1. 31 1月, 2017 2 次提交
    • P
      KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9 · 468808bd
      Paul Mackerras 提交于
      This adds the implementation of the KVM_PPC_CONFIGURE_V3_MMU ioctl
      for HPT guests on POWER9.  With this, we can return 1 for the
      KVM_CAP_PPC_MMU_HASH_V3 capability.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      468808bd
    • P
      KVM: PPC: Book3S HV: Add userspace interfaces for POWER9 MMU · c9270132
      Paul Mackerras 提交于
      This adds two capabilities and two ioctls to allow userspace to
      find out about and configure the POWER9 MMU in a guest.  The two
      capabilities tell userspace whether KVM can support a guest using
      the radix MMU, or using the hashed page table (HPT) MMU with a
      process table and segment tables.  (Note that the MMUs in the
      POWER9 processor cores do not use the process and segment tables
      when in HPT mode, but the nest MMU does).
      
      The KVM_PPC_CONFIGURE_V3_MMU ioctl allows userspace to specify
      whether a guest will use the radix MMU or the HPT MMU, and to
      specify the size and location (in guest space) of the process
      table.
      
      The KVM_PPC_GET_RMMU_INFO ioctl gives userspace information about
      the radix MMU.  It returns a list of supported radix tree geometries
      (base page size and number of bits indexed at each level of the
      radix tree) and the encoding used to specify the various page
      sizes for the TLB invalidate entry instruction.
      
      Initially, both capabilities return 0 and the ioctls return -EINVAL,
      until the necessary infrastructure for them to operate correctly
      is added.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      c9270132
  2. 26 12月, 2016 1 次提交
    • T
      ktime: Cleanup ktime_set() usage · 8b0e1953
      Thomas Gleixner 提交于
      ktime_set(S,N) was required for the timespec storage type and is still
      useful for situations where a Seconds and Nanoseconds part of a time value
      needs to be converted. For anything where the Seconds argument is 0, this
      is pointless and can be replaced with a simple assignment.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      8b0e1953
  3. 25 12月, 2016 1 次提交
  4. 02 12月, 2016 1 次提交
  5. 28 11月, 2016 3 次提交
  6. 24 11月, 2016 8 次提交
    • S
      KVM: PPC: Book3S HV: Update kvmppc_set_arch_compat() for ISA v3.00 · 2ee13be3
      Suraj Jitindar Singh 提交于
      The function kvmppc_set_arch_compat() is used to determine the value of the
      processor compatibility register (PCR) for a guest running in a given
      compatibility mode. There is currently no support for v3.00 of the ISA.
      
      Add support for v3.00 of the ISA which adds an ISA v2.07 compatilibity mode
      to the PCR.
      
      We also add a check to ensure the processor we are running on is capable of
      emulating the chosen processor (for example a POWER7 cannot emulate a
      POWER8, similarly with a POWER8 and a POWER9).
      
      Based on work by: Paul Mackerras <paulus@ozlabs.org>
      
      [paulus@ozlabs.org - moved dummy PCR_ARCH_300 definition here; set
       guest_pcr_bit when arch_compat == 0, added comment.]
      Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      2ee13be3
    • P
      KVM: PPC: Book3S HV: Treat POWER9 CPU threads as independent subcores · 45c940ba
      Paul Mackerras 提交于
      With POWER9, each CPU thread has its own MMU context and can be
      in the host or a guest independently of the other threads; there is
      still however a restriction that all threads must use the same type
      of address translation, either radix tree or hashed page table (HPT).
      
      Since we only support HPT guests on a HPT host at this point, we
      can treat the threads as being independent, and avoid all of the
      work of coordinating the CPU threads.  To make this simpler, we
      introduce a new threads_per_vcore() function that returns 1 on
      POWER9 and threads_per_subcore on POWER7/8, and use that instead
      of threads_per_subcore or threads_per_core in various places.
      
      This also changes the value of the KVM_CAP_PPC_SMT capability on
      POWER9 systems from 4 to 1, so that userspace will not try to
      create VMs with multiple vcpus per vcore.  (If userspace did create
      a VM that thought it was in an SMT mode, the VM might try to use
      the msgsndp instruction, which will not work as expected.  In
      future it may be possible to trap and emulate msgsndp in order to
      allow VMs to think they are in an SMT mode, if only for the purpose
      of allowing migration from POWER8 systems.)
      
      With all this, we can now run guests on POWER9 as long as the host
      is running with HPT translation.  Since userspace currently has no
      way to request radix tree translation for the guest, the guest has
      no choice but to use HPT translation.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      45c940ba
    • P
      KVM: PPC: Book3S HV: Enable hypervisor virtualization interrupts while in guest · 84f7139c
      Paul Mackerras 提交于
      The new XIVE interrupt controller on POWER9 can direct external
      interrupts to the hypervisor or the guest.  The interrupts directed to
      the hypervisor are controlled by an LPCR bit called LPCR_HVICE, and
      come in as a "hypervisor virtualization interrupt".  This sets the
      LPCR bit so that hypervisor virtualization interrupts can occur while
      we are in the guest.  We then also need to cope with exiting the guest
      because of a hypervisor virtualization interrupt.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      84f7139c
    • P
      KVM: PPC: Book3S HV: Use OPAL XICS emulation on POWER9 · f725758b
      Paul Mackerras 提交于
      POWER9 includes a new interrupt controller, called XIVE, which is
      quite different from the XICS interrupt controller on POWER7 and
      POWER8 machines.  KVM-HV accesses the XICS directly in several places
      in order to send and clear IPIs and handle interrupts from PCI
      devices being passed through to the guest.
      
      In order to make the transition to XIVE easier, OPAL firmware will
      include an emulation of XICS on top of XIVE.  Access to the emulated
      XICS is via OPAL calls.  The one complication is that the EOI
      (end-of-interrupt) function can now return a value indicating that
      another interrupt is pending; in this case, the XIVE will not signal
      an interrupt in hardware to the CPU, and software is supposed to
      acknowledge the new interrupt without waiting for another interrupt
      to be delivered in hardware.
      
      This adapts KVM-HV to use the OPAL calls on machines where there is
      no XICS hardware.  When there is no XICS, we look for a device-tree
      node with "ibm,opal-intc" in its compatible property, which is how
      OPAL indicates that it provides XICS emulation.
      
      In order to handle the EOI return value, kvmppc_read_intr() has
      become kvmppc_read_one_intr(), with a boolean variable passed by
      reference which can be set by the EOI functions to indicate that
      another interrupt is pending.  The new kvmppc_read_intr() keeps
      calling kvmppc_read_one_intr() until there are no more interrupts
      to process.  The return value from kvmppc_read_intr() is the
      largest non-zero value of the returns from kvmppc_read_one_intr().
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      f725758b
    • P
      KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9 · 1704a81c
      Paul Mackerras 提交于
      On POWER9, the msgsnd instruction is able to send interrupts to
      other cores, as well as other threads on the local core.  Since
      msgsnd is generally simpler and faster than sending an IPI via the
      XICS, we use msgsnd for all IPIs sent by KVM on POWER9.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      1704a81c
    • P
      KVM: PPC: Book3S HV: Adapt TLB invalidations to work on POWER9 · 7c5b06ca
      Paul Mackerras 提交于
      POWER9 adds new capabilities to the tlbie (TLB invalidate entry)
      and tlbiel (local tlbie) instructions.  Both instructions get a
      set of new parameters (RIC, PRS and R) which appear as bits in the
      instruction word.  The tlbiel instruction now has a second register
      operand, which contains a PID and/or LPID value if needed, and
      should otherwise contain 0.
      
      This adapts KVM-HV's usage of tlbie and tlbiel to work on POWER9
      as well as older processors.  Since we only handle HPT guests so
      far, we need RIC=0 PRS=0 R=0, which ends up with the same instruction
      word as on previous processors, so we don't need to conditionally
      execute different instructions depending on the processor.
      
      The local flush on first entry to a guest in book3s_hv_rmhandlers.S
      is a loop which depends on the number of TLB sets.  Rather than
      using feature sections to set the number of iterations based on
      which CPU we're on, we now work out this number at VM creation time
      and store it in the kvm_arch struct.  That will make it possible to
      get the number from the device tree in future, which will help with
      compatibility with future processors.
      
      Since mmu_partition_table_set_entry() does a global flush of the
      whole LPID, we don't need to do the TLB flush on first entry to the
      guest on each processor.  Therefore we don't set all bits in the
      tlb_need_flush bitmap on VM startup on POWER9.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      7c5b06ca
    • P
      KVM: PPC: Book3S HV: Add new POWER9 guest-accessible SPRs · e9cf1e08
      Paul Mackerras 提交于
      This adds code to handle two new guest-accessible special-purpose
      registers on POWER9: TIDR (thread ID register) and PSSCR (processor
      stop status and control register).  They are context-switched
      between host and guest, and the guest values can be read and set
      via the one_reg interface.
      
      The PSSCR contains some fields which are guest-accessible and some
      which are only accessible in hypervisor mode.  We only allow the
      guest-accessible fields to be read or set by userspace.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      e9cf1e08
    • P
      KVM: PPC: Book3S HV: Set partition table rather than SDR1 on POWER9 · 7a84084c
      Paul Mackerras 提交于
      On POWER9, the SDR1 register (hashed page table base address) is no
      longer used, and instead the hardware reads the HPT base address
      and size from the partition table.  The partition table entry also
      contains the bits that specify the page size for the VRMA mapping,
      which were previously in the LPCR.  The VPM0 bit of the LPCR is
      now reserved; the processor now always uses the VRMA (virtual
      real-mode area) mechanism for guest real-mode accesses in HPT mode,
      and the RMO (real-mode offset) mechanism has been dropped.
      
      When entering or exiting the guest, we now only have to set the
      LPIDR (logical partition ID register), not the SDR1 register.
      There is also no requirement now to transition via a reserved
      LPID value.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      7a84084c
  7. 21 11月, 2016 3 次提交
    • P
      KVM: PPC: Book3S HV: Save/restore XER in checkpointed register state · 0d808df0
      Paul Mackerras 提交于
      When switching from/to a guest that has a transaction in progress,
      we need to save/restore the checkpointed register state.  Although
      XER is part of the CPU state that gets checkpointed, the code that
      does this saving and restoring doesn't save/restore XER.
      
      This fixes it by saving and restoring the XER.  To allow userspace
      to read/write the checkpointed XER value, we also add a new ONE_REG
      specifier.
      
      The visible effect of this bug is that the guest may see its XER
      value being corrupted when it uses transactions.
      
      Fixes: e4e38121 ("KVM: PPC: Book3S HV: Add transactional memory support")
      Fixes: 0a8eccef ("KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit")
      Cc: stable@vger.kernel.org # v3.15+
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      Reviewed-by: NThomas Huth <thuth@redhat.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      0d808df0
    • Y
      KVM: PPC: Book3S HV: Add a per vcpu cache for recently page faulted MMIO entries · a56ee9f8
      Yongji Xie 提交于
      This keeps a per vcpu cache for recently page faulted MMIO entries.
      On a page fault, if the entry exists in the cache, we can avoid some
      time-consuming paths, for example, looking up HPT, locking HPTE twice
      and searching mmio gfn from memslots, then directly call
      kvmppc_hv_emulate_mmio().
      
      In current implenment, we limit the size of cache to four. We think
      it's enough to cover the high-frequency MMIO HPTEs in most case.
      For example, considering the case of using virtio device, for virtio
      legacy devices, one HPTE could handle notifications from up to
      1024 (64K page / 64 byte Port IO register) devices, so one cache entry
      is enough; for virtio modern devices, we always need one HPTE to handle
      notification for each device because modern device would use a 8M MMIO
      register to notify host instead of Port IO register, typically the
      system's configuration should not exceed four virtio devices per
      vcpu, four cache entry is also enough in this case. Of course, if needed,
      we could also modify the macro to a module parameter in the future.
      Signed-off-by: NYongji Xie <xyjxie@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      a56ee9f8
    • W
      KVM: PPC: Book3S HV: Use list_move_tail instead of list_del/list_add_tail · 28d057c8
      Wei Yongjun 提交于
      Using list_move_tail() instead of list_del() + list_add_tail().
      Signed-off-by: NWei Yongjun <weiyongjun1@huawei.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      28d057c8
  8. 27 9月, 2016 2 次提交
    • P
      KVM: PPC: Book3S HV: Take out virtual core piggybacking code · b009031f
      Paul Mackerras 提交于
      This takes out the code that arranges to run two (or more) virtual
      cores on a single subcore when possible, that is, when both vcores
      are from the same VM, the VM is configured with one CPU thread per
      virtual core, and all the per-subcore registers have the same value
      in each vcore.  Since the VTB (virtual timebase) is a per-subcore
      register, and will almost always differ between vcores, this code
      is disabled on POWER8 machines, meaning that it is only usable on
      POWER7 machines (which don't have VTB).  Given the tiny number of
      POWER7 machines which have firmware that allows them to run HV KVM,
      the benefit of simplifying the code outweighs the loss of this
      feature on POWER7 machines.
      Tested-by: NThomas Huth <thuth@redhat.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      b009031f
    • P
      KVM: PPC: Book3S: Treat VTB as a per-subcore register, not per-thread · 88b02cf9
      Paul Mackerras 提交于
      POWER8 has one virtual timebase (VTB) register per subcore, not one
      per CPU thread.  The HV KVM code currently treats VTB as a per-thread
      register, which can lead to spurious soft lockup messages from guests
      which use the VTB as the time source for the soft lockup detector.
      (CPUs before POWER8 did not have the VTB register.)
      
      For HV KVM, this fixes the problem by making only the primary thread
      in each virtual core save and restore the VTB value.  With this,
      the VTB state becomes part of the kvmppc_vcore structure.  This
      also means that "piggybacking" of multiple virtual cores onto one
      subcore is not possible on POWER8, because then the virtual cores
      would share a single VTB register.
      
      PR KVM emulates a VTB register, which is per-vcpu because PR KVM
      has no notion of CPU threads or SMT.  For PR KVM we move the VTB
      state into the kvmppc_vcpu_book3s struct.
      
      Cc: stable@vger.kernel.org # v3.14+
      Reported-by: NThomas Huth <thuth@redhat.com>
      Tested-by: NThomas Huth <thuth@redhat.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      88b02cf9
  9. 12 9月, 2016 4 次提交
    • P
      KVM: PPC: Book3S HV: Set server for passed-through interrupts · 5d375199
      Paul Mackerras 提交于
      When a guest has a PCI pass-through device with an interrupt, it
      will direct the interrupt to a particular guest VCPU.  In fact the
      physical interrupt might arrive on any CPU, and then get
      delivered to the target VCPU in the emulated XICS (guest interrupt
      controller), and eventually delivered to the target VCPU.
      
      Now that we have code to handle device interrupts in real mode
      without exiting to the host kernel, there is an advantage to having
      the device interrupt arrive on the same sub(core) as the target
      VCPU is running on.  In this situation, the interrupt can be
      delivered to the target VCPU without any exit to the host kernel
      (using a hypervisor doorbell interrupt between threads if
      necessary).
      
      This patch aims to get passed-through device interrupts arriving
      on the correct core by setting the interrupt server in the real
      hardware XICS for the interrupt to the first thread in the (sub)core
      where its target VCPU is running.  We do this in the real-mode H_EOI
      code because the H_EOI handler already needs to look at the
      emulated ICS state for the interrupt (whereas the H_XIRR handler
      doesn't), and we know we are running in the target VCPU context
      at that point.
      
      We set the server CPU in hardware using an OPAL call, regardless of
      what the IRQ affinity mask for the interrupt says, and without
      updating the affinity mask.  This amounts to saying that when an
      interrupt is passed through to a guest, as a matter of policy we
      allow the guest's affinity for the interrupt to override the host's.
      
      This is inspired by an earlier patch from Suresh Warrier, although
      none of this code came from that earlier patch.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      5d375199
    • S
      KVM: PPC: Book3S HV: Tunable to disable KVM IRQ bypass · 644abbb2
      Suresh Warrier 提交于
      Add a  module parameter kvm_irq_bypass for kvm_hv.ko to
      disable IRQ bypass for passthrough interrupts. The default
      value of this tunable is 1 - that is enable the feature.
      
      Since the tunable is used by built-in kernel code, we use
      the module_param_cb macro to achieve this.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      644abbb2
    • S
      KVM: PPC: Book3S HV: Complete passthrough interrupt in host · f7af5209
      Suresh Warrier 提交于
      In existing real mode ICP code, when updating the virtual ICP
      state, if there is a required action that cannot be completely
      handled in real mode, as for instance, a VCPU needs to be woken
      up, flags are set in the ICP to indicate the required action.
      This is checked when returning from hypercalls to decide whether
      the call needs switch back to the host where the action can be
      performed in virtual mode. Note that if h_ipi_redirect is enabled,
      real mode code will first try to message a free host CPU to
      complete this job instead of returning the host to do it ourselves.
      
      Currently, the real mode PCI passthrough interrupt handling code
      checks if any of these flags are set and simply returns to the host.
      This is not good enough as the trap value (0x500) is treated as an
      external interrupt by the host code. It is only when the trap value
      is a hypercall that the host code searches for and acts on unfinished
      work by calling kvmppc_xics_rm_complete.
      
      This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD
      which is returned by KVM if there is unfinished business to be
      completed in host virtual mode after handling a PCI passthrough
      interrupt. The host checks for this special interrupt condition
      and calls into the kvmppc_xics_rm_complete, which is made an
      exported function for this reason.
      
      [paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
       in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.]
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      f7af5209
    • S
      KVM: PPC: Book3S HV: Handle passthrough interrupts in guest · e3c13e56
      Suresh Warrier 提交于
      Currently, KVM switches back to the host to handle any external
      interrupt (when the interrupt is received while running in the
      guest). This patch updates real-mode KVM to check if an interrupt
      is generated by a passthrough adapter that is owned by this guest.
      If so, the real mode KVM will directly inject the corresponding
      virtual interrupt to the guest VCPU's ICS and also EOI the interrupt
      in hardware. In short, the interrupt is handled entirely in real
      mode in the guest context without switching back to the host.
      
      In some rare cases, the interrupt cannot be completely handled in
      real mode, for instance, a VCPU that is sleeping needs to be woken
      up. In this case, KVM simply switches back to the host with trap
      reason set to 0x500. This works, but it is clearly not very efficient.
      A following patch will distinguish this case and handle it
      correctly in the host. Note that we can use the existing
      check_too_hard() routine even though we are not in a hypercall to
      determine if there is unfinished business that needs to be
      completed in host virtual mode.
      
      The patch assumes that the mapping between hardware interrupt IRQ
      and virtual IRQ to be injected to the guest already exists for the
      PCI passthrough interrupts that need to be handled in real mode.
      If the mapping does not exist, KVM falls back to the default
      existing behavior.
      
      The KVM real mode code reads mappings from the mapped array in the
      passthrough IRQ map without taking any lock.  We carefully order the
      loads and stores of the fields in the kvmppc_irq_map data structure
      using memory barriers to avoid an inconsistent mapping being seen by
      the reader. Thus, although it is possible to miss a map entry, it is
      not possible to read a stale value.
      
      [paulus@ozlabs.org - get irq_chip from irq_map rather than pimap,
       pulled out powernv eoi change into a separate patch, made
       kvmppc_read_intr get the vcpu from the paca rather than being
       passed in, rewrote the logic at the end of kvmppc_read_intr to
       avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S
       since we were always restoring SRR0/1 anyway, get rid of the cached
       array (just use the mapped array), removed the kick_all_cpus_sync()
       call, clear saved_xirr PACA field when we handle the interrupt in
       real mode, fix compilation with CONFIG_KVM_XICS=n.]
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      e3c13e56
  10. 09 9月, 2016 2 次提交
    • S
      KVM: PPC: Book3S HV: Enable IRQ bypass · c57875f5
      Suresh Warrier 提交于
      Add the irq_bypass_add_producer and irq_bypass_del_producer
      functions. These functions get called whenever a GSI is being
      defined for a guest. They create/remove the mapping between
      host real IRQ numbers and the guest GSI.
      
      Add the following helper functions to manage the
      passthrough IRQ map.
      
      kvmppc_set_passthru_irq()
        Creates a mapping in the passthrough IRQ map that maps a host
        IRQ to a guest GSI. It allocates the structure (one per guest VM)
        the first time it is called.
      
      kvmppc_clr_passthru_irq()
        Removes the passthrough IRQ map entry given a guest GSI.
        The passthrough IRQ map structure is not freed even when the
        number of mapped entries goes to zero. It is only freed when
        the VM is destroyed.
      
      [paulus@ozlabs.org - modified to use is_pnv_opal_msi() rather than
       requiring all passed-through interrupts to use the same irq_chip;
       changed deletion so it zeroes out the r_hwirq field rather than
       copying the last entry down and decrementing the number of entries.]
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      c57875f5
    • S
      KVM: PPC: Book3S HV: Introduce kvmppc_passthru_irqmap · 8daaafc8
      Suresh Warrier 提交于
      This patch introduces an IRQ mapping structure, the
      kvmppc_passthru_irqmap structure that is to be used
      to map the real hardware IRQ in the host with the virtual
      hardware IRQ (gsi) that is injected into a guest by KVM for
      passthrough adapters.
      
      Currently, we assume a separate IRQ mapping structure for
      each guest. Each kvmppc_passthru_irqmap has a mapping arrays,
      containing all defined real<->virtual IRQs.
      
      [paulus@ozlabs.org - removed irq_chip field from struct
       kvmppc_passthru_irqmap; changed parameter for
       kvmppc_get_passthru_irqmap from struct kvm_vcpu * to struct
       kvm *, removed small cached array.]
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      8daaafc8
  11. 08 9月, 2016 3 次提交
    • S
      KVM: PPC: Implement existing and add new halt polling vcpu stats · 2a27f514
      Suraj Jitindar Singh 提交于
      vcpu stats are used to collect information about a vcpu which can be viewed
      in the debugfs. For example halt_attempted_poll and halt_successful_poll
      are used to keep track of the number of times the vcpu attempts to and
      successfully polls. These stats are currently not used on powerpc.
      
      Implement incrementation of the halt_attempted_poll and
      halt_successful_poll vcpu stats for powerpc. Since these stats are summed
      over all the vcpus for all running guests it doesn't matter which vcpu
      they are attributed to, thus we choose the current runner vcpu of the
      vcore.
      
      Also add new vcpu stats: halt_poll_success_ns, halt_poll_fail_ns and
      halt_wait_ns to be used to accumulate the total time spend polling
      successfully, polling unsuccessfully and waiting respectively, and
      halt_successful_wait to accumulate the number of times the vcpu waits.
      Given that halt_poll_success_ns, halt_poll_fail_ns and halt_wait_ns are
      expressed in nanoseconds it is necessary to represent these as 64-bit
      quantities, otherwise they would overflow after only about 4 seconds.
      
      Given that the total time spend either polling or waiting will be known and
      the number of times that each was done, it will be possible to determine
      the average poll and wait times. This will give the ability to tune the kvm
      module parameters based on the calculated average wait and poll times.
      Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com>
      Reviewed-by: NDavid Matlack <dmatlack@google.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      2a27f514
    • S
      KVM: PPC: Book3S HV: Implement halt polling · 0cda69dd
      Suraj Jitindar Singh 提交于
      This patch introduces new halt polling functionality into the kvm_hv kernel
      module. When a vcore is idle it will poll for some period of time before
      scheduling itself out.
      
      When all of the runnable vcpus on a vcore have ceded (and thus the vcore is
      idle) we schedule ourselves out to allow something else to run. In the
      event that we need to wake up very quickly (for example an interrupt
      arrives), we are required to wait until we get scheduled again.
      
      Implement halt polling so that when a vcore is idle, and before scheduling
      ourselves, we poll for vcpus in the runnable_threads list which have
      pending exceptions or which leave the ceded state. If we poll successfully
      then we can get back into the guest very quickly without ever scheduling
      ourselves, otherwise we schedule ourselves out as before.
      
      There exists generic halt_polling code in virt/kvm_main.c, however on
      powerpc the polling conditions are different to the generic case. It would
      be nice if we could just implement an arch specific kvm_check_block()
      function, but there is still other arch specific things which need to be
      done for kvm_hv (for example manipulating vcore states) which means that a
      separate implementation is the best option.
      
      Testing of this patch with a TCP round robin test between two guests with
      virtio network interfaces has found a decrease in round trip time of ~15us
      on average. A performance gain is only seen when going out of and
      back into the guest often and quickly, otherwise there is no net benefit
      from the polling. The polling interval is adjusted such that when we are
      often scheduled out for long periods of time it is reduced, and when we
      often poll successfully it is increased. The rate at which the polling
      interval increases or decreases, and the maximum polling interval, can
      be set through module parameters.
      
      Based on the implementation in the generic kvm module by Wanpeng Li and
      Paolo Bonzini, and on direction from Paul Mackerras.
      Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      0cda69dd
    • S
      KVM: PPC: Book3S HV: Change vcore element runnable_threads from linked-list to array · 7b5f8272
      Suraj Jitindar Singh 提交于
      The struct kvmppc_vcore is a structure used to store various information
      about a virtual core for a kvm guest. The runnable_threads element of the
      struct provides a list of all of the currently runnable vcpus on the core
      (those in the KVMPPC_VCPU_RUNNABLE state). The previous implementation of
      this list was a linked_list. The next patch requires that the list be able
      to be iterated over without holding the vcore lock.
      
      Reimplement the runnable_threads list in the kvmppc_vcore struct as an
      array. Implement function to iterate over valid entries in the array and
      update access sites accordingly.
      Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      7b5f8272
  12. 01 7月, 2016 1 次提交
  13. 20 6月, 2016 1 次提交
    • M
      KVM: PPC: Book3S HV: Fix TB corruption in guest exit path on HMI interrupt · fd7bacbc
      Mahesh Salgaonkar 提交于
      When a guest is assigned to a core it converts the host Timebase (TB)
      into guest TB by adding guest timebase offset before entering into
      guest. During guest exit it restores the guest TB to host TB. This means
      under certain conditions (Guest migration) host TB and guest TB can differ.
      
      When we get an HMI for TB related issues the opal HMI handler would
      try fixing errors and restore the correct host TB value. With no guest
      running, we don't have any issues. But with guest running on the core
      we run into TB corruption issues.
      
      If we get an HMI while in the guest, the current HMI handler invokes opal
      hmi handler before forcing guest to exit. The guest exit path subtracts
      the guest TB offset from the current TB value which may have already
      been restored with host value by opal hmi handler. This leads to incorrect
      host and guest TB values.
      
      With split-core, things become more complex. With split-core, TB also gets
      split and each subcore gets its own TB register. When a hmi handler fixes
      a TB error and restores the TB value, it affects all the TB values of
      sibling subcores on the same core. On TB errors all the thread in the core
      gets HMI. With existing code, the individual threads call opal hmi handle
      independently which can easily throw TB out of sync if we have guest
      running on subcores. Hence we will need to co-ordinate with all the
      threads before making opal hmi handler call followed by TB resync.
      
      This patch introduces a sibling subcore state structure (shared by all
      threads in the core) in paca which holds information about whether sibling
      subcores are in Guest mode or host mode. An array in_guest[] of size
      MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore.
      The subcore id is used as index into in_guest[] array. Only primary
      thread entering/exiting the guest is responsible to set/unset its
      designated array element.
      
      On TB error, we get HMI interrupt on every thread on the core. Upon HMI,
      this patch will now force guest to vacate the core/subcore. Primary
      thread from each subcore will then turn off its respective bit
      from the above bitmap during the guest exit path just after the
      guest->host partition switch is complete.
      
      All other threads that have just exited the guest OR were already in host
      will wait until all other subcores clears their respective bit.
      Once all the subcores turn off their respective bit, all threads will
      will make call to opal hmi handler.
      
      It is not necessary that opal hmi handler would resync the TB value for
      every HMI interrupts. It would do so only for the HMI caused due to
      TB errors. For rest, it would not touch TB value. Hence to make things
      simpler, primary thread would call TB resync explicitly once for each
      core immediately after opal hmi handler instead of subtracting guest
      offset from TB. TB resync call will restore the TB with host value.
      Thus we can be sure about the TB state.
      
      One of the primary threads exiting the guest will take up the
      responsibility of calling TB resync. It will use one of the top bits
      (bit 63) from subcore state flags bitmap to make the decision. The first
      primary thread (among the subcores) that is able to set the bit will
      have to call the TB resync. Rest all other threads will wait until TB
      resync is complete.  Once TB resync is complete all threads will then
      proceed.
      Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      fd7bacbc
  14. 11 5月, 2016 1 次提交
  15. 01 5月, 2016 1 次提交
    • A
      powerpc/mm/hash: Add support for Power9 Hash · 50de596d
      Aneesh Kumar K.V 提交于
      PowerISA 3.0 adds a parition table indexed by LPID. Parition table
      allows us to specify the MMU model that will be used for guest and host
      translation.
      
      This patch adds support with SLB based hash model (UPRT = 0). What is
      required with this model is to support the new hash page table entry
      format and also setup partition table such that we use hash table for
      address translation.
      
      We don't have segment table support yet.
      
      In order to make sure we don't load KVM module on Power9 (since we don't
      have kvm support yet) this patch also disables KVM on Power9.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      50de596d
  16. 29 2月, 2016 5 次提交
    • S
      KVM: PPC: Book3S HV: Add tunable to control H_IPI redirection · 520fe9c6
      Suresh E. Warrier 提交于
      Redirecting the wakeup of a VCPU from the H_IPI hypercall to
      a core running in the host is usually a good idea, most workloads
      seemed to benefit. However, in one heavily interrupt-driven SMT1
      workload, some regression was observed. This patch adds a kvm_hv
      module parameter called h_ipi_redirect to control this feature.
      
      The default value for this tunable is 1 - that is enable the feature.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      520fe9c6
    • S
      KVM: PPC: Book3S HV: Host side kick VCPU when poked by real-mode KVM · 0c2a6606
      Suresh Warrier 提交于
      This patch adds the support for the kick VCPU operation for
      kvmppc_host_rm_ops. The kvmppc_xics_ipi_action() function
      provides the function to be invoked for a host side operation
      when poked by the real mode KVM. This is initiated by KVM by
      sending an IPI to any free host core.
      
      KVM real mode must set the rm_action to XICS_RM_KICK_VCPU and
      rm_data to point to the VCPU to be woken up before sending the IPI.
      Note that we have allocated one kvmppc_host_rm_core structure
      per core. The above values need to be set in the structure
      corresponding to the core to which the IPI will be sent.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      0c2a6606
    • S
      KVM: PPC: Book3S HV: kvmppc_host_rm_ops - handle offlining CPUs · 6f3bb809
      Suresh Warrier 提交于
      The kvmppc_host_rm_ops structure keeps track of which cores are
      are in the host by maintaining a bitmask of active/runnable
      online CPUs that have not entered the guest. This patch adds
      support to manage the bitmask when a CPU is offlined or onlined
      in the host.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      6f3bb809
    • S
      KVM: PPC: Book3S HV: Manage core host state · b8e6a87c
      Suresh Warrier 提交于
      Update the core host state in kvmppc_host_rm_ops whenever
      the primary thread of the core enters the guest or returns
      back.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      b8e6a87c
    • S
      KVM: PPC: Book3S HV: Host-side RM data structures · 79b6c247
      Suresh Warrier 提交于
      This patch defines the data structures to support the setting up
      of host side operations while running in real mode in the guest,
      and also the functions to allocate and free it.
      
      The operations are for now limited to virtual XICS operations.
      Currently, we have only defined one operation in the data
      structure:
               - Wake up a VCPU sleeping in the host when it
                 receives a virtual interrupt
      
      The operations are assigned at the core level because PowerKVM
      requires that the host run in SMT off mode. For each core,
      we will need to manage its state atomically - where the state
      is defined by:
      1. Is the core running in the host?
      2. Is there a Real Mode (RM) operation pending on the host?
      
      Currently, core state is only managed at the whole-core level
      even when the system is in split-core mode. This just limits
      the number of free or "available" cores in the host to perform
      any host-side operations.
      
      The kvmppc_host_rm_core.rm_data allows any data to be passed by
      KVM in real mode to the host core along with the operation to
      be performed.
      
      The kvmppc_host_rm_ops structure is allocated the very first time
      a guest VM is started. Initial core state is also set - all online
      cores are in the host. This structure is never deleted, not even
      when there are no active guests. However, it needs to be freed
      when the module is unloaded because the kvmppc_host_rm_ops_hv
      can contain function pointers to kvm-hv.ko functions for the
      different supported host operations.
      Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      79b6c247
  17. 25 2月, 2016 1 次提交
    • M
      KVM: Use simple waitqueue for vcpu->wq · 8577370f
      Marcelo Tosatti 提交于
      The problem:
      
      On -rt, an emulated LAPIC timer instances has the following path:
      
      1) hard interrupt
      2) ksoftirqd is scheduled
      3) ksoftirqd wakes up vcpu thread
      4) vcpu thread is scheduled
      
      This extra context switch introduces unnecessary latency in the
      LAPIC path for a KVM guest.
      
      The solution:
      
      Allow waking up vcpu thread from hardirq context,
      thus avoiding the need for ksoftirqd to be scheduled.
      
      Normal waitqueues make use of spinlocks, which on -RT
      are sleepable locks. Therefore, waking up a waitqueue
      waiter involves locking a sleeping lock, which
      is not allowed from hard interrupt context.
      
      cyclictest command line:
      
      This patch reduces the average latency in my tests from 14us to 11us.
      
      Daniel writes:
      Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency
      benchmark on mainline. The test was run 1000 times on
      tip/sched/core 4.4.0-rc8-01134-g0905f04e:
      
        ./x86-run x86/tscdeadline_latency.flat -cpu host
      
      with idle=poll.
      
      The test seems not to deliver really stable numbers though most of
      them are smaller. Paolo write:
      
      "Anything above ~10000 cycles means that the host went to C1 or
      lower---the number means more or less nothing in that case.
      
      The mean shows an improvement indeed."
      
      Before:
      
                     min             max         mean           std
      count  1000.000000     1000.000000  1000.000000   1000.000000
      mean   5162.596000  2019270.084000  5824.491541  20681.645558
      std      75.431231   622607.723969    89.575700   6492.272062
      min    4466.000000    23928.000000  5537.926500    585.864966
      25%    5163.000000  1613252.750000  5790.132275  16683.745433
      50%    5175.000000  2281919.000000  5834.654000  23151.990026
      75%    5190.000000  2382865.750000  5861.412950  24148.206168
      max    5228.000000  4175158.000000  6254.827300  46481.048691
      
      After
                     min            max         mean           std
      count  1000.000000     1000.00000  1000.000000   1000.000000
      mean   5143.511000  2076886.10300  5813.312474  21207.357565
      std      77.668322   610413.09583    86.541500   6331.915127
      min    4427.000000    25103.00000  5529.756600    559.187707
      25%    5148.000000  1691272.75000  5784.889825  17473.518244
      50%    5160.000000  2308328.50000  5832.025000  23464.837068
      75%    5172.000000  2393037.75000  5853.177675  24223.969976
      max    5222.000000  3922458.00000  6186.720500  42520.379830
      
      [Patch was originaly based on the swait implementation found in the -rt
       tree. Daniel ported it to mainline's version and gathered the
       benchmark numbers for tscdeadline_latency test.]
      Signed-off-by: NDaniel Wagner <daniel.wagner@bmw-carit.de>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: linux-rt-users@vger.kernel.org
      Cc: Boqun Feng <boqun.feng@gmail.com>
      Cc: Marcelo Tosatti <mtosatti@redhat.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
      Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      8577370f