- 13 7月, 2017 3 次提交
-
-
由 Nicholas Piggin 提交于
For architectures that define HAVE_NMI_WATCHDOG, instead of having them provide the complete touch_nmi_watchdog() function, just have them provide arch_touch_nmi_watchdog(). This gives the generic code more flexibility in implementing this function, and arch implementations don't miss out on touching the softlockup watchdog or other generic details. Link: http://lkml.kernel.org/r/20170616065715.18390-3-npiggin@gmail.comSigned-off-by: NNicholas Piggin <npiggin@gmail.com> Reviewed-by: NDon Zickus <dzickus@redhat.com> Reviewed-by: NBabu Moger <babu.moger@oracle.com> Tested-by: Babu Moger <babu.moger@oracle.com> [sparc] Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xunlei Pang 提交于
vmcoreinfo_max_size stands for the vmcoreinfo_data, the correct one we should use is vmcoreinfo_note whose total size is VMCOREINFO_NOTE_SIZE. Like explained in commit 77019967 ("kdump: fix exported size of vmcoreinfo note"), it should not affect the actual function, but we better fix it, also this change should be safe and backward compatible. After this, we can get rid of variable vmcoreinfo_max_size, let's use the corresponding macros directly, fewer variables means more safety for vmcoreinfo operation. [xlpang@redhat.com: fix build warning] Link: http://lkml.kernel.org/r/1494830606-27736-1-git-send-email-xlpang@redhat.com Link: http://lkml.kernel.org/r/1493281021-20737-2-git-send-email-xlpang@redhat.comSigned-off-by: NXunlei Pang <xlpang@redhat.com> Reviewed-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Reviewed-by: NDave Young <dyoung@redhat.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Juergen Gross <jgross@suse.com> Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xunlei Pang 提交于
As Eric said, "what we need to do is move the variable vmcoreinfo_note out of the kernel's .bss section. And modify the code to regenerate and keep this information in something like the control page. Definitely something like this needs a page all to itself, and ideally far away from any other kernel data structures. I clearly was not watching closely the data someone decided to keep this silly thing in the kernel's .bss section." This patch allocates extra pages for these vmcoreinfo_XXX variables, one advantage is that it enhances some safety of vmcoreinfo, because vmcoreinfo now is kept far away from other kernel data structures. Link: http://lkml.kernel.org/r/1493281021-20737-1-git-send-email-xlpang@redhat.comSigned-off-by: NXunlei Pang <xlpang@redhat.com> Tested-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: NJuergen Gross <jgross@suse.com> Suggested-by: NEric Biederman <ebiederm@xmission.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2017 13 次提交
-
-
由 Kees Cook 提交于
Now that explicitly executed loaders are loaded in the mmap region, we have more freedom to decide where we position PIE binaries in the address space to avoid possible collisions with mmap or stack regions. For 64-bit, align to 4GB to allow runtimes to use the entire 32-bit address space for 32-bit pointers. On 32-bit use 4MB, which is the traditional x86 minimum load location, likely to avoid historically requiring a 4MB page table entry when only a portion of the first 4MB would be used (since the NULL address is avoided). For s390 the position could be 0x10000, but that is needlessly close to the NULL address. Link: http://lkml.kernel.org/r/1498154792-49952-5-git-send-email-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Pratyush Anand <panand@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
Now that explicitly executed loaders are loaded in the mmap region, we have more freedom to decide where we position PIE binaries in the address space to avoid possible collisions with mmap or stack regions. For 64-bit, align to 4GB to allow runtimes to use the entire 32-bit address space for 32-bit pointers. On 32-bit use 4MB, which is the traditional x86 minimum load location, likely to avoid historically requiring a 4MB page table entry when only a portion of the first 4MB would be used (since the NULL address is avoided). Link: http://lkml.kernel.org/r/1498154792-49952-4-git-send-email-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Tested-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NMichael Ellerman <mpe@ellerman.id.au> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Pratyush Anand <panand@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
Now that explicitly executed loaders are loaded in the mmap region, we have more freedom to decide where we position PIE binaries in the address space to avoid possible collisions with mmap or stack regions. For 64-bit, align to 4GB to allow runtimes to use the entire 32-bit address space for 32-bit pointers. On 32-bit use 4MB, to match ARM. This could be 0x8000, the standard ET_EXEC load address, but that is needlessly close to the NULL address, and anyone running arm compat PIE will have an MMU, so the tight mapping is not needed. Link: http://lkml.kernel.org/r/1498251600-132458-4-git-send-email-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
Now that explicitly executed loaders are loaded in the mmap region, we have more freedom to decide where we position PIE binaries in the address space to avoid possible collisions with mmap or stack regions. 4MB is chosen here mainly to have parity with x86, where this is the traditional minimum load location, likely to avoid historically requiring a 4MB page table entry when only a portion of the first 4MB would be used (since the NULL address is avoided). For ARM the position could be 0x8000, the standard ET_EXEC load address, but that is needlessly close to the NULL address, and anyone running PIE on 32-bit ARM will have an MMU, so the tight mapping is not needed. Link: http://lkml.kernel.org/r/1498154792-49952-2-git-send-email-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Pratyush Anand <panand@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Qualys Security Advisory <qsa@qualys.com> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
The ELF_ET_DYN_BASE position was originally intended to keep loaders away from ET_EXEC binaries. (For example, running "/lib/ld-linux.so.2 /bin/cat" might cause the subsequent load of /bin/cat into where the loader had been loaded.) With the advent of PIE (ET_DYN binaries with an INTERP Program Header), ELF_ET_DYN_BASE continued to be used since the kernel was only looking at ET_DYN. However, since ELF_ET_DYN_BASE is traditionally set at the top 1/3rd of the TASK_SIZE, a substantial portion of the address space is unused. For 32-bit tasks when RLIMIT_STACK is set to RLIM_INFINITY, programs are loaded above the mmap region. This means they can be made to collide (CVE-2017-1000370) or nearly collide (CVE-2017-1000371) with pathological stack regions. Lowering ELF_ET_DYN_BASE solves both by moving programs below the mmap region in all cases, and will now additionally avoid programs falling back to the mmap region by enforcing MAP_FIXED for program loads (i.e. if it would have collided with the stack, now it will fail to load instead of falling back to the mmap region). To allow for a lower ELF_ET_DYN_BASE, loaders (ET_DYN without INTERP) are loaded into the mmap region, leaving space available for either an ET_EXEC binary with a fixed location or PIE being loaded into mmap by the loader. Only PIE programs are loaded offset from ELF_ET_DYN_BASE, which means architectures can now safely lower their values without risk of loaders colliding with their subsequently loaded programs. For 64-bit, ELF_ET_DYN_BASE is best set to 4GB to allow runtimes to use the entire 32-bit address space for 32-bit pointers. Thanks to PaX Team, Daniel Micay, and Rik van Riel for inspiration and suggestions on how to implement this solution. Fixes: d1fd836d ("mm: split ET_DYN ASLR from mmap ASLR") Link: http://lkml.kernel.org/r/20170621173201.GA114489@beastSigned-off-by: NKees Cook <keescook@chromium.org> Acked-by: NRik van Riel <riel@redhat.com> Cc: Daniel Micay <danielmicay@gmail.com> Cc: Qualys Security Advisory <qsa@qualys.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Pratyush Anand <panand@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Thomas Meyer 提交于
[thomas@m3y3r.de: v3: fix arch specific implementations] Link: http://lkml.kernel.org/r/1497890858.12931.7.camel@m3y3r.deSigned-off-by: NThomas Meyer <thomas@m3y3r.de> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Commit 7dd96816 ("bitmap: bitmap_equal memcmp optimization") was rather more restrictive than necessary; we can use memcmp() to implement bitmap_equal() as long as the number of bits can be proved to be a multiple of 8. And architectures other than s390 may be able to make good use of this optimisation. [arnd@arndb.de: fix build: add a memcmp() declaration] Link: http://lkml.kernel.org/r/20170630153908.3439707-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170628153221.11322-5-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bart Van Assche 提交于
The global variable 'rd_size' is declared as 'int' in source file arch/arm/kernel/atags_parse.c and as 'unsigned long' in drivers/block/brd.c. Fix this inconsistency. Additionally, remove the declarations of rd_image_start, rd_prompt and rd_doload from parse_tag_ramdisk() since these duplicate existing declarations in <linux/initrd.h>. Link: http://lkml.kernel.org/r/20170627065024.12347-1-bart.vanassche@wdc.comSigned-off-by: NBart Van Assche <bart.vanassche@sandisk.com> Acked-by: NRussell King <rmk+kernel@armlinux.org.uk> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jan Kara <jack@suse.cz> Cc: Jason Yan <yanaijie@huawei.com> Cc: Zhaohongjiang <zhaohongjiang@huawei.com> Cc: Miao Xie <miaoxie@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Will Deacon 提交于
FRV supports 64-bit cmpxchg, which is provided by the arch code as __cmpxchg_64 and subsequently used to implement atomic64_cmpxchg. This patch hooks up the generic cmpxchg64 API using the same function, which also provides default definitions of the relaxed, acquire and release variants. This fixes the build when COMPILE_TEST=y and IOMMU_IO_PGTABLE_LPAE=y. Link: http://lkml.kernel.org/r/1499084670-6996-1-git-send-email-will.deacon@arm.comSigned-off-by: NWill Deacon <will.deacon@arm.com> Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: David Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tobias Klauser 提交于
The arch uses a verbatim copy of the asm-generic version and does not add any own implementations to the header, so use asm-generic/fb.h instead of duplicating code. Link: http://lkml.kernel.org/r/20170517083307.1697-1-tklauser@distanz.chSigned-off-by: NTobias Klauser <tklauser@distanz.ch> Reviewed-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tobias Klauser 提交于
frv's asm/device.h is merely including asm-generic/device.h. Thus, the arch specific header can be omitted and the generic header can be used directly. Link: http://lkml.kernel.org/r/20170517124915.26904-1-tklauser@distanz.chSigned-off-by: NTobias Klauser <tklauser@distanz.ch> Reviewed-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
We used to read several bytes of the shadow memory in advance. Therefore additional shadow memory mapped to prevent crash if speculative load would happen near the end of the mapped shadow memory. Now we don't have such speculative loads, so we no longer need to map additional shadow memory. Link: http://lkml.kernel.org/r/20170601162338.23540-3-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
We used to read several bytes of the shadow memory in advance. Therefore additional shadow memory mapped to prevent crash if speculative load would happen near the end of the mapped shadow memory. Now we don't have such speculative loads, so we no longer need to map additional shadow memory. Link: http://lkml.kernel.org/r/20170601162338.23540-2-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Potapenko <glider@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 7月, 2017 3 次提交
-
-
由 Naveen N. Rao 提交于
Rename function_offset_within_entry() to scope it to kprobe namespace by using kprobe_ prefix, and to also simplify it. Suggested-by: NIngo Molnar <mingo@kernel.org> Suggested-by: NMasami Hiramatsu <mhiramat@kernel.org> Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/3aa6c7e2e4fb6e00f3c24fa306496a66edb558ea.1499443367.git.naveen.n.rao@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Krzysztof Kozlowski 提交于
Remove old, dead Kconfig option INET_LRO. It is gone since commit 7bbf3cae ("ipv4: Remove inet_lro library"). Signed-off-by: NKrzysztof Kozlowski <krzk@kernel.org> Signed-off-by: NStafford Horne <shorne@gmail.com>
-
由 Tobias Klauser 提交于
openrisc's asm/fixmap.h uses the BUG() and BUG_ON() macros but relies on implict inclusion of linux/bug.h which means that changes in other headers could break the build. Thus, add an explicit include. Signed-off-by: NTobias Klauser <tklauser@distanz.ch> Signed-off-by: NStafford Horne <shorne@gmail.com>
-
- 07 7月, 2017 17 次提交
-
-
由 Johannes Weiner 提交于
lruvecs are at the intersection of the NUMA node and memcg, which is the scope for most paging activity. Introduce a convenient accounting infrastructure that maintains statistics per node, per memcg, and the lruvec itself. Then convert over accounting sites for statistics that are already tracked in both nodes and memcgs and can be easily switched. [hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code] Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org [hannes@cmpxchg.org: don't track uncharged pages at all Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org [hannes@cmpxchg.org: add missing free_percpu()] Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org [linux@roeck-us.net: hexagon: fix build error caused by include file order] Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Punit Agrawal 提交于
When unmapping a hugepage range, huge_pte_clear() is used to clear the page table entries that are marked as not present. huge_pte_clear() internally just ends up calling pte_clear() which does not correctly deal with hugepages consisting of contiguous page table entries. Add a size argument to address this issue and allow architectures to override huge_pte_clear() by wrapping it in a #ifndef block. Update s390 implementation with the size parameter as well. Note that the change only affects huge_pte_clear() - the other generic hugetlb functions don't need any change. Link: http://lkml.kernel.org/r/20170522162555.4313-1-punit.agrawal@arm.comSigned-off-by: NPunit Agrawal <punit.agrawal@arm.com> Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390 bits] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Punit Agrawal 提交于
A poisoned or migrated hugepage is stored as a swap entry in the page tables. On architectures that support hugepages consisting of contiguous page table entries (such as on arm64) this leads to ambiguity in determining the page table entry to return in huge_pte_offset() when a poisoned entry is encountered. Let's remove the ambiguity by adding a size parameter to convey additional information about the requested address. Also fixup the definition/usage of huge_pte_offset() throughout the tree. Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.comSigned-off-by: NPunit Agrawal <punit.agrawal@arm.com> Acked-by: NSteve Capper <steve.capper@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE) Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS) Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Steve Capper 提交于
We don't need to call huge_ptep_offset as our accessors are already supplied with the pte_t *. This patch removes those spurious calls. [punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering] Link: http://lkml.kernel.org/r/20170524115409.31309-3-punit.agrawal@arm.comSigned-off-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Cc: David Woods <dwoods@mellanox.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Steve Capper 提交于
Patch series "Support for contiguous pte hugepages", v4. This patchset updates the hugetlb code to fix issues arising from contiguous pte hugepages (such as on arm64). Compared to v3, This version addresses a build failure on arm64 by including two cleanup patches. Other than the arm64 cleanups, the rest are generic code changes. The remaining arm64 support based on these patches will be posted separately. The patches are based on v4.12-rc2. Previous related postings can be found at [0], [1], [2], and [3]. The patches fall into three categories - * Patch 1-2 - arm64 cleanups required to greatly simplify changing huge_pte_offset() prototype in Patch 5. Catalin, Will - are you happy for these patches to go via mm? * Patches 3-4 address issues with gup * Patches 5-8 relate to passing a size argument to hugepage helpers to disambiguate the size of the referred page. These changes are required to enable arch code to properly handle swap entries for contiguous pte hugepages. The changes to huge_pte_offset() (patch 5) touch multiple architectures but I've managed to minimise these changes for the other affected functions - huge_pte_clear() and set_huge_pte_at(). These patches gate the enabling of contiguous hugepages support on arm64 which has been requested for systems using !4k page granule. The ARM64 architecture supports two flavours of hugepages - * Block mappings at the pud/pmd level These are regular hugepages where a pmd or a pud page table entry points to a block of memory. Depending on the PAGE_SIZE in use the following size of block mappings are supported - PMD PUD --- --- 4K: 2M 1G 16K: 32M 64K: 512M For certain applications/usecases such as HPC and large enterprise workloads, folks are using 64k page size but the minimum hugepage size of 512MB isn't very practical. To overcome this ... * Using the Contiguous bit The architecture provides a contiguous bit in the translation table entry which acts as a hint to the mmu to indicate that it is one of a contiguous set of entries that can be cached in a single TLB entry. We use the contiguous bit in Linux to increase the mapping size at the pmd and pte (last) level. The number of supported contiguous entries varies by page size and level of the page table. Using the contiguous bit allows additional hugepage sizes - CONT PTE PMD CONT PMD PUD -------- --- -------- --- 4K: 64K 2M 32M 1G 16K: 2M 32M 1G 64K: 2M 512M 16G Of these, 64K with 4K and 2M with 64K pages have been explicitly requested by a few different users. Entries with the contiguous bit set are required to be modified all together - which makes things like memory poisoning and migration impossible to do correctly without knowing the size of hugepage being dealt with - the reason for adding size parameter to a few of the hugepage helpers in this series. This patch (of 8): As we regularly check for contiguous pte's in the huge accessors, remove this extra check from find_num_contig. [punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering] Link: http://lkml.kernel.org/r/20170524115409.31309-2-punit.agrawal@arm.comSigned-off-by: NSteve Capper <steve.capper@arm.com> Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Cc: David Woods <dwoods@mellanox.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
POWER9 supports hugepages of size 2M and 1G in radix MMU mode. This patch enables the usage of 1G page size for hugetlbfs. This also update the helper such we can do 1G page allocation at runtime. We still don't enable 1G page size on DD1 version. This is to avoid doing workaround mentioned in commit 6d3a0379 ("powerpc/mm: Add radix__tlb_flush_pte_p9_dd1()"). Link: http://lkml.kernel.org/r/1494995292-4443-2-git-send-email-aneesh.kumar@linux.vnet.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
This moves the #ifdef in C code to a Kconfig dependency. Also we move the gigantic_page_supported() function to be arch specific. This allows architectures to conditionally enable runtime allocation of gigantic huge page. Architectures like ppc64 supports different gigantic huge page size (16G and 1G) based on the translation mode selected. This provides an opportunity for ppc64 to enable runtime allocation only w.r.t 1G hugepage. No functional change in this patch. Link: http://lkml.kernel.org/r/1494995292-4443-1-git-send-email-aneesh.kumar@linux.vnet.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Link: http://lkml.kernel.org/r/1494926612-23928-10-git-send-email-aneesh.kumar@linux.vnet.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
With generic code now handling hugetlb entries at pgd level and also supporting hugepage directory format, we can now remove the powerpc sepcific follow_huge_addr implementation. Link: http://lkml.kernel.org/r/1494926612-23928-9-git-send-email-aneesh.kumar@linux.vnet.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Link: http://lkml.kernel.org/r/1494926612-23928-8-git-send-email-aneesh.kumar@linux.vnet.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
arch_add_memory gets for_device argument which then controls whether we want to create memblocks for created memory sections. Simplify the logic by telling whether we want memblocks directly rather than going through pointless negation. This also makes the api easier to understand because it is clear what we want rather than nothing telling for_device which can mean anything. This shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
The current memory hotplug implementation relies on having all the struct pages associate with a zone/node during the physical hotplug phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the vast majority of cases this means that they are added to ZONE_NORMAL. This has been so since 9d99aaa3 ("[PATCH] x86_64: Support memory hotadd without sparsemem") and it wasn't a big deal back then because movable onlining didn't exist yet. Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable onlining 511c2aba ("mm, memory-hotplug: dynamic configure movable memory and portion memory") and then things got more complicated. Rather than reconsidering the zone association which was no longer needed (because the memory hotplug already depended on SPARSEMEM) a convoluted semantic of zone shifting has been developed. Only the currently last memblock or the one adjacent to the zone_movable can be onlined movable. This essentially means that the online type changes as the new memblocks are added. Let's simulate memory hot online manually $ echo 0x100000000 > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory32/valid_zones Normal Movable $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal /sys/devices/system/memory/memory34/valid_zones:Normal Movable $ echo online_movable > /sys/devices/system/memory/memory34/state $ grep . /sys/devices/system/memory/memory3?/valid_zones /sys/devices/system/memory/memory32/valid_zones:Normal /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Normal This is an awkward semantic because an udev event is sent as soon as the block is onlined and an udev handler might want to online it based on some policy (e.g. association with a node) but it will inherently race with new blocks showing up. This patch changes the physical online phase to not associate pages with any zone at all. All the pages are just marked reserved and wait for the onlining phase to be associated with the zone as per the online request. There are only two requirements - existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap - ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses the latter one is not an inherent requirement and can be changed in the future. It preserves the current behavior and made the code slightly simpler. This is subject to change in future. This means that the same physical online steps as above will lead to the following state: Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Normal Movable /sys/devices/system/memory/memory32/valid_zones:Normal Movable /sys/devices/system/memory/memory33/valid_zones:Normal Movable /sys/devices/system/memory/memory34/valid_zones:Movable Implementation: The current move_pfn_range is reimplemented to check the above requirements (allow_online_pfn_range) and then updates the respective zone (move_pfn_range_to_zone), the pgdat and links all the pages in the pfn range with the zone/node. __add_pages is updated to not require the zone and only initializes sections in the range. This allowed to simplify the arch_add_memory code (s390 could get rid of quite some of code). devm_memremap_pages is the only user of arch_add_memory which relies on the zone association because it only hooks into the memory hotplug only half way. It uses it to associate the new memory with ZONE_DEVICE but doesn't allow it to be {on,off}lined via sysfs. This means that this particular code path has to call move_pfn_range_to_zone explicitly. The original zone shifting code is kept in place and will be removed in the follow up patch for an easier review. Please note that this patch also changes the original behavior when offlining a memory block adjacent to another zone (Normal vs. Movable) used to allow to change its movable type. This will be handled later. [richard.weiyang@gmail.com: simplify zone_intersects()] Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com [richard.weiyang@gmail.com: remove duplicate call for set_page_links] Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com [akpm@linux-foundation.org: remove unused local `i'] Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NWei Yang <richard.weiyang@gmail.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Tested-by: NReza Arbab <arbab@linux.vnet.ibm.com> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Device memory hotplug hooks into regular memory hotplug only half way. It needs memory sections to track struct pages but there is no need/desire to associate those sections with memory blocks and export them to the userspace via sysfs because they cannot be onlined anyway. This is currently expressed by for_device argument to arch_add_memory which then makes sure to associate the given memory range with ZONE_DEVICE. register_new_memory then relies on is_zone_device_section to distinguish special memory hotplug from the regular one. While this works now, later patches in this series want to move __add_zone outside of arch_add_memory path so we have to come up with something else. Add want_memblock down the __add_pages path and use it to control whether the section->memblock association should be done. arch_add_memory then just trivially want memblock for everything but for_device hotplug. remove_memory_section doesn't need is_zone_device_section either. We can simply skip all the memblock specific cleanup if there is no memblock for the given section. This shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Tested-by: NDan Williams <dan.j.williams@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Huang Ying 提交于
Patch series "THP swap: Delay splitting THP during swapping out", v11. This patchset is to optimize the performance of Transparent Huge Page (THP) swap. Recently, the performance of the storage devices improved so fast that we cannot saturate the disk bandwidth with single logical CPU when do page swap out even on a high-end server machine. Because the performance of the storage device improved faster than that of single logical CPU. And it seems that the trend will not change in the near future. On the other hand, the THP becomes more and more popular because of increased memory size. So it becomes necessary to optimize THP swap performance. The advantages of the THP swap support include: - Batch the swap operations for the THP to reduce lock acquiring/releasing, including allocating/freeing the swap space, adding/deleting to/from the swap cache, and writing/reading the swap space, etc. This will help improve the performance of the THP swap. - The THP swap space read/write will be 2M sequential IO. It is particularly helpful for the swap read, which are usually 4k random IO. This will improve the performance of the THP swap too. - It will help the memory fragmentation, especially when the THP is heavily used by the applications. The 2M continuous pages will be free up after THP swapping out. - It will improve the THP utilization on the system with the swap turned on. Because the speed for khugepaged to collapse the normal pages into the THP is quite slow. After the THP is split during the swapping out, it will take quite long time for the normal pages to collapse back into the THP after being swapped in. The high THP utilization helps the efficiency of the page based memory management too. There are some concerns regarding THP swap in, mainly because possible enlarged read/write IO size (for swap in/out) may put more overhead on the storage device. To deal with that, the THP swap in should be turned on only when necessary. For example, it can be selected via "always/never/madvise" logic, to be turned on globally, turned off globally, or turned on only for VMA with MADV_HUGEPAGE, etc. This patchset is the first step for the THP swap support. The plan is to delay splitting THP step by step, finally avoid splitting THP during the THP swapping out and swap out/in the THP as a whole. As the first step, in this patchset, the splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP and adding the THP into the swap cache. This will reduce lock acquiring/releasing for the locks used for the swap cache management. With the patchset, the swap out throughput improves 15.5% (from about 3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. This patch (of 5): In this patch, splitting huge page is delayed from almost the first step of swapping out to after allocating the swap space for the THP (Transparent Huge Page) and adding the THP into the swap cache. This will batch the corresponding operation, thus improve THP swap out throughput. This is the first step for the THP swap optimization. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. In this patch, one swap cluster is used to hold the contents of each THP swapped out. So, the size of the swap cluster is changed to that of the THP (Transparent Huge Page) on x86_64 architecture (512). For other architectures which want such THP swap optimization, ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for the architecture. In effect, this will enlarge swap cluster size by 2 times on x86_64. Which may make it harder to find a free cluster when the swap space becomes fragmented. So that, this may reduce the continuous swap space allocation and sequential write in theory. The performance test in 0day shows no regressions caused by this. In the future of THP swap optimization, some information of the swapped out THP (such as compound map count) will be recorded in the swap_cluster_info data structure. The mem cgroup swap accounting functions are enhanced to support charge or uncharge a swap cluster backing a THP as a whole. The swap cluster allocate/free functions are added to allocate/free a swap cluster for a THP. A fair simple algorithm is used for swap cluster allocation, that is, only the first swap device in priority list will be tried to allocate the swap cluster. The function will fail if the trying is not successful, and the caller will fallback to allocate a single swap slot instead. This works good enough for normal cases. If the difference of the number of the free swap clusters among multiple swap devices is significant, it is possible that some THPs are split earlier than necessary. For example, this could be caused by big size difference among multiple swap devices. The swap cache functions is enhanced to support add/delete THP to/from the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be enhanced in the future with multi-order radix tree. But because we will split the THP soon during swapping out, that optimization doesn't make much sense for this first step. The THP splitting functions are enhanced to support to split THP in swap cache during swapping out. The page lock will be held during allocating the swap cluster, adding the THP into the swap cache and splitting the THP. So in the code path other than swapping out, if the THP need to be split, the PageSwapCache(THP) will be always false. The swap cluster is only available for SSD, so the THP swap optimization in this patchset has no effect for HDD. [ying.huang@intel.com: fix two issues in THP optimize patch] Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com [hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size] Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option] Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Logan Gunthorpe 提交于
Add a default ioremap function which was not provided in all circumstances. (Only when CONFIG_PCI and CONFIG_TILEGX was set). I have designs to use them in scatterlist.c where they'd likely never be called with this architecture, but it is needed to compile. Thus, if the function is ever hit it returns NULL. Link: http://lkml.kernel.org/r/1495726904-27380-1-git-send-email-logang@deltatee.comSigned-off-by: NLogan Gunthorpe <logang@deltatee.com> Signed-off-by: NStephen Bates <sbates@raithlin.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tobias Klauser 提交于
The mn10300 arch uses a verbatim copy of the asm-generic version and does not add any own implementations to the header, so use asm-generic/fb.h instead of duplicating code. Link: http://lkml.kernel.org/r/20170517083348.1815-1-tklauser@distanz.chSigned-off-by: NTobias Klauser <tklauser@distanz.ch> Reviewed-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tobias Klauser 提交于
mn10300's asm/device.h is merely including asm-generic/device.h. Thus, the arch specific header can be omitted and the generic header can be used directly. Link: http://lkml.kernel.org/r/20170517124857.26834-1-tklauser@distanz.chSigned-off-by: NTobias Klauser <tklauser@distanz.ch> Cc: David Howells <dhowells@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 7月, 2017 3 次提交
-
-
由 Wolfram Sang 提交于
include/linux/i2c is not for client devices. Move the header file to a more appropriate location. Signed-off-by: NWolfram Sang <wsa@the-dreams.de> Acked-by: NDaniel Thompson <daniel.thompson@linaro.org> Acked-by: NBartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: NLee Jones <lee.jones@linaro.org>
-
由 Wolfram Sang 提交于
include/linux/i2c is not for client devices. Move the header file to a more appropriate location. Signed-off-by: NWolfram Sang <wsa@the-dreams.de> Acked-by: NDaniel Thompson <daniel.thompson@linaro.org> Acked-by: NMichael Hennerich <michael.hennerich@analog.com> Signed-off-by: NLee Jones <lee.jones@linaro.org>
-
由 Christoph Hellwig 提交于
DMA_ERROR_CODE already went away in linux-next, but parisc unfortunately added a new instance of it without any review as far as I can tell. Move the two iommu drivers to report errors through ->mapping_error. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NHelge Deller <deller@gmx.de>
-
- 05 7月, 2017 1 次提交
-
-
由 Chen Yu 提交于
Add the real e820_tabel_firmware[] that will not be modified by the kernel or the EFI boot stub under any circumstance. In addition to that modify the code so that e820_table_firmwarep[] is exposed via sysfs to represent the real firmware memory layout, rather than exposing the e820_table_kexec[] table. This fixes a hibernation bug/warning, which uses e820_table_kexec[] to check RAM layout consistency across hibernation/resume: The suspend kernel: [ 0.000000] e820: update [mem 0x76671018-0x76679457] usable ==> usable The resume kernel: [ 0.000000] e820: update [mem 0x7666f018-0x76677457] usable ==> usable ... [ 15.752088] PM: Using 3 thread(s) for decompression. [ 15.752088] PM: Loading and decompressing image data (471870 pages)... [ 15.764971] Hibernate inconsistent memory map detected! [ 15.770833] PM: Image mismatch: architecture specific data Actually it is safe to restore these pages because E820_TYPE_RAM and E820_TYPE_RESERVED_KERN are treated the same during hibernation, so the original e820 table provided by the bootloader is used for hibernation MD5 fingerprint checking. The side effect is that, this newly introduced variable might increase the kernel size at compile time. Suggested-by: NIngo Molnar <mingo@redhat.com> Signed-off-by: NChen Yu <yu.c.chen@intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xunlei Pang <xlpang@redhat.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-