- 24 9月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
The core specification defines valid values for the HCI_Reject_Synchronous_Connection_Request command to be 0x0D-0x0F. So far the code has been using HCI_ERROR_REMOTE_USER_TERM (0x13) which is not a valid value and is therefore being rejected by some controllers: > HCI Event: Connect Request (0x04) plen 10 bdaddr 40:6F:2A:6A:E5:E0 class 0x000000 type eSCO < HCI Command: Reject Synchronous Connection (0x01|0x002a) plen 7 bdaddr 40:6F:2A:6A:E5:E0 reason 0x13 Reason: Remote User Terminated Connection > HCI Event: Command Status (0x0f) plen 4 Reject Synchronous Connection (0x01|0x002a) status 0x12 ncmd 1 Error: Invalid HCI Command Parameters This patch introduces a new define for a value from the valid range (0x0d == Connection Rejected Due To Limited Resources) and uses it instead for rejecting incoming connections. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 23 9月, 2014 1 次提交
-
-
由 Bernhard Thaler 提交于
SCO connection cannot be setup to devices that do not support retransmission. Patch based on http://permalink.gmane.org/gmane.linux.bluez.kernel/7779 and adapted for this kernel version. Code changed to check SCO/eSCO type before setting retransmission effort and max. latency. The purpose of the patch is to support older devices not capable of eSCO. Tested on Blackberry 655+ headset which does not support retransmission. Credits go to Alexander Sommerhuber. Signed-off-by: NBernhard Thaler <bernhard.thaler@r-it.at> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 09 9月, 2014 7 次提交
-
-
由 Johan Hedberg 提交于
To give all hci_disconnect() users the advantage of getting the clock offset read automatically this patch moves the necessary code from hci_conn_timeout() into hci_disconnect(). This way we pretty much always update the clock offset when disconnecting. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
We'll soon use hci_disconnect() from places that are interested to know whether the hci_send_cmd() really succeeded or not. This patch updates hci_disconnect() to pass on any error returned from hci_send_cmd(). Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
We can't have hci_chan contribute to the "active" reference counting of the hci_conn since otherwise the connection would never get dropped when there are no more users (since hci_chan would be counted as a user). This patch removes hold() when creating the hci_chan and drop() when destroying it. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
When hci_chan_del is called the disconnection routines get scheduled through a workqueue. If there's any incoming ACL data before the routines get executed there's a chance that a new hci_chan is created and the disconnection never happens. This patch adds a new hci_conn flag to indicate that we're in the process of driving the connection down. We set the flag in hci_chan_del and check for it in hci_chan_create so that no new channels are created for the same connection. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
The hci_chan_del() function is used in scenarios where we've decided we want to get rid of the underlying baseband link. It makes therefore sense to force the disc_timeout to 0 so that the disconnection routines are immediately scheduled. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
The hci_chan_del() function was doing a hci_conn_drop() but there was no matching hci_conn_hold() in the hci_chan_create() function. Furthermore, as the hci_chan struct holds a pointer to the hci_conn there should be proper use of hci_conn_get/put. This patch fixes both issues so that hci_chan does correct reference counting of the hci_conn object. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
Wherever we keep hci_conn pointers around we should be using hci_conn_get/put to ensure that they stay valid. This patch fixes all places violating against the principle currently. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 21 8月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
Recently the LE passive scanning and auto-connections feature was introduced. It uses the hci_connect_le() API which returns a hci_conn along with a reference count to that object. All previous users would tie this returned reference to some existing object, such as an L2CAP channel, and there'd be no leaked references this way. For auto-connections however the reference was returned but not stored anywhere, leaving established connections with one higher reference count than they should have. Instead of playing special tricks with hci_conn_hold/drop this patch associates the returned reference from hci_connect_le() with the object that in practice does own this reference, i.e. the hci_conn_params struct that caused us to initiate a connection in the first place. Once the connection is established or fails to establish this reference is removed appropriately. One extra thing needed is to call hci_pend_le_actions_clear() before calling hci_conn_hash_flush() so that the reference is cleared before the hci_conn objects are fully removed. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 21 7月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
It's safer practice to use sizeof(*ptr) instead of sizeof(ptr_type) when allocating memory in case the type changes. This also fixes the following style of warnings from static analyzers: CHECK: Prefer kzalloc(sizeof(*ie)...) over kzalloc(sizeof(struct inquiry_entry)...) + ie = kzalloc(sizeof(struct inquiry_entry), GFP_KERNEL); Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 18 7月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
The EOPNOTSUPP and ENOTSUPP errors are very similar in meaning, but ENOTSUPP is a fairly new addition to POSIX. Not all libc versions know about the value the kernel uses for ENOTSUPP so it's better to use EOPNOTSUPP to ensure understandable error messages. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 17 7月, 2014 2 次提交
-
-
由 Johan Hedberg 提交于
Even though our side requests authentication, the original action that caused it may be remotely triggered, such as an incoming L2CAP or RFCOMM connect request. To track this information introduce a new hci_conn flag called HCI_CONN_AUTH_INITIATOR. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
We're interested in whether an authentication request is because of a remote or local action. So far hci_conn_security() has been used both for incoming and outgoing actions (e.g. RFCOMM or L2CAP connect requests) so without some modifications it cannot know which peer is responsible for requesting authentication. This patch adds a new "bool initiator" parameter to hci_conn_security() to indicate which side is responsible for the request and updates the current users to pass this information correspondingly. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 16 7月, 2014 3 次提交
-
-
由 Johan Hedberg 提交于
We need to be able to track slave vs master LE connections in hci_conn_hash, and to be able to do that we need to know the role of the connection by the time hci_conn_add_has() is called. This means in practice the hci_conn_add() call that creates the hci_conn_object. This patch adds a new role parameter to hci_conn_add() function to give the object its initial role value, and updates the callers to pass the appropriate role to it. Since the function now takes care of initializing both conn->role and conn->out values we can remove some other unnecessary assignments. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
To make the code more understandable it makes sense to use the new HCI defines for connection role instead of a "bool master" parameter. This makes it immediately clear when looking at the function calls what the last parameter is describing. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
Having a dedicated u8 role variable in the hci_conn struct greatly simplifies tracking of the role, since this is the native way that it's represented on the HCI level. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 08 7月, 2014 3 次提交
-
-
由 Johan Hedberg 提交于
Many controllers allow simultaneous active scanning and advertising (e.g. Intel and Broadcom) but some do not (e.g. CSR). It's therefore safest to implement mutual exclusion of these states in the kernel. This patch ensures that the two states are never entered simultaneously. Extra precaution needs to be taken for outgoing connection attempts in slave role (i.e. through directed advertising) in which case the operation that came first has precedence and the one that comes after gets a rejection. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
Most controllers do not support advertising while initiating an LE connection. We also have to first disable current advertising if the initiation is going to happen through direct advertising. Therefore, simply stop advertising as the first thing when starting to issue commands to establish an LE connection. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
Now that we have a flag for tracking the real advertising state we should use that to determine whether it's safe to update the random address or not. The couple of places that were clearing the flag due to a pending request need to be updated too. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 07 7月, 2014 2 次提交
-
-
由 Johan Hedberg 提交于
If we have both LE scanning and advertising simultaneously enabled we need a way to tell hci_connect_le() in which role to initiate a connection. This patch adds a new parameter to the function to give it the necessary information. For auto-connect and mgmt_pair_device we always use master role, whereas for L2CAP users (in practice sockets) we use slave role whenever HCI_ADVERTISING is set and master role otherwise. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Johan Hedberg 提交于
The auth_type value which gets assigned to hci_conn->auth_type is something that's only used for BR/EDR connections and is of no value for LE connections. It makes therefore little sense to pass it to the hci_connect_le() function. This patch removes the parameter from the function. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 06 7月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
When we establish connections as a consequence of receiving an advertising report it makes no sense to wait the normal 20 second LE connection timeout. This patch modifies the hci_connect_le function to take an extra timeout value and uses a lower 2 second timeout for the auto-connection case. This timeout is intentionally chosen to be just a bit higher than the 1.28 second timeout that High Duty Cycle Advertising uses. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 03 7月, 2014 9 次提交
-
-
由 Johan Hedberg 提交于
The caller of hci_le_conn_update is directly interested in knowing what the best value is for the store_hint parameter of the corresponding mgmt event. Since hci_le_conn_update knows whether there were stored parameters that were updated or not we can have it return an initial store_hint value to the caller. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
由 Marcel Holtmann 提交于
Store the connection latency and supervision timeout default values with all the other controller defaults. And when needed use them for new connections. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
When the LE connection parameters for connection latency and supervision timeout are known, then use then. If they are not know fallback to defaults. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
When the slave updates the connection parameters, store also the connection latency and supervision timeout information in the internal list of connection parameters for known devices. Having these values available allowes the auto-connection procedure to use the correct values from the beginning without having to request an update on every connection establishment. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
Bluetooth controllers that are marked for raw-only usage can only be used with user channel access. Any other operation should be rejected. This simplifies the whole raw-only support since it now depends on the fact that the controller is marked with HCI_QUIRK_RAW_DEVICE and runtime raw access is restricted to user channel operation. The kernel internal processing of HCI commands and events is designed around the case that either the kernel has full control over the device or that the device is driven from userspace. This now makes a clear distinction between these two possible operation modes. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
When the connection is in master role and it is going to be disconnected based on the disconnection timeout, then send the HCI_Read_Clock_Offset command in an attempt to update the clock offset value in the inquiry cache. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
The abstraction of disconnect operation via hci_conn_disconnect is not needed and it does not add any readability. Handle the difference of AMP physical channels and BR/EDR/LE connection in the timeout callback. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Marcel Holtmann 提交于
The hci_amp_disconn function is a local function and there is no need for a reason parameter. That one can be retrieved from the hci_conn object easily. Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com>
-
由 Johan Hedberg 提交于
Since the link_mode member of the hci_conn struct is a bit field and we already have a flags member as well it makes sense to merge these two together. This patch moves all used link_mode bits into corresponding flags. To keep backwards compatibility with user space we still need to provide a get_link_mode() helper function for the ioctl's that expect a link_mode style value. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 20 6月, 2014 1 次提交
-
-
由 Lukasz Rymanowski 提交于
When pairing fails hci_conn refcnt drops below zero. This cause that ACL link is not disconnected when disconnect timeout fires. Probably this is because l2cap_conn_del calls l2cap_chan_del for each channel, and inside l2cap_chan_del conn is dropped. After that loop hci_chan_del is called which also drops conn. Anyway, as it is desrcibed in hci_core.h, it is known that refcnt drops below 0 sometimes and it should be fine. If so, let disconnect link when hci_conn_timeout fires and refcnt is 0 or below. This patch does it. This affects PTS test SM_TC_JW_BV_05_C Logs from scenario: [69713.706227] [6515] pair_device: [69713.706230] [6515] hci_conn_add: hci0 dst 00:1b:dc:06:06:22 [69713.706233] [6515] hci_dev_hold: hci0 orig refcnt 8 [69713.706235] [6515] hci_conn_init_sysfs: conn ffff88021f65a000 [69713.706239] [6515] hci_req_add_ev: hci0 opcode 0x200d plen 25 [69713.706242] [6515] hci_prepare_cmd: skb len 28 [69713.706243] [6515] hci_req_run: length 1 [69713.706248] [6515] hci_conn_hold: hcon ffff88021f65a000 orig refcnt 0 [69713.706251] [6515] hci_dev_put: hci0 orig refcnt 9 [69713.706281] [8909] hci_cmd_work: hci0 cmd_cnt 1 cmd queued 1 [69713.706288] [8909] hci_send_frame: hci0 type 1 len 28 [69713.706290] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 28 [69713.706316] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.706382] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.711664] [8909] hci_rx_work: hci0 [69713.711668] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 6 [69713.711680] [8909] hci_rx_work: hci0 Event packet [69713.711683] [8909] hci_cs_le_create_conn: hci0 status 0x00 [69713.711685] [8909] hci_sent_cmd_data: hci0 opcode 0x200d [69713.711688] [8909] hci_req_cmd_complete: opcode 0x200d status 0x00 [69713.711690] [8909] hci_sent_cmd_data: hci0 opcode 0x200d [69713.711695] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.711744] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.818875] [8909] hci_rx_work: hci0 [69713.818889] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 21 [69713.818913] [8909] hci_rx_work: hci0 Event packet [69713.818917] [8909] hci_le_conn_complete_evt: hci0 status 0x00 [69713.818922] [8909] hci_send_to_control: len 19 [69713.818927] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.818938] [8909] hci_conn_add_sysfs: conn ffff88021f65a000 [69713.818975] [6450] bt_sock_poll: sock ffff88005e758500, sk ffff88010323b800 [69713.818981] [6515] hci_sock_recvmsg: sock ffff88005e75a080, sk ffff88010323ac00 ... [69713.819021] [8909] hci_dev_hold: hci0 orig refcnt 10 [69713.819025] [8909] l2cap_connect_cfm: hcon ffff88021f65a000 bdaddr 00:1b:dc:06:06:22 status 0 [69713.819028] [8909] hci_chan_create: hci0 hcon ffff88021f65a000 [69713.819031] [8909] l2cap_conn_add: hcon ffff88021f65a000 conn ffff880221005c00 hchan ffff88020d60b1c0 [69713.819034] [8909] l2cap_conn_ready: conn ffff880221005c00 [69713.819036] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.819037] [8909] smp_conn_security: conn ffff880221005c00 hcon ffff88021f65a000 level 0x02 [69713.819039] [8909] smp_chan_create: [69713.819041] [8909] hci_conn_hold: hcon ffff88021f65a000 orig refcnt 1 [69713.819043] [8909] smp_send_cmd: code 0x01 [69713.819045] [8909] hci_send_acl: hci0 chan ffff88020d60b1c0 flags 0x0000 [69713.819046] [5949] hci_sock_recvmsg: sock ffff8800941a9900, sk ffff88012bf4e800 [69713.819049] [8909] hci_queue_acl: hci0 nonfrag skb ffff88005157c100 len 15 [69713.819055] [5949] hci_sock_recvmsg: sock ffff8800941a9900, sk ffff88012bf4e800 [69713.819057] [8909] l2cap_le_conn_ready: [69713.819064] [8909] l2cap_chan_create: chan ffff88005ede2c00 [69713.819066] [8909] l2cap_chan_hold: chan ffff88005ede2c00 orig refcnt 1 [69713.819069] [8909] l2cap_sock_init: sk ffff88005ede5800 [69713.819072] [8909] bt_accept_enqueue: parent ffff880160356000, sk ffff88005ede5800 [69713.819074] [8909] __l2cap_chan_add: conn ffff880221005c00, psm 0x00, dcid 0x0004 [69713.819076] [8909] l2cap_chan_hold: chan ffff88005ede2c00 orig refcnt 2 [69713.819078] [8909] hci_conn_hold: hcon ffff88021f65a000 orig refcnt 2 [69713.819080] [8909] smp_conn_security: conn ffff880221005c00 hcon ffff88021f65a000 level 0x01 [69713.819082] [8909] l2cap_sock_ready_cb: sk ffff88005ede5800, parent ffff880160356000 [69713.819086] [8909] le_pairing_complete_cb: status 0 [69713.819091] [8909] hci_tx_work: hci0 acl 10 sco 8 le 0 [69713.819093] [8909] hci_sched_acl: hci0 [69713.819094] [8909] hci_sched_sco: hci0 [69713.819096] [8909] hci_sched_esco: hci0 [69713.819098] [8909] hci_sched_le: hci0 [69713.819099] [8909] hci_chan_sent: hci0 [69713.819101] [8909] hci_chan_sent: chan ffff88020d60b1c0 quote 10 [69713.819104] [8909] hci_sched_le: chan ffff88020d60b1c0 skb ffff88005157c100 len 15 priority 7 [69713.819106] [8909] hci_send_frame: hci0 type 2 len 15 [69713.819108] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 15 [69713.819119] [8909] hci_chan_sent: hci0 [69713.819121] [8909] hci_prio_recalculate: hci0 [69713.819123] [8909] process_pending_rx: [69713.819226] [6450] hci_sock_recvmsg: sock ffff88005e758780, sk ffff88010323d400 ... [69713.822022] [6450] l2cap_sock_accept: sk ffff880160356000 timeo 0 [69713.822024] [6450] bt_accept_dequeue: parent ffff880160356000 [69713.822026] [6450] bt_accept_unlink: sk ffff88005ede5800 state 1 [69713.822028] [6450] l2cap_sock_accept: new socket ffff88005ede5800 [69713.822368] [6450] l2cap_sock_getname: sock ffff8800941ab700, sk ffff88005ede5800 [69713.822375] [6450] l2cap_sock_getsockopt: sk ffff88005ede5800 [69713.822383] [6450] l2cap_sock_getname: sock ffff8800941ab700, sk ffff88005ede5800 [69713.822414] [6450] bt_sock_poll: sock ffff8800941ab700, sk ffff88005ede5800 ... [69713.823255] [6450] l2cap_sock_getname: sock ffff8800941ab700, sk ffff88005ede5800 [69713.823259] [6450] l2cap_sock_getsockopt: sk ffff88005ede5800 [69713.824322] [6450] l2cap_sock_getname: sock ffff8800941ab700, sk ffff88005ede5800 [69713.824330] [6450] l2cap_sock_getsockopt: sk ffff88005ede5800 [69713.825029] [6450] bt_sock_poll: sock ffff88005e758500, sk ffff88010323b800 ... [69713.825187] [6450] l2cap_sock_sendmsg: sock ffff8800941ab700, sk ffff88005ede5800 [69713.825189] [6450] bt_sock_wait_ready: sk ffff88005ede5800 [69713.825192] [6450] l2cap_create_basic_pdu: chan ffff88005ede2c00 len 3 [69713.825196] [6450] l2cap_do_send: chan ffff88005ede2c00, skb ffff880160b0b500 len 7 priority 0 [69713.825199] [6450] hci_send_acl: hci0 chan ffff88020d60b1c0 flags 0x0000 [69713.825201] [6450] hci_queue_acl: hci0 nonfrag skb ffff880160b0b500 len 11 [69713.825210] [8909] hci_tx_work: hci0 acl 9 sco 8 le 0 [69713.825213] [8909] hci_sched_acl: hci0 [69713.825214] [8909] hci_sched_sco: hci0 [69713.825216] [8909] hci_sched_esco: hci0 [69713.825217] [8909] hci_sched_le: hci0 [69713.825219] [8909] hci_chan_sent: hci0 [69713.825221] [8909] hci_chan_sent: chan ffff88020d60b1c0 quote 9 [69713.825223] [8909] hci_sched_le: chan ffff88020d60b1c0 skb ffff880160b0b500 len 11 priority 0 [69713.825225] [8909] hci_send_frame: hci0 type 2 len 11 [69713.825227] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 11 [69713.825242] [8909] hci_chan_sent: hci0 [69713.825253] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.825253] [8909] hci_prio_recalculate: hci0 [69713.825292] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.825768] [6450] bt_sock_poll: sock ffff88005e758500, sk ffff88010323b800 ... [69713.866902] [8909] hci_rx_work: hci0 [69713.866921] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 7 [69713.866928] [8909] hci_rx_work: hci0 Event packet [69713.866931] [8909] hci_num_comp_pkts_evt: hci0 num_hndl 1 [69713.866937] [8909] hci_tx_work: hci0 acl 9 sco 8 le 0 [69713.866939] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.866940] [8909] hci_sched_acl: hci0 ... [69713.866944] [8909] hci_sched_le: hci0 [69713.866953] [8909] hci_chan_sent: hci0 [69713.866997] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.867840] [28074] hci_rx_work: hci0 [69713.867844] [28074] hci_send_to_monitor: hdev ffff88021f0c7000 len 7 [69713.867850] [28074] hci_rx_work: hci0 Event packet [69713.867853] [28074] hci_num_comp_pkts_evt: hci0 num_hndl 1 [69713.867857] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69713.867858] [28074] hci_tx_work: hci0 acl 10 sco 8 le 0 [69713.867860] [28074] hci_sched_acl: hci0 [69713.867861] [28074] hci_sched_sco: hci0 [69713.867862] [28074] hci_sched_esco: hci0 [69713.867863] [28074] hci_sched_le: hci0 [69713.867865] [28074] hci_chan_sent: hci0 [69713.867888] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69714.145661] [8909] hci_rx_work: hci0 [69714.145666] [8909] hci_send_to_monitor: hdev ffff88021f0c7000 len 10 [69714.145676] [8909] hci_rx_work: hci0 ACL data packet [69714.145679] [8909] hci_acldata_packet: hci0 len 6 handle 0x002d flags 0x0002 [69714.145681] [8909] hci_conn_enter_active_mode: hcon ffff88021f65a000 mode 0 [69714.145683] [8909] l2cap_recv_acldata: conn ffff880221005c00 len 6 flags 0x2 [69714.145693] [8909] l2cap_recv_frame: len 2, cid 0x0006 [69714.145696] [8909] hci_send_to_control: len 14 [69714.145710] [8909] smp_chan_destroy: [69714.145713] [8909] pairing_complete: status 3 [69714.145714] [8909] cmd_complete: sock ffff88010323ac00 [69714.145717] [8909] hci_conn_drop: hcon ffff88021f65a000 orig refcnt 3 [69714.145719] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69714.145720] [6450] bt_sock_poll: sock ffff88005e758500, sk ffff88010323b800 [69714.145722] [6515] hci_sock_recvmsg: sock ffff88005e75a080, sk ffff88010323ac00 [69714.145724] [6450] bt_sock_poll: sock ffff8801db6b4f00, sk ffff880160351c00 ... [69714.145735] [6515] hci_sock_recvmsg: sock ffff88005e75a080, sk ffff88010323ac00 [69714.145737] [8909] hci_conn_drop: hcon ffff88021f65a000 orig refcnt 2 [69714.145739] [8909] l2cap_conn_del: hcon ffff88021f65a000 conn ffff880221005c00, err 13 [69714.145740] [6450] bt_sock_poll: sock ffff8801db6b5400, sk ffff88021e775000 [69714.145743] [6450] bt_sock_poll: sock ffff8801db6b5e00, sk ffff880160356000 [69714.145744] [8909] l2cap_chan_hold: chan ffff88005ede2c00 orig refcnt 3 [69714.145746] [6450] bt_sock_poll: sock ffff8800941ab700, sk ffff88005ede5800 [69714.145748] [8909] l2cap_chan_del: chan ffff88005ede2c00, conn ffff880221005c00, err 13 [69714.145749] [8909] l2cap_chan_put: chan ffff88005ede2c00 orig refcnt 4 [69714.145751] [8909] hci_conn_drop: hcon ffff88021f65a000 orig refcnt 1 [69714.145754] [6450] bt_sock_poll: sock ffff8800941ab700, sk ffff88005ede5800 [69714.145756] [8909] l2cap_chan_put: chan ffff88005ede2c00 orig refcnt 3 [69714.145759] [8909] hci_chan_del: hci0 hcon ffff88021f65a000 chan ffff88020d60b1c0 [69714.145766] [5949] hci_sock_recvmsg: sock ffff8800941a9680, sk ffff88012bf4d000 [69714.145787] [6515] hci_sock_release: sock ffff88005e75a080 sk ffff88010323ac00 [69714.146002] [6450] hci_sock_recvmsg: sock ffff88005e758780, sk ffff88010323d400 [69714.150795] [6450] l2cap_sock_release: sock ffff8800941ab700, sk ffff88005ede5800 [69714.150799] [6450] l2cap_sock_shutdown: sock ffff8800941ab700, sk ffff88005ede5800 [69714.150802] [6450] l2cap_chan_close: chan ffff88005ede2c00 state BT_CLOSED [69714.150805] [6450] l2cap_sock_kill: sk ffff88005ede5800 state BT_CLOSED [69714.150806] [6450] l2cap_chan_put: chan ffff88005ede2c00 orig refcnt 2 [69714.150808] [6450] l2cap_sock_destruct: sk ffff88005ede5800 [69714.150809] [6450] l2cap_chan_put: chan ffff88005ede2c00 orig refcnt 1 [69714.150811] [6450] l2cap_chan_destroy: chan ffff88005ede2c00 [69714.150970] [6450] bt_sock_poll: sock ffff88005e758500, sk ffff88010323b800 ... [69714.151991] [8909] hci_conn_drop: hcon ffff88021f65a000 orig refcnt 0 [69716.150339] [8909] hci_conn_timeout: hcon ffff88021f65a000 state BT_CONNECTED, refcnt -1 Signed-off-by: NLukasz Rymanowski <lukasz.rymanowski@tieto.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 13 6月, 2014 2 次提交
-
-
由 Johan Hedberg 提交于
The conn->link_key variable tracks the type of link key in use. It is set whenever we respond to a link key request as well as when we get a link key notification event. These two events do not however always guarantee that encryption is enabled: getting a link key request and responding to it may only mean that the remote side has requested authentication but not encryption. On the other hand, the encrypt change event is a certain guarantee that encryption is enabled. The real encryption state is already tracked in the conn->link_mode variable through the HCI_LM_ENCRYPT bit. This patch fixes a check for encryption in the hci_conn_auth function to use the proper conn->link_mode value and thereby eliminates the chance of a false positive result. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
-
由 Johan Hedberg 提交于
The src_type member of struct hci_conn should always reflect the address type of the src_member. It should never be overridden. There is already code in place in the command status handler of HCI_LE_Create_Connection to copy the right initiator address into conn->init_addr_type. Without this patch, if privacy is enabled, we will send the wrong address type in the SMP identity address information PDU (it'll e.g. contain our public address but a random address type). Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
-
- 20 5月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
There are no users of the smp_chan struct outside of smp.c so move it away from smp.h. The addition of the l2cap.h include to hci_core.c, hci_conn.c and mgmt.c is something that should have been there already previously to avoid warnings of undeclared struct l2cap_conn, but the compiler warning was apparently shadowed away by the mention of l2cap_conn in the struct smp_chan definition. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 16 5月, 2014 1 次提交
-
-
由 Andrzej Kaczmarek 提交于
This patch adds support to store local maximum TX power level for connection when reply for HCI_Read_Transmit_Power_Level is received. Signed-off-by: NAndrzej Kaczmarek <andrzej.kaczmarek@tieto.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 10 5月, 2014 1 次提交
-
-
由 Andrzej Kaczmarek 提交于
This patch adds support to store local TX power level for connection when reply for HCI_Read_Transmit_Power_Level is received. Signed-off-by: NAndrzej Kaczmarek <andrzej.kaczmarek@tieto.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-
- 25 4月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
When we're performing reauthentication (in order to elevate the security level from an unauthenticated key to an authenticated one) we do not need to issue any encryption command once authentication completes. Since the trigger for the encryption HCI command is the ENCRYPT_PEND flag this flag should not be set in this scenario. Instead, the REAUTH_PEND flag takes care of all necessary steps for reauthentication. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
-
- 27 3月, 2014 1 次提交
-
-
由 Johan Hedberg 提交于
When we're in peripheral mode (HCI_ADVERTISING flag is set) the most natural mapping of connect() is to perform directed advertising to the peer device. This patch does the necessary changes to enable directed advertising and keeps the hci_conn state as BT_CONNECT in a similar way as is done for central or BR/EDR connection initiation. Signed-off-by: NJohan Hedberg <johan.hedberg@intel.com> Signed-off-by: NMarcel Holtmann <marcel@holtmann.org>
-