- 15 7月, 2021 5 次提交
-
-
由 Vitaly Kuznetsov 提交于
APM states that #GP is raised upon write to MSR_VM_HSAVE_PA when the supplied address is not page-aligned or is outside of "maximum supported physical address for this implementation". page_address_valid() check seems suitable. Also, forcefully page-align the address when it's written from VMM. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210628104425.391276-2-vkuznets@redhat.com> Cc: stable@vger.kernel.org Reviewed-by: NMaxim Levitsky <mlevitsk@redhat.com> [Add comment about behavior for host-provided values. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
In theory there are no side effects of not intercepting #SMI, because then #SMI becomes transparent to the OS and the KVM. Plus an observation on recent Zen2 CPUs reveals that these CPUs ignore #SMI interception and never deliver #SMI VMexits. This is also useful to test nested KVM to see that L1 handles #SMIs correctly in case when L1 doesn't intercept #SMI. Finally the default remains the same, the SMI are intercepted by default thus this patch doesn't have any effect unless non default module param value is used. Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
Kernel never sends real INIT even to CPUs, other than on boot. Thus INIT interception is an error which should be caught by a check for an unknown VMexit reason. On top of that, the current INIT VM exit handler skips the current instruction which is wrong. That was added in commit 5ff3a351 ("KVM: x86: Move trivial instruction-based exit handlers to common code"). Fixes: 5ff3a351 ("KVM: x86: Move trivial instruction-based exit handlers to common code") Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-3-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
Commit 5ff3a351 ("KVM: x86: Move trivial instruction-based exit handlers to common code"), unfortunately made a mistake of treating nop_on_interception and nop_interception in the same way. Former does truly nothing while the latter skips the instruction. SMI VM exit handler should do nothing. (SMI itself is handled by the host when we do STGI) Fixes: 5ff3a351 ("KVM: x86: Move trivial instruction-based exit handlers to common code") Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-2-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for non-SEV guests, and for SEV guests the C-bit is dropped before the GPA hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM to mishandle #NPFs with that collide with the host's C-bit. Although the APM doesn't explicitly state that the C-bit is not reserved for non-SEV, Tom Lendacky confirmed that the following snippet about the effective reduction due to the C-bit does indeed apply only to SEV guests. Note that because guest physical addresses are always translated through the nested page tables, the size of the guest physical address space is not impacted by any physical address space reduction indicated in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however, the guest physical address space is effectively reduced by 1 bit. And for SEV guests, the APM clearly states that the bit is dropped before walking the nested page tables. If the C-bit is an address bit, this bit is masked from the guest physical address when it is translated through the nested page tables. Consequently, the hypervisor does not need to be aware of which pages the guest has chosen to mark private. Note, the bogus C-bit clearing was removed from legacy #PF handler in commit 6d1b867d ("KVM: SVM: Don't strip the C-bit from CR2 on #PF interception"). Fixes: 0ede79e1 ("KVM: SVM: Clear C-bit from the page fault address") Cc: Peter Gonda <pgonda@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210625020354.431829-3-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 24 6月, 2021 1 次提交
-
-
由 Jim Mattson 提交于
Failed VM-entry is often due to a faulty core. To help identify bad cores, print the id of the last logical processor that attempted VM-entry whenever dumping a VMCS or VMCB. Signed-off-by: NJim Mattson <jmattson@google.com> Message-Id: <20210621221648.1833148-1-jmattson@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 18 6月, 2021 12 次提交
-
-
由 Sean Christopherson 提交于
Refuse to load KVM if NX support is not available. Shadow paging has assumed NX support since commit 9167ab79 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active"), and NPT has assumed NX support since commit b8e8c830 ("kvm: mmu: ITLB_MULTIHIT mitigation"). While the NX huge pages mitigation should not be enabled by default for AMD CPUs, it can be turned on by userspace at will. Unlike Intel CPUs, AMD does not provide a way for firmware to disable NX support, and Linux always sets EFER.NX=1 if it is supported. Given that it's extremely unlikely that a CPU supports NPT but not NX, making NX a formal requirement is far simpler than adding requirements to the mitigation flow. Fixes: 9167ab79 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active") Fixes: b8e8c830 ("kvm: mmu: ITLB_MULTIHIT mitigation") Signed-off-by: NSean Christopherson <seanjc@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Message-Id: <20210615164535.2146172-3-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
Small refactoring that will be used in the next patch. Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210607090203.133058-7-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vineeth Pillai 提交于
From Hyper-V TLFS: "The hypervisor exposes hypercalls (HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressList, and HvFlushVirtualAddressListEx) that allow operating systems to more efficiently manage the virtual TLB. The L1 hypervisor can choose to allow its guest to use those hypercalls and delegate the responsibility to handle them to the L0 hypervisor. This requires the use of a partition assist page." Add the Direct Virtual Flush support for SVM. Related VMX changes: commit 6f6a657c ("KVM/Hyper-V/VMX: Add direct tlb flush support") Signed-off-by: NVineeth Pillai <viremana@linux.microsoft.com> Message-Id: <fc8d24d8eb7017266bb961e39a171b0caf298d7f.1622730232.git.viremana@linux.microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vineeth Pillai 提交于
Enlightened MSR-Bitmap as per TLFS: "The L1 hypervisor may collaborate with the L0 hypervisor to make MSR accesses more efficient. It can enable enlightened MSR bitmaps by setting the corresponding field in the enlightened VMCS to 1. When enabled, L0 hypervisor does not monitor the MSR bitmaps for changes. Instead, the L1 hypervisor must invalidate the corresponding clean field after making changes to one of the MSR bitmaps." Enable this for SVM. Related VMX changes: commit ceef7d10 ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support") Signed-off-by: NVineeth Pillai <viremana@linux.microsoft.com> Message-Id: <87df0710f95d28b91cc4ea014fc4d71056eebbee.1622730232.git.viremana@linux.microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vineeth Pillai 提交于
Enable remote TLB flush for SVM. Signed-off-by: NVineeth Pillai <viremana@linux.microsoft.com> Message-Id: <1ee364e397e142aed662d2920d198cd03772f1a5.1622730232.git.viremana@linux.microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Krish Sadhukhan 提交于
Currently, the 'nested_run' statistic counts all guest-entry attempts, including those that fail during vmentry checks on Intel and during consistency checks on AMD. Convert this statistic to count only those guest-entries that make it past these state checks and make it to guest code. This will tell us the number of guest-entries that actually executed or tried to execute guest code. Signed-off-by: NKrish Sadhukhan <Krish.Sadhukhan@oracle.com> Message-Id: <20210609180340.104248-2-krish.sadhukhan@oracle.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Now that .post_leave_smm() is gone, drop "pre_" from the remaining helpers. The helpers aren't invoked purely before SMI/RSM processing, e.g. both helpers are invoked after state is snapshotted (from regs or SMRAM), and the RSM helper is invoked after some amount of register state has been stuffed. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210609185619.992058-10-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
Now that APICv/AVIC enablement is kept in common 'enable_apicv' variable, there's no need to call kvm_apicv_init() from vendor specific code. No functional change intended. Reviewed-by: NSean Christopherson <seanjc@google.com> Reviewed-by: NMaxim Levitsky <mlevitsk@redhat.com> Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210609150911.1471882c-3-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Vitaly Kuznetsov 提交于
Unify VMX and SVM code by moving APICv/AVIC enablement tracking to common 'enable_apicv' variable. Note: unlike APICv, AVIC is disabled by default. No functional change intended. Suggested-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210609150911.1471882c-2-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ilias Stamatis 提交于
Currently vmx_vcpu_load_vmcs() writes the TSC_MULTIPLIER field of the VMCS every time the VMCS is loaded. Instead of doing this, set this field from common code on initialization and whenever the scaling ratio changes. Additionally remove vmx->current_tsc_ratio. This field is redundant as vcpu->arch.tsc_scaling_ratio already tracks the current TSC scaling ratio. The vmx->current_tsc_ratio field is only used for avoiding unnecessary writes but it is no longer needed after removing the code from the VMCS load path. Suggested-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NIlias Stamatis <ilstam@amazon.com> Message-Id: <20210607105438.16541-1-ilstam@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ilias Stamatis 提交于
The write_l1_tsc_offset() callback has a misleading name. It does not set L1's TSC offset, it rather updates the current TSC offset which might be different if a nested guest is executing. Additionally, both the vmx and svm implementations use the same logic for calculating the current TSC before writing it to hardware. Rename the function and move the common logic to the caller. The vmx/svm specific code now merely sets the given offset to the corresponding hardware structure. Signed-off-by: NIlias Stamatis <ilstam@amazon.com> Reviewed-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210526184418.28881-9-ilstam@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ilias Stamatis 提交于
In order to implement as much of the nested TSC scaling logic as possible in common code, we need these vendor callbacks for retrieving the TSC offset and the TSC multiplier that L1 has set for L2. Signed-off-by: NIlias Stamatis <ilstam@amazon.com> Reviewed-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210526184418.28881-7-ilstam@amazon.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 25 5月, 2021 1 次提交
-
-
由 Vitaly Kuznetsov 提交于
AVIC dependency on CONFIG_X86_LOCAL_APIC is dead code since commit e42eef4b ("KVM: add X86_LOCAL_APIC dependency"). Suggested-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210518144339.1987982-2-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Reviewed-by: NSean Christopherson <seanjc@google.com>
-
- 10 5月, 2021 1 次提交
-
-
由 Brijesh Singh 提交于
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8 name from it. Suggested-by: NBorislav Petkov <bp@alien8.de> Signed-off-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Acked-by: NJoerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
-
- 07 5月, 2021 7 次提交
-
-
由 Tom Lendacky 提交于
When an SEV-ES guest is running, the GHCB is unmapped as part of the vCPU run support. However, kvm_vcpu_unmap() triggers an RCU dereference warning with CONFIG_PROVE_LOCKING=y because the SRCU lock is released before invoking the vCPU run support. Move the GHCB unmapping into the prepare_guest_switch callback, which is invoked while still holding the SRCU lock, eliminating the RCU dereference warning. Fixes: 291bd20d ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT") Reported-by: NBorislav Petkov <bp@alien8.de> Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <b2f9b79d15166f2c3e4375c0d9bc3268b7696455.1620332081.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Disallow loading KVM SVM if 5-level paging is supported. In theory, NPT for L1 should simply work, but there unknowns with respect to how the guest's MAXPHYADDR will be handled by hardware. Nested NPT is more problematic, as running an L1 VMM that is using 2-level page tables requires stacking single-entry PDP and PML4 tables in KVM's NPT for L2, as there are no equivalent entries in L1's NPT to shadow. Barring hardware magic, for 5-level paging, KVM would need stack another layer to handle PML5. Opportunistically rename the lm_root pointer, which is used for the aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to call out that it's specifically for PML4. Suggested-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210505204221.1934471-1-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Squish the Intel and AMD emulation of MSR_TSC_AUX together and tie it to the guest CPU model instead of the host CPU behavior. While not strictly necessary to avoid guest breakage, emulating cross-vendor "architecture" will provide consistent behavior for the guest, e.g. WRMSR fault behavior won't change if the vCPU is migrated to a host with divergent behavior. Note, the "new" kvm_is_supported_user_return_msr() checks do not add new functionality on either SVM or VMX. On SVM, the equivalent was "tsc_aux_uret_slot < 0", and on VMX the check was buried in the vmx_find_uret_msr() call at the find_uret_msr label. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210504171734.1434054-15-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Now that SVM and VMX both probe MSRs before "defining" user return slots for them, consolidate the code for probe+define into common x86 and eliminate the odd behavior of having the vendor code define the slot for a given MSR. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210504171734.1434054-14-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Allow userspace to enable RDPID for a guest without also enabling RDTSCP. Aside from checking for RDPID support in the obvious flows, VMX also needs to set ENABLE_RDTSCP=1 when RDPID is exposed. For the record, there is no known scenario where enabling RDPID without RDTSCP is desirable. But, both AMD and Intel architectures allow for the condition, i.e. this is purely to make KVM more architecturally accurate. Fixes: 41cd02c6 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID") Cc: stable@vger.kernel.org Reported-by: NReiji Watanabe <reijiw@google.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210504171734.1434054-8-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Probe MSR_TSC_AUX whether or not RDTSCP is supported in the host, and if probing succeeds, load the guest's MSR_TSC_AUX into hardware prior to VMRUN. Because SVM doesn't support interception of RDPID, RDPID cannot be disallowed in the guest (without resorting to binary translation). Leaving the host's MSR_TSC_AUX in hardware would leak the host's value to the guest if RDTSCP is not supported. Note, there is also a kernel bug that prevents leaking the host's value. The host kernel initializes MSR_TSC_AUX if and only if RDTSCP is supported, even though the vDSO usage consumes MSR_TSC_AUX via RDPID. I.e. if RDTSCP is not supported, there is no host value to leak. But, if/when the host kernel bug is fixed, KVM would start leaking MSR_TSC_AUX in the case where hardware supports RDPID but RDTSCP is unavailable for whatever reason. Probing MSR_TSC_AUX will also allow consolidating the probe and define logic in common x86, and will make it simpler to condition the existence of MSR_TSX_AUX (from the guest's perspective) on RDTSCP *or* RDPID. Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210504171734.1434054-7-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Intercept RDTSCP to inject #UD if RDTSC is disabled in the guest. Note, SVM does not support intercepting RDPID. Unlike VMX's ENABLE_RDTSCP control, RDTSCP interception does not apply to RDPID. This is a benign virtualization hole as the host kernel (incorrectly) sets MSR_TSC_AUX if RDTSCP is supported, and KVM loads the guest's MSR_TSC_AUX into hardware if RDTSCP is supported in the host, i.e. KVM will not leak the host's MSR_TSC_AUX to the guest. But, when the kernel bug is fixed, KVM will start leaking the host's MSR_TSC_AUX if RDPID is supported in hardware, but RDTSCP isn't available for whatever reason. This leak will be remedied in a future commit. Fixes: 46896c73 ("KVM: svm: add support for RDTSCP") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210504171734.1434054-4-seanjc@google.com> Reviewed-by: NJim Mattson <jmattson@google.com> Reviewed-by: NReiji Watanabe <reijiw@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 06 5月, 2021 2 次提交
-
-
由 Sean Christopherson 提交于
Move the enter/exit logic in {svm,vmx}_vcpu_enter_exit() to common helpers. Opportunistically update the somewhat stale comment about the updates needing to occur immediately after VM-Exit. No functional change intended. Signed-off-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210505002735.1684165-9-seanjc@google.com
-
由 Wanpeng Li 提交于
Defer the call to account guest time until after servicing any IRQ(s) that happened in the guest or immediately after VM-Exit. Tick-based accounting of vCPU time relies on PF_VCPU being set when the tick IRQ handler runs, and IRQs are blocked throughout the main sequence of vcpu_enter_guest(), including the call into vendor code to actually enter and exit the guest. This fixes a bug where reported guest time remains '0', even when running an infinite loop in the guest: https://bugzilla.kernel.org/show_bug.cgi?id=209831 Fixes: 87fa7f3e ("x86/kvm: Move context tracking where it belongs") Suggested-by: NThomas Gleixner <tglx@linutronix.de> Co-developed-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NWanpeng Li <wanpengli@tencent.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210505002735.1684165-4-seanjc@google.com
-
- 03 5月, 2021 1 次提交
-
-
由 Maxim Levitsky 提交于
* Define and use an invalid GPA (all ones) for init value of last and current nested vmcb physical addresses. * Reset the current vmcb12 gpa to the invalid value when leaving the nested mode, similar to what is done on nested vmexit. * Reset the last seen vmcb12 address when disabling the nested SVM, as it relies on vmcb02 fields which are freed at that point. Fixes: 4995a368 ("KVM: SVM: Use a separate vmcb for the nested L2 guest") Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210503125446.1353307-3-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 26 4月, 2021 10 次提交
-
-
由 Sean Christopherson 提交于
Move the allocation of the SEV VMCB array to sev.c to help pave the way toward encapsulating SEV enabling wholly within sev.c. No functional change intended. Reviewed by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-13-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Remove the redundant svm_sev_enabled() check when calling sev_hardware_teardown(), the teardown helper itself does the check. Removing the check from svm.c will eventually allow dropping svm_sev_enabled() entirely. No functional change intended. Reviewed by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-11-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Add a reverse-CPUID entry for the memory encryption word, 0x8000001F.EAX, and use it to override the supported CPUID flags reported to userspace. Masking the reported CPUID flags avoids over-reporting KVM support, e.g. without the mask a SEV-SNP capable CPU may incorrectly advertise SNP support to userspace. Clear SEV/SEV-ES if their corresponding module parameters are disabled, and clear the memory encryption leaf completely if SEV is not fully supported in KVM. Advertise SME_COHERENT in addition to SEV and SEV-ES, as the guest can use SME_COHERENT to avoid CLFLUSH operations. Explicitly omit SME and VM_PAGE_FLUSH from the reporting. These features are used by KVM, but are not exposed to the guest, e.g. guest access to related MSRs will fault. Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Co-developed-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-6-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Unconditionally invoke sev_hardware_setup() when configuring SVM and handle clearing the module params/variable 'sev' and 'sev_es' in sev_hardware_setup(). This allows making said variables static within sev.c and reduces the odds of a collision with guest code, e.g. the guest side of things has already laid claim to 'sev_enabled'. Reviewed-by: NTom Lendacky <thomas.lendacky@amd.com> Reviewed-by: NBrijesh Singh <brijesh.singh@amd.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-5-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Disable SEV and SEV-ES if NPT is disabled. While the APM doesn't clearly state that NPT is mandatory, it's alluded to by: The guest page tables, managed by the guest, may mark data memory pages as either private or shared, thus allowing selected pages to be shared outside the guest. And practically speaking, shadow paging can't work since KVM can't read the guest's page tables. Fixes: e9df0942 ("KVM: SVM: Add sev module_param") Cc: Brijesh Singh <brijesh.singh@amd.com Cc: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-4-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Zero out the array of VMCB pointers so that pre_sev_run() won't see garbage when querying the array to detect when an SEV ASID is being associated with a new VMCB. In practice, reading random values is all but guaranteed to be benign as a false negative (which is extremely unlikely on its own) can only happen on CPU0 on the first VMRUN and would only cause KVM to skip the ASID flush. For anything bad to happen, a previous instance of KVM would have to exit without flushing the ASID, _and_ KVM would have to not flush the ASID at any time while building the new SEV guest. Cc: Borislav Petkov <bp@suse.de> Reviewed-by: NTom Lendacky <thomas.lendacky@amd.com> Reviewed-by: NBrijesh Singh <brijesh.singh@amd.com> Fixes: 70cd94e6 ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled") Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-2-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Append raw to the direct variants of kvm_register_read/write(), and drop the "l" from the mode-aware variants. I.e. make the mode-aware variants the default, and make the direct variants scary sounding so as to discourage use. Accessing the full 64-bit values irrespective of mode is rarely the desired behavior. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422022128.3464144-10-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Drop bits 63:32 of RAX when grabbing the address for INVLPGA emulation outside of 64-bit mode to make KVM's emulation slightly less wrong. The address for INVLPGA is determined by the effective address size, i.e. it's not hardcoded to 64/32 bits for a given mode. Add a FIXME to call out that the emulation is wrong. Opportunistically tweak the ASID handling to make it clear that it's defined by ECX, not rCX. Per the APM: The portion of rAX used to form the address is determined by the effective address size (current execution mode and optional address size prefix). The ASID is taken from ECX. Fixes: ff092385 ("KVM: SVM: Implement INVLPGA") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422022128.3464144-9-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Drop bits 63:32 on loads/stores to/from DRs and CRs when the vCPU is not in 64-bit mode. The APM states bits 63:32 are dropped for both DRs and CRs: In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix. In non-64-bit mode, the operand size is fixed at 32 bits and the upper 32 bits of the destination are forced to 0. Fixes: 7ff76d58 ("KVM: SVM: enhance MOV CR intercept handler") Fixes: cae3797a ("KVM: SVM: enhance mov DR intercept handler") Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210422022128.3464144-4-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Use KVM's "user return MSRs" framework to defer restoring the host's MSR_TSC_AUX until the CPU returns to userspace. Add/improve comments to clarify why MSR_TSC_AUX is intercepted on both RDMSR and WRMSR, and why it's safe for KVM to keep the guest's value loaded even if KVM is scheduled out. Cc: Reiji Watanabe <reijiw@google.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210423223404.3860547-5-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-