zonefs on-disk metadata is reduced to an immutable super block to persistently store a magic number and optional feature flags and values. On mount, zonefs uses blkdev_report_zones() to obtain the device zone configuration and populates the mount point with a static file tree solely based on this information. E.g. file sizes come from the device zone type and write pointer offset managed by the device itself. The zone files created on mount have the following characteristics. 1) Files representing zones of the same type are grouped together under a common sub-directory: * For conventional zones, the sub-directory "cnv" is used. * For sequential write zones, the sub-directory "seq" is used. These two directories are the only directories that exist in zonefs. Users cannot create other directories and cannot rename nor delete the "cnv" and "seq" sub-directories. 2) The name of zone files is the number of the file within the zone type sub-directory, in order of increasing zone start sector. 3) The size of conventional zone files is fixed to the device zone size. Conventional zone files cannot be truncated. 4) The size of sequential zone files represent the file's zone write pointer position relative to the zone start sector. Truncating these files is allowed only down to 0, in which case, the zone is reset to rewind the zone write pointer position to the start of the zone, or up to the zone size, in which case the file's zone is transitioned to the FULL state (finish zone operation). 5) All read and write operations to files are not allowed beyond the file zone size. Any access exceeding the zone size is failed with the -EFBIG error. 6) Creating, deleting, renaming or modifying any attribute of files and sub-directories is not allowed. 7) There are no restrictions on the type of read and write operations that can be issued to conventional zone files. Buffered, direct and mmap read & write operations are accepted. For sequential zone files, there are no restrictions on read operations, but all write operations must be direct IO append writes. mmap write of sequential files is not allowed. Several optional features of zonefs can be enabled at format time. * Conventional zone aggregation: ranges of contiguous conventional zones can be aggregated into a single larger file instead of the default one file per zone. * File ownership: The owner UID and GID of zone files is by default 0 (root) but can be changed to any valid UID/GID. * File access permissions: the default 640 access permissions can be changed. The mkzonefs tool is used to format zoned block devices for use with zonefs. This tool is available on Github at: git@github.com:damien-lemoal/zonefs-tools.git. zonefs-tools also includes a test suite which can be run against any zoned block device, including null_blk block device created with zoned mode. Example: the following formats a 15TB host-managed SMR HDD with 256 MB zones with the conventional zones aggregation feature enabled. $ sudo mkzonefs -o aggr_cnv /dev/sdX $ sudo mount -t zonefs /dev/sdX /mnt $ ls -l /mnt/ total 0 dr-xr-xr-x 2 root root 1 Nov 25 13:23 cnv dr-xr-xr-x 2 root root 55356 Nov 25 13:23 seq The size of the zone files sub-directories indicate the number of files existing for each type of zones. In this example, there is only one conventional zone file (all conventional zones are aggregated under a single file). $ ls -l /mnt/cnv total 137101312 -rw-r----- 1 root root 140391743488 Nov 25 13:23 0 This aggregated conventional zone file can be used as a regular file. $ sudo mkfs.ext4 /mnt/cnv/0 $ sudo mount -o loop /mnt/cnv/0 /data The "seq" sub-directory grouping files for sequential write zones has in this example 55356 zones. $ ls -lv /mnt/seq total 14511243264 -rw-r----- 1 root root 0 Nov 25 13:23 0 -rw-r----- 1 root root 0 Nov 25 13:23 1 -rw-r----- 1 root root 0 Nov 25 13:23 2 ... -rw-r----- 1 root root 0 Nov 25 13:23 55354 -rw-r----- 1 root root 0 Nov 25 13:23 55355 For sequential write zone files, the file size changes as data is appended at the end of the file, similarly to any regular file system. $ dd if=/dev/zero of=/mnt/seq/0 bs=4K count=1 conv=notrunc oflag=direct 1+0 records in 1+0 records out 4096 bytes (4.1 kB, 4.0 KiB) copied, 0.000452219 s, 9.1 MB/s $ ls -l /mnt/seq/0 -rw-r----- 1 root root 4096 Nov 25 13:23 /mnt/seq/0 The written file can be truncated to the zone size, preventing any further write operation. $ truncate -s 268435456 /mnt/seq/0 $ ls -l /mnt/seq/0 -rw-r----- 1 root root 268435456 Nov 25 13:49 /mnt/seq/0 Truncation to 0 size allows freeing the file zone storage space and restart append-writes to the file. $ truncate -s 0 /mnt/seq/0 $ ls -l /mnt/seq/0 -rw-r----- 1 root root 0 Nov 25 13:49 /mnt/seq/0 Since files are statically mapped to zones on the disk, the number of blocks of a file as reported by stat() and fstat() indicates the size of the file zone. $ stat /mnt/seq/0 File: /mnt/seq/0 Size: 0 Blocks: 524288 IO Block: 4096 regular empty file Device: 870h/2160d Inode: 50431 Links: 1 Access: (0640/-rw-r-----) Uid: ( 0/ root) Gid: ( 0/ root) Access: 2019-11-25 13:23:57.048971997 +0900 Modify: 2019-11-25 13:52:25.553805765 +0900 Change: 2019-11-25 13:52:25.553805765 +0900 Birth: - The number of blocks of the file ("Blocks") in units of 512B blocks gives the maximum file size of 524288 * 512 B = 256 MB, corresponding to the device zone size in this example. Of note is that the "IO block" field always indicates the minimum IO size for writes and corresponds to the device physical sector size. This code contains contributions from: * Johannes Thumshirn <jthumshirn@suse.de>, * Darrick J. Wong <darrick.wong@oracle.com>, * Christoph Hellwig <hch@lst.de>, * Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> and * Ting Yao <tingyao@hust.edu.cn>. Signed-off-by: NDamien Le Moal <damien.lemoal@wdc.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Al Viro 提交于
no real difference now Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Don't do a single array; attach them to fsparam_enum() entry instead. And don't bother trying to embed the names into those - it actually loses memory, with no real speedup worth mentioning. Simplifies validation as well. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
As it is, vfs_parse_fs_string() makes "foo" and "foo=" indistinguishable; both get fs_value_is_string for ->type and NULL for ->string. To make it even more unpleasant, that combination is impossible to produce with fsconfig(). Much saner rules would be "foo" => fs_value_is_flag, NULL "foo=" => fs_value_is_string, "" "foo=bar" => fs_value_is_string, "bar" All cases are distinguishable, all results are expressable by fsconfig(), ->has_value checks are much simpler that way (to the point of the field being useless) and quite a few regressions go away (gfs2 has no business accepting -o nodebug=, for example). Partially based upon patches from Miklos. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Tariq Toukan 提交于
Deprecate the generic TLS cap bit, use the new TX-specific TLS cap bit instead. Fixes: a12ff35e ("net/mlx5: Introduce TLS TX offload hardware bits and structures") Signed-off-by: NTariq Toukan <tariqt@mellanox.com> Reviewed-by: NEran Ben Elisha <eranbe@mellanox.com> Signed-off-by: NSaeed Mahameed <saeedm@mellanox.com>
-
- 06 2月, 2020 2 次提交
-
-
由 Qian Cai 提交于
sk_buff.qlen can be accessed concurrently as noticed by KCSAN, BUG: KCSAN: data-race in __skb_try_recv_from_queue / unix_dgram_sendmsg read to 0xffff8a1b1d8a81c0 of 4 bytes by task 5371 on cpu 96: unix_dgram_sendmsg+0x9a9/0xb70 include/linux/skbuff.h:1821 net/unix/af_unix.c:1761 ____sys_sendmsg+0x33e/0x370 ___sys_sendmsg+0xa6/0xf0 __sys_sendmsg+0x69/0xf0 __x64_sys_sendmsg+0x51/0x70 do_syscall_64+0x91/0xb47 entry_SYSCALL_64_after_hwframe+0x49/0xbe write to 0xffff8a1b1d8a81c0 of 4 bytes by task 1 on cpu 99: __skb_try_recv_from_queue+0x327/0x410 include/linux/skbuff.h:2029 __skb_try_recv_datagram+0xbe/0x220 unix_dgram_recvmsg+0xee/0x850 ____sys_recvmsg+0x1fb/0x210 ___sys_recvmsg+0xa2/0xf0 __sys_recvmsg+0x66/0xf0 __x64_sys_recvmsg+0x51/0x70 do_syscall_64+0x91/0xb47 entry_SYSCALL_64_after_hwframe+0x49/0xbe Since only the read is operating as lockless, it could introduce a logic bug in unix_recvq_full() due to the load tearing. Fix it by adding a lockless variant of skb_queue_len() and unix_recvq_full() where READ_ONCE() is on the read while WRITE_ONCE() is on the write similar to the commit d7d16a89 ("net: add skb_queue_empty_lockless()"). Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Geert Uytterhoeven 提交于
Depending on include order: include/linux/of_clk.h:11:45: warning: ‘struct device_node’ declared inside parameter list will not be visible outside of this definition or declaration unsigned int of_clk_get_parent_count(struct device_node *np); ^~~~~~~~~~~ include/linux/of_clk.h:12:43: warning: ‘struct device_node’ declared inside parameter list will not be visible outside of this definition or declaration const char *of_clk_get_parent_name(struct device_node *np, int index); ^~~~~~~~~~~ include/linux/of_clk.h:13:31: warning: ‘struct of_device_id’ declared inside parameter list will not be visible outside of this definition or declaration void of_clk_init(const struct of_device_id *matches); ^~~~~~~~~~~~ Fix this by adding forward declarations for struct device_node and struct of_device_id. Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Link: https://lkml.kernel.org/r/20200205194649.31309-1-geert+renesas@glider.beSigned-off-by: NStephen Boyd <sboyd@kernel.org>
-
- 05 2月, 2020 1 次提交
-
-
由 Eric Dumazet 提交于
syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-