1. 15 3月, 2014 1 次提交
  2. 24 9月, 2013 1 次提交
    • D
      KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches · f36f8c75
      David Howells 提交于
      Add support for per-user_namespace registers of persistent per-UID kerberos
      caches held within the kernel.
      
      This allows the kerberos cache to be retained beyond the life of all a user's
      processes so that the user's cron jobs can work.
      
      The kerberos cache is envisioned as a keyring/key tree looking something like:
      
      	struct user_namespace
      	  \___ .krb_cache keyring		- The register
      		\___ _krb.0 keyring		- Root's Kerberos cache
      		\___ _krb.5000 keyring		- User 5000's Kerberos cache
      		\___ _krb.5001 keyring		- User 5001's Kerberos cache
      			\___ tkt785 big_key	- A ccache blob
      			\___ tkt12345 big_key	- Another ccache blob
      
      Or possibly:
      
      	struct user_namespace
      	  \___ .krb_cache keyring		- The register
      		\___ _krb.0 keyring		- Root's Kerberos cache
      		\___ _krb.5000 keyring		- User 5000's Kerberos cache
      		\___ _krb.5001 keyring		- User 5001's Kerberos cache
      			\___ tkt785 keyring	- A ccache
      				\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
      				\___ http/REDHAT.COM@REDHAT.COM user
      				\___ afs/REDHAT.COM@REDHAT.COM user
      				\___ nfs/REDHAT.COM@REDHAT.COM user
      				\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
      				\___ http/KERNEL.ORG@KERNEL.ORG big_key
      
      What goes into a particular Kerberos cache is entirely up to userspace.  Kernel
      support is limited to giving you the Kerberos cache keyring that you want.
      
      The user asks for their Kerberos cache by:
      
      	krb_cache = keyctl_get_krbcache(uid, dest_keyring);
      
      The uid is -1 or the user's own UID for the user's own cache or the uid of some
      other user's cache (requires CAP_SETUID).  This permits rpc.gssd or whatever to
      mess with the cache.
      
      The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
      search, clear, invalidate, unlink from and add links to.  Active LSMs get a
      chance to rule on whether the caller is permitted to make a link.
      
      Each uid's cache keyring is created when it first accessed and is given a
      timeout that is extended each time this function is called so that the keyring
      goes away after a while.  The timeout is configurable by sysctl but defaults to
      three days.
      
      Each user_namespace struct gets a lazily-created keyring that serves as the
      register.  The cache keyrings are added to it.  This means that standard key
      search and garbage collection facilities are available.
      
      The user_namespace struct's register goes away when it does and anything left
      in it is then automatically gc'd.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NSimo Sorce <simo@redhat.com>
      cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
      cc: Eric W. Biederman <ebiederm@xmission.com>
      f36f8c75
  3. 08 5月, 2013 1 次提交
  4. 08 10月, 2012 1 次提交
    • D
      KEYS: Add payload preparsing opportunity prior to key instantiate or update · cf7f601c
      David Howells 提交于
      Give the key type the opportunity to preparse the payload prior to the
      instantiation and update routines being called.  This is done with the
      provision of two new key type operations:
      
      	int (*preparse)(struct key_preparsed_payload *prep);
      	void (*free_preparse)(struct key_preparsed_payload *prep);
      
      If the first operation is present, then it is called before key creation (in
      the add/update case) or before the key semaphore is taken (in the update and
      instantiate cases).  The second operation is called to clean up if the first
      was called.
      
      preparse() is given the opportunity to fill in the following structure:
      
      	struct key_preparsed_payload {
      		char		*description;
      		void		*type_data[2];
      		void		*payload;
      		const void	*data;
      		size_t		datalen;
      		size_t		quotalen;
      	};
      
      Before the preparser is called, the first three fields will have been cleared,
      the payload pointer and size will be stored in data and datalen and the default
      quota size from the key_type struct will be stored into quotalen.
      
      The preparser may parse the payload in any way it likes and may store data in
      the type_data[] and payload fields for use by the instantiate() and update()
      ops.
      
      The preparser may also propose a description for the key by attaching it as a
      string to the description field.  This can be used by passing a NULL or ""
      description to the add_key() system call or the key_create_or_update()
      function.  This cannot work with request_key() as that required the description
      to tell the upcall about the key to be created.
      
      This, for example permits keys that store PGP public keys to generate their own
      name from the user ID and public key fingerprint in the key.
      
      The instantiate() and update() operations are then modified to look like this:
      
      	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
      	int (*update)(struct key *key, struct key_preparsed_payload *prep);
      
      and the new payload data is passed in *prep, whether or not it was preparsed.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
      cf7f601c
  5. 03 10月, 2012 1 次提交
    • D
      KEYS: Make the session and process keyrings per-thread · 3a50597d
      David Howells 提交于
      Make the session keyring per-thread rather than per-process, but still
      inherited from the parent thread to solve a problem with PAM and gdm.
      
      The problem is that join_session_keyring() will reject attempts to change the
      session keyring of a multithreaded program but gdm is now multithreaded before
      it gets to the point of starting PAM and running pam_keyinit to create the
      session keyring.  See:
      
      	https://bugs.freedesktop.org/show_bug.cgi?id=49211
      
      The reason that join_session_keyring() will only change the session keyring
      under a single-threaded environment is that it's hard to alter the other
      thread's credentials to effect the change in a multi-threaded program.  The
      problems are such as:
      
       (1) How to prevent two threads both running join_session_keyring() from
           racing.
      
       (2) Another thread's credentials may not be modified directly by this process.
      
       (3) The number of threads is uncertain whilst we're not holding the
           appropriate spinlock, making preallocation slightly tricky.
      
       (4) We could use TIF_NOTIFY_RESUME and key_replace_session_keyring() to get
           another thread to replace its keyring, but that means preallocating for
           each thread.
      
      A reasonable way around this is to make the session keyring per-thread rather
      than per-process and just document that if you want a common session keyring,
      you must get it before you spawn any threads - which is the current situation
      anyway.
      
      Whilst we're at it, we can the process keyring behave in the same way.  This
      means we can clean up some of the ickyness in the creds code.
      
      Basically, after this patch, the session, process and thread keyrings are about
      inheritance rules only and not about sharing changes of keyring.
      Reported-by: NMantas M. <grawity@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NRay Strode <rstrode@redhat.com>
      3a50597d
  6. 28 9月, 2012 1 次提交
  7. 14 9月, 2012 1 次提交
    • E
      userns: Convert security/keys to the new userns infrastructure · 9a56c2db
      Eric W. Biederman 提交于
      - Replace key_user ->user_ns equality checks with kuid_has_mapping checks.
      - Use from_kuid to generate key descriptions
      - Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t
      - Avoid potential problems with file descriptor passing by displaying
        keys in the user namespace of the opener of key status proc files.
      
      Cc: linux-security-module@vger.kernel.org
      Cc: keyrings@linux-nfs.org
      Cc: David Howells <dhowells@redhat.com>
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      9a56c2db
  8. 13 9月, 2012 2 次提交
    • O
      task_work: Revert "hold task_lock around checks in keyctl" · b3f68f16
      Oleg Nesterov 提交于
      This reverts commit d35abdb2.
      
      task_lock() was added to ensure exit_mm() and thus exit_task_work() is
      not possible before task_work_add().
      
      This is wrong, task_lock() must not be nested with write_lock(tasklist).
      And this is no longer needed, task_work_add() now fails if it is called
      after exit_task_work().
      Reported-by: NDave Jones <davej@redhat.com>
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Link: http://lkml.kernel.org/r/20120826191214.GA4231@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      b3f68f16
    • D
      KEYS: Add payload preparsing opportunity prior to key instantiate or update · d4f65b5d
      David Howells 提交于
      Give the key type the opportunity to preparse the payload prior to the
      instantiation and update routines being called.  This is done with the
      provision of two new key type operations:
      
      	int (*preparse)(struct key_preparsed_payload *prep);
      	void (*free_preparse)(struct key_preparsed_payload *prep);
      
      If the first operation is present, then it is called before key creation (in
      the add/update case) or before the key semaphore is taken (in the update and
      instantiate cases).  The second operation is called to clean up if the first
      was called.
      
      preparse() is given the opportunity to fill in the following structure:
      
      	struct key_preparsed_payload {
      		char		*description;
      		void		*type_data[2];
      		void		*payload;
      		const void	*data;
      		size_t		datalen;
      		size_t		quotalen;
      	};
      
      Before the preparser is called, the first three fields will have been cleared,
      the payload pointer and size will be stored in data and datalen and the default
      quota size from the key_type struct will be stored into quotalen.
      
      The preparser may parse the payload in any way it likes and may store data in
      the type_data[] and payload fields for use by the instantiate() and update()
      ops.
      
      The preparser may also propose a description for the key by attaching it as a
      string to the description field.  This can be used by passing a NULL or ""
      description to the add_key() system call or the key_create_or_update()
      function.  This cannot work with request_key() as that required the description
      to tell the upcall about the key to be created.
      
      This, for example permits keys that store PGP public keys to generate their own
      name from the user ID and public key fingerprint in the key.
      
      The instantiate() and update() operations are then modified to look like this:
      
      	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
      	int (*update)(struct key *key, struct key_preparsed_payload *prep);
      
      and the new payload data is passed in *prep, whether or not it was preparsed.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      d4f65b5d
  9. 23 7月, 2012 3 次提交
  10. 01 6月, 2012 2 次提交
  11. 25 5月, 2012 1 次提交
    • D
      KEYS: Fix some sparse warnings · 423b9788
      David Howells 提交于
      Fix some sparse warnings in the keyrings code:
      
       (1) compat_keyctl_instantiate_key_iov() should be static.
      
       (2) There were a couple of places where a pointer was being compared against
           integer 0 rather than NULL.
      
       (3) keyctl_instantiate_key_common() should not take a __user-labelled iovec
           pointer as the caller must have copied the iovec to kernel space.
      
       (4) __key_link_begin() takes and __key_link_end() releases
           keyring_serialise_link_sem under some circumstances and so this should be
           declared.
      
           Note that adding __acquires() and __releases() for this doesn't help cure
           the warnings messages - something only commenting out both helps.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <james.l.morris@oracle.com>
      423b9788
  12. 24 5月, 2012 2 次提交
    • O
      keys: change keyctl_session_to_parent() to use task_work_add() · 413cd3d9
      Oleg Nesterov 提交于
      Change keyctl_session_to_parent() to use task_work_add() and move
      key_replace_session_keyring() logic into task_work->func().
      
      Note that we do task_work_cancel() before task_work_add() to ensure that
      only one work can be pending at any time.  This is important, we must not
      allow user-space to abuse the parent's ->task_works list.
      
      The callback, replace_session_keyring(), checks PF_EXITING.  I guess this
      is not really needed but looks better.
      
      As a side effect, this fixes the (unlikely) race.  The callers of
      key_replace_session_keyring() and keyctl_session_to_parent() lack the
      necessary barriers, the parent can miss the request.
      
      Now we can remove task_struct->replacement_session_keyring and related
      code.
      Signed-off-by: NOleg Nesterov <oleg@redhat.com>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Richard Kuo <rkuo@codeaurora.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Alexander Gordeev <agordeev@redhat.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: David Smith <dsmith@redhat.com>
      Cc: "Frank Ch. Eigler" <fche@redhat.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Larry Woodman <lwoodman@redhat.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      413cd3d9
    • A
      TIF_NOTIFY_RESUME is defined on all targets now · 1227dd77
      Al Viro 提交于
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      1227dd77
  13. 11 5月, 2012 1 次提交
    • D
      KEYS: Add invalidation support · fd75815f
      David Howells 提交于
      Add support for invalidating a key - which renders it immediately invisible to
      further searches and causes the garbage collector to immediately wake up,
      remove it from keyrings and then destroy it when it's no longer referenced.
      
      It's better not to do this with keyctl_revoke() as that marks the key to start
      returning -EKEYREVOKED to searches when what is actually desired is to have the
      key refetched.
      
      To invalidate a key the caller must be granted SEARCH permission by the key.
      This may be too strict.  It may be better to also permit invalidation if the
      caller has any of READ, WRITE or SETATTR permission.
      
      The primary use for this is to evict keys that are cached in special keyrings,
      such as the DNS resolver or an ID mapper.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      fd75815f
  14. 02 3月, 2012 1 次提交
  15. 19 1月, 2012 1 次提交
  16. 01 11月, 2011 1 次提交
    • C
      Cross Memory Attach · fcf63409
      Christopher Yeoh 提交于
      The basic idea behind cross memory attach is to allow MPI programs doing
      intra-node communication to do a single copy of the message rather than a
      double copy of the message via shared memory.
      
      The following patch attempts to achieve this by allowing a destination
      process, given an address and size from a source process, to copy memory
      directly from the source process into its own address space via a system
      call.  There is also a symmetrical ability to copy from the current
      process's address space into a destination process's address space.
      
      - Use of /proc/pid/mem has been considered, but there are issues with
        using it:
        - Does not allow for specifying iovecs for both src and dest, assuming
          preadv or pwritev was implemented either the area read from or
        written to would need to be contiguous.
        - Currently mem_read allows only processes who are currently
        ptrace'ing the target and are still able to ptrace the target to read
        from the target. This check could possibly be moved to the open call,
        but its not clear exactly what race this restriction is stopping
        (reason  appears to have been lost)
        - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
        domain socket is a bit ugly from a userspace point of view,
        especially when you may have hundreds if not (eventually) thousands
        of processes  that all need to do this with each other
        - Doesn't allow for some future use of the interface we would like to
        consider adding in the future (see below)
        - Interestingly reading from /proc/pid/mem currently actually
        involves two copies! (But this could be fixed pretty easily)
      
      As mentioned previously use of vmsplice instead was considered, but has
      problems.  Since you need the reader and writer working co-operatively if
      the pipe is not drained then you block.  Which requires some wrapping to
      do non blocking on the send side or polling on the receive.  In all to all
      communication it requires ordering otherwise you can deadlock.  And in the
      example of many MPI tasks writing to one MPI task vmsplice serialises the
      copying.
      
      There are some cases of MPI collectives where even a single copy interface
      does not get us the performance gain we could.  For example in an
      MPI_Reduce rather than copy the data from the source we would like to
      instead use it directly in a mathops (say the reduce is doing a sum) as
      this would save us doing a copy.  We don't need to keep a copy of the data
      from the source.  I haven't implemented this, but I think this interface
      could in the future do all this through the use of the flags - eg could
      specify the math operation and type and the kernel rather than just
      copying the data would apply the specified operation between the source
      and destination and store it in the destination.
      
      Although we don't have a "second user" of the interface (though I've had
      some nibbles from people who may be interested in using it for intra
      process messaging which is not MPI).  This interface is something which
      hardware vendors are already doing for their custom drivers to implement
      fast local communication.  And so in addition to this being useful for
      OpenMPI it would mean the driver maintainers don't have to fix things up
      when the mm changes.
      
      There was some discussion about how much faster a true zero copy would
      go. Here's a link back to the email with some testing I did on that:
      
      http://marc.info/?l=linux-mm&m=130105930902915&w=2
      
      There is a basic man page for the proposed interface here:
      
      http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt
      
      This has been implemented for x86 and powerpc, other architecture should
      mainly (I think) just need to add syscall numbers for the process_vm_readv
      and process_vm_writev. There are 32 bit compatibility versions for
      64-bit kernels.
      
      For arch maintainers there are some simple tests to be able to quickly
      verify that the syscalls are working correctly here:
      
      http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgzSigned-off-by: NChris Yeoh <yeohc@au1.ibm.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Howells <dhowells@redhat.com>
      Cc: James Morris <jmorris@namei.org>
      Cc: <linux-man@vger.kernel.org>
      Cc: <linux-arch@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fcf63409
  17. 17 3月, 2011 1 次提交
    • D
      KEYS: Make request_key() and co. return an error for a negative key · 4aab1e89
      David Howells 提交于
      Make request_key() and co. return an error for a negative or rejected key.  If
      the key was simply negated, then return ENOKEY, otherwise return the error
      with which it was rejected.
      
      Without this patch, the following command returns a key number (with the latest
      keyutils):
      
      	[root@andromeda ~]# keyctl request2 user debug:foo rejected @s
      	586569904
      
      Trying to print the key merely gets you a permission denied error:
      
      	[root@andromeda ~]# keyctl print 586569904
      	keyctl_read_alloc: Permission denied
      
      Doing another request_key() call does get you the error, as long as it hasn't
      expired yet:
      
      	[root@andromeda ~]# keyctl request user debug:foo
      	request_key: Key was rejected by service
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      4aab1e89
  18. 08 3月, 2011 2 次提交
  19. 22 1月, 2011 2 次提交
  20. 10 9月, 2010 2 次提交
    • D
      KEYS: Fix bug in keyctl_session_to_parent() if parent has no session keyring · 3d96406c
      David Howells 提交于
      Fix a bug in keyctl_session_to_parent() whereby it tries to check the ownership
      of the parent process's session keyring whether or not the parent has a session
      keyring [CVE-2010-2960].
      
      This results in the following oops:
      
        BUG: unable to handle kernel NULL pointer dereference at 00000000000000a0
        IP: [<ffffffff811ae4dd>] keyctl_session_to_parent+0x251/0x443
        ...
        Call Trace:
         [<ffffffff811ae2f3>] ? keyctl_session_to_parent+0x67/0x443
         [<ffffffff8109d286>] ? __do_fault+0x24b/0x3d0
         [<ffffffff811af98c>] sys_keyctl+0xb4/0xb8
         [<ffffffff81001eab>] system_call_fastpath+0x16/0x1b
      
      if the parent process has no session keyring.
      
      If the system is using pam_keyinit then it mostly protected against this as all
      processes derived from a login will have inherited the session keyring created
      by pam_keyinit during the log in procedure.
      
      To test this, pam_keyinit calls need to be commented out in /etc/pam.d/.
      Reported-by: NTavis Ormandy <taviso@cmpxchg8b.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NTavis Ormandy <taviso@cmpxchg8b.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3d96406c
    • D
      KEYS: Fix RCU no-lock warning in keyctl_session_to_parent() · 9d1ac65a
      David Howells 提交于
      There's an protected access to the parent process's credentials in the middle
      of keyctl_session_to_parent().  This results in the following RCU warning:
      
        ===================================================
        [ INFO: suspicious rcu_dereference_check() usage. ]
        ---------------------------------------------------
        security/keys/keyctl.c:1291 invoked rcu_dereference_check() without protection!
      
        other info that might help us debug this:
      
        rcu_scheduler_active = 1, debug_locks = 0
        1 lock held by keyctl-session-/2137:
         #0:  (tasklist_lock){.+.+..}, at: [<ffffffff811ae2ec>] keyctl_session_to_parent+0x60/0x236
      
        stack backtrace:
        Pid: 2137, comm: keyctl-session- Not tainted 2.6.36-rc2-cachefs+ #1
        Call Trace:
         [<ffffffff8105606a>] lockdep_rcu_dereference+0xaa/0xb3
         [<ffffffff811ae379>] keyctl_session_to_parent+0xed/0x236
         [<ffffffff811af77e>] sys_keyctl+0xb4/0xb6
         [<ffffffff81001eab>] system_call_fastpath+0x16/0x1b
      
      The code should take the RCU read lock to make sure the parents credentials
      don't go away, even though it's holding a spinlock and has IRQ disabled.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9d1ac65a
  21. 02 8月, 2010 2 次提交
  22. 27 6月, 2010 1 次提交
  23. 28 5月, 2010 1 次提交
  24. 23 4月, 2010 1 次提交
  25. 12 4月, 2010 1 次提交
  26. 17 12月, 2009 2 次提交
  27. 16 10月, 2009 1 次提交
    • D
      KEYS: get_instantiation_keyring() should inc the keyring refcount in all cases · 21279cfa
      David Howells 提交于
      The destination keyring specified to request_key() and co. is made available to
      the process that instantiates the key (the slave process started by
      /sbin/request-key typically).  This is passed in the request_key_auth struct as
      the dest_keyring member.
      
      keyctl_instantiate_key and keyctl_negate_key() call get_instantiation_keyring()
      to get the keyring to attach the newly constructed key to at the end of
      instantiation.  This may be given a specific keyring into which a link will be
      made later, or it may be asked to find the keyring passed to request_key().  In
      the former case, it returns a keyring with the refcount incremented by
      lookup_user_key(); in the latter case, it returns the keyring from the
      request_key_auth struct - and does _not_ increment the refcount.
      
      The latter case will eventually result in an oops when the keyring prematurely
      runs out of references and gets destroyed.  The effect may take some time to
      show up as the key is destroyed lazily.
      
      To fix this, the keyring returned by get_instantiation_keyring() must always
      have its refcount incremented, no matter where it comes from.
      
      This can be tested by setting /etc/request-key.conf to:
      
      #OP	TYPE	DESCRIPTION	CALLOUT INFO	PROGRAM ARG1 ARG2 ARG3 ...
      #======	=======	===============	===============	===============================
      create  *	test:*		*		|/bin/false %u %g %d %{user:_display}
      negate	*	*		*		/bin/keyctl negate %k 10 @u
      
      and then doing:
      
      	keyctl add user _display aaaaaaaa @u
              while keyctl request2 user test:x test:x @u &&
              keyctl list @u;
              do
                      keyctl request2 user test:x test:x @u;
                      sleep 31;
                      keyctl list @u;
              done
      
      which will oops eventually.  Changing the negate line to have @u rather than
      %S at the end is important as that forces the latter case by passing a special
      keyring ID rather than an actual keyring ID.
      Reported-by: NAlexander Zangerl <az@bond.edu.au>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NAlexander Zangerl <az@bond.edu.au>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      21279cfa
  28. 15 9月, 2009 2 次提交
    • D
      KEYS: Fix garbage collector · c08ef808
      David Howells 提交于
      Fix a number of problems with the new key garbage collector:
      
       (1) A rogue semicolon in keyring_gc() was causing the initial count of dead
           keys to be miscalculated.
      
       (2) A missing return in keyring_gc() meant that under certain circumstances,
           the keyring semaphore would be unlocked twice.
      
       (3) The key serial tree iterator (key_garbage_collector()) part of the garbage
           collector has been modified to:
      
           (a) Complete each scan of the keyrings before setting the new timer.
      
           (b) Only set the new timer for keys that have yet to expire.  This means
               that the new timer is now calculated correctly, and the gc doesn't
               get into a loop continually scanning for keys that have expired, and
               preventing other things from happening, like RCU cleaning up the old
               keyring contents.
      
           (c) Perform an extra scan if any keys were garbage collected in this one
           	 as a key might become garbage during a scan, and (b) could mean we
           	 don't set the timer again.
      
       (4) Made key_schedule_gc() take the time at which to do a collection run,
           rather than the time at which the key expires.  This means the collection
           of dead keys (key type unregistered) can happen immediately.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      c08ef808
    • M
      KEYS: Unlock tasklist when exiting early from keyctl_session_to_parent · 5c84342a
      Marc Dionne 提交于
      When we exit early from keyctl_session_to_parent because of permissions or
      because the session keyring is the same as the parent, we need to unlock the
      tasklist.
      
      The missing unlock causes the system to hang completely when using
      keyctl(KEYCTL_SESSION_TO_PARENT) with a keyring shared with the parent.
      Signed-off-by: NMarc Dionne <marc.c.dionne@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      5c84342a
  29. 02 9月, 2009 1 次提交
    • D
      KEYS: Add a keyctl to install a process's session keyring on its parent [try #6] · ee18d64c
      David Howells 提交于
      Add a keyctl to install a process's session keyring onto its parent.  This
      replaces the parent's session keyring.  Because the COW credential code does
      not permit one process to change another process's credentials directly, the
      change is deferred until userspace next starts executing again.  Normally this
      will be after a wait*() syscall.
      
      To support this, three new security hooks have been provided:
      cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
      the blank security creds and key_session_to_parent() - which asks the LSM if
      the process may replace its parent's session keyring.
      
      The replacement may only happen if the process has the same ownership details
      as its parent, and the process has LINK permission on the session keyring, and
      the session keyring is owned by the process, and the LSM permits it.
      
      Note that this requires alteration to each architecture's notify_resume path.
      This has been done for all arches barring blackfin, m68k* and xtensa, all of
      which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
      replacement to be performed at the point the parent process resumes userspace
      execution.
      
      This allows the userspace AFS pioctl emulation to fully emulate newpag() and
      the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
      alter the parent process's PAG membership.  However, since kAFS doesn't use
      PAGs per se, but rather dumps the keys into the session keyring, the session
      keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
      the newpag flag.
      
      This can be tested with the following program:
      
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <keyutils.h>
      
      	#define KEYCTL_SESSION_TO_PARENT	18
      
      	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
      
      	int main(int argc, char **argv)
      	{
      		key_serial_t keyring, key;
      		long ret;
      
      		keyring = keyctl_join_session_keyring(argv[1]);
      		OSERROR(keyring, "keyctl_join_session_keyring");
      
      		key = add_key("user", "a", "b", 1, keyring);
      		OSERROR(key, "add_key");
      
      		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
      		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
      
      		return 0;
      	}
      
      Compiled and linked with -lkeyutils, you should see something like:
      
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: _ses
      	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
      	[dhowells@andromeda ~]$ /tmp/newpag
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: _ses
      	1055658746 --alswrv   4043  4043   \_ user: a
      	[dhowells@andromeda ~]$ /tmp/newpag hello
      	[dhowells@andromeda ~]$ keyctl show
      	Session Keyring
      	       -3 --alswrv   4043  4043  keyring: hello
      	340417692 --alswrv   4043  4043   \_ user: a
      
      Where the test program creates a new session keyring, sticks a user key named
      'a' into it and then installs it on its parent.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      ee18d64c