1. 01 8月, 2016 1 次提交
    • M
      clocksource/arm_arch_timer: Force per-CPU interrupt to be level-triggered · f005bd7e
      Marc Zyngier 提交于
      The ARM architected timer produces level-triggered interrupts (this
      is mandated by the architecture). Unfortunately, a number of
      device-trees get this wrong, and expose an edge-triggered interrupt.
      
      Until now, this wasn't too much an issue, as the programming of the
      trigger would fail (the corresponding PPI cannot be reconfigured),
      and the kernel would be happy with this. But we're about to change
      this, and trust DT a lot if the driver doesn't provide its own
      trigger information. In that context, the timer breaks badly.
      
      While we do need to fix the DTs, there is also some userspace out
      there (kvmtool) that generates the same kind of broken DT on the
      fly, and that will completely break with newer kernels.
      
      As a safety measure, and to keep buggy software alive as well as
      buying us some time to fix DTs all over the place, let's check
      what trigger configuration has been given us by the firmware.
      If this is not a level configuration, then we know that the
      DT/ACPI configuration is bust, and we pick some defaults which
      won't be worse than the existing setup.
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      Cc: Andrew Lunn <andrew@lunn.ch>
      Cc: Liu Gang <Gang.Liu@nxp.com>
      Cc: Mark Rutland <marc.rutland@arm.com>
      Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
      Cc: Wenbin Song <Wenbin.Song@freescale.com>
      Cc: Mingkai Hu <Mingkai.Hu@freescale.com>
      Cc: Florian Fainelli <f.fainelli@gmail.com>
      Cc: Kevin Hilman <khilman@baylibre.com>
      Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
      Cc: Michal Simek <michal.simek@xilinx.com>
      Cc: Jon Hunter <jonathanh@nvidia.com>
      Cc: arm@kernel.org
      Cc: bcm-kernel-feedback-list@broadcom.com
      Cc: linux-arm-kernel@lists.infradead.org
      Cc: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
      Cc: Jason Cooper <jason@lakedaemon.net>
      Cc: Ray Jui <rjui@broadcom.com>
      Cc: "Hou Zhiqiang" <B48286@freescale.com>
      Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
      Cc: linux-samsung-soc@vger.kernel.org
      Cc: Yuan Yao <yao.yuan@nxp.com>
      Cc: Jan Glauber <jglauber@cavium.com>
      Cc: Gregory Clement <gregory.clement@free-electrons.com>
      Cc: linux-amlogic@lists.infradead.org
      Cc: soren.brinkmann@xilinx.com
      Cc: Rajesh Bhagat <rajesh.bhagat@freescale.com>
      Cc: Scott Branden <sbranden@broadcom.com>
      Cc: Duc Dang <dhdang@apm.com>
      Cc: Kukjin Kim <kgene@kernel.org>
      Cc: Carlo Caione <carlo@caione.org>
      Cc: Dinh Nguyen <dinguyen@opensource.altera.com>
      Link: http://lkml.kernel.org/r/1470045256-9032-2-git-send-email-marc.zyngier@arm.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      f005bd7e
  2. 29 7月, 2016 7 次提交
    • A
      mm: track NR_KERNEL_STACK in KiB instead of number of stacks · d30dd8be
      Andy Lutomirski 提交于
      Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
      This only makes sense if each kernel stack exists entirely in one zone,
      and allowing vmapped stacks could break this assumption.
      
      Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
      allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
      architectures.  Keep it simple and use KiB.
      
      Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.orgSigned-off-by: NAndy Lutomirski <luto@kernel.org>
      Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Reviewed-by: NJosh Poimboeuf <jpoimboe@redhat.com>
      Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d30dd8be
    • M
      mm: move most file-based accounting to the node · 11fb9989
      Mel Gorman 提交于
      There are now a number of accounting oddities such as mapped file pages
      being accounted for on the node while the total number of file pages are
      accounted on the zone.  This can be coped with to some extent but it's
      confusing so this patch moves the relevant file-based accounted.  Due to
      throttling logic in the page allocator for reliable OOM detection, it is
      still necessary to track dirty and writeback pages on a per-zone basis.
      
      [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
        Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
      Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@surriel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      11fb9989
    • M
      mm: rename NR_ANON_PAGES to NR_ANON_MAPPED · 4b9d0fab
      Mel Gorman 提交于
      NR_FILE_PAGES  is the number of        file pages.
      NR_FILE_MAPPED is the number of mapped file pages.
      NR_ANON_PAGES  is the number of mapped anon pages.
      
      This is unhelpful naming as it's easy to confuse NR_FILE_MAPPED and
      NR_ANON_PAGES for mapped pages.  This patch renames NR_ANON_PAGES so we
      have
      
      NR_FILE_PAGES  is the number of        file pages.
      NR_FILE_MAPPED is the number of mapped file pages.
      NR_ANON_MAPPED is the number of mapped anon pages.
      
      Link: http://lkml.kernel.org/r/1467970510-21195-19-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@surriel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4b9d0fab
    • M
      mm: move page mapped accounting to the node · 50658e2e
      Mel Gorman 提交于
      Reclaim makes decisions based on the number of pages that are mapped but
      it's mixing node and zone information.  Account NR_FILE_MAPPED and
      NR_ANON_PAGES pages on the node.
      
      Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@surriel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      50658e2e
    • M
      mm, vmscan: move LRU lists to node · 599d0c95
      Mel Gorman 提交于
      This moves the LRU lists from the zone to the node and related data such
      as counters, tracing, congestion tracking and writeback tracking.
      
      Unfortunately, due to reclaim and compaction retry logic, it is
      necessary to account for the number of LRU pages on both zone and node
      logic.  Most reclaim logic is based on the node counters but the retry
      logic uses the zone counters which do not distinguish inactive and
      active sizes.  It would be possible to leave the LRU counters on a
      per-zone basis but it's a heavier calculation across multiple cache
      lines that is much more frequent than the retry checks.
      
      Other than the LRU counters, this is mostly a mechanical patch but note
      that it introduces a number of anomalies.  For example, the scans are
      per-zone but using per-node counters.  We also mark a node as congested
      when a zone is congested.  This causes weird problems that are fixed
      later but is easier to review.
      
      In the event that there is excessive overhead on 32-bit systems due to
      the nodes being on LRU then there are two potential solutions
      
      1. Long-term isolation of highmem pages when reclaim is lowmem
      
         When pages are skipped, they are immediately added back onto the LRU
         list. If lowmem reclaim persisted for long periods of time, the same
         highmem pages get continually scanned. The idea would be that lowmem
         keeps those pages on a separate list until a reclaim for highmem pages
         arrives that splices the highmem pages back onto the LRU. It potentially
         could be implemented similar to the UNEVICTABLE list.
      
         That would reduce the skip rate with the potential corner case is that
         highmem pages have to be scanned and reclaimed to free lowmem slab pages.
      
      2. Linear scan lowmem pages if the initial LRU shrink fails
      
         This will break LRU ordering but may be preferable and faster during
         memory pressure than skipping LRU pages.
      
      Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Rik van Riel <riel@surriel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      599d0c95
    • M
      mm, vmstat: add infrastructure for per-node vmstats · 75ef7184
      Mel Gorman 提交于
      Patchset: "Move LRU page reclaim from zones to nodes v9"
      
      This series moves LRUs from the zones to the node.  While this is a
      current rebase, the test results were based on mmotm as of June 23rd.
      Conceptually, this series is simple but there are a lot of details.
      Some of the broad motivations for this are;
      
      1. The residency of a page partially depends on what zone the page was
         allocated from.  This is partially combatted by the fair zone allocation
         policy but that is a partial solution that introduces overhead in the
         page allocator paths.
      
      2. Currently, reclaim on node 0 behaves slightly different to node 1. For
         example, direct reclaim scans in zonelist order and reclaims even if
         the zone is over the high watermark regardless of the age of pages
         in that LRU. Kswapd on the other hand starts reclaim on the highest
         unbalanced zone. A difference in distribution of file/anon pages due
         to when they were allocated results can result in a difference in
         again. While the fair zone allocation policy mitigates some of the
         problems here, the page reclaim results on a multi-zone node will
         always be different to a single-zone node.
         it was scheduled on as a result.
      
      3. kswapd and the page allocator scan zones in the opposite order to
         avoid interfering with each other but it's sensitive to timing.  This
         mitigates the page allocator using pages that were allocated very recently
         in the ideal case but it's sensitive to timing. When kswapd is allocating
         from lower zones then it's great but during the rebalancing of the highest
         zone, the page allocator and kswapd interfere with each other. It's worse
         if the highest zone is small and difficult to balance.
      
      4. slab shrinkers are node-based which makes it harder to identify the exact
         relationship between slab reclaim and LRU reclaim.
      
      The reason we have zone-based reclaim is that we used to have
      large highmem zones in common configurations and it was necessary
      to quickly find ZONE_NORMAL pages for reclaim. Today, this is much
      less of a concern as machines with lots of memory will (or should) use
      64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are
      rare. Machines that do use highmem should have relatively low highmem:lowmem
      ratios than we worried about in the past.
      
      Conceptually, moving to node LRUs should be easier to understand. The
      page allocator plays fewer tricks to game reclaim and reclaim behaves
      similarly on all nodes.
      
      The series has been tested on a 16 core UMA machine and a 2-socket 48
      core NUMA machine. The UMA results are presented in most cases as the NUMA
      machine behaved similarly.
      
      pagealloc
      ---------
      
      This is a microbenchmark that shows the benefit of removing the fair zone
      allocation policy. It was tested uip to order-4 but only orders 0 and 1 are
      shown as the other orders were comparable.
      
                                                 4.7.0-rc4                  4.7.0-rc4
                                            mmotm-20160623                 nodelru-v9
      Min      total-odr0-1               490.00 (  0.00%)           457.00 (  6.73%)
      Min      total-odr0-2               347.00 (  0.00%)           329.00 (  5.19%)
      Min      total-odr0-4               288.00 (  0.00%)           273.00 (  5.21%)
      Min      total-odr0-8               251.00 (  0.00%)           239.00 (  4.78%)
      Min      total-odr0-16              234.00 (  0.00%)           222.00 (  5.13%)
      Min      total-odr0-32              223.00 (  0.00%)           211.00 (  5.38%)
      Min      total-odr0-64              217.00 (  0.00%)           208.00 (  4.15%)
      Min      total-odr0-128             214.00 (  0.00%)           204.00 (  4.67%)
      Min      total-odr0-256             250.00 (  0.00%)           230.00 (  8.00%)
      Min      total-odr0-512             271.00 (  0.00%)           269.00 (  0.74%)
      Min      total-odr0-1024            291.00 (  0.00%)           282.00 (  3.09%)
      Min      total-odr0-2048            303.00 (  0.00%)           296.00 (  2.31%)
      Min      total-odr0-4096            311.00 (  0.00%)           309.00 (  0.64%)
      Min      total-odr0-8192            316.00 (  0.00%)           314.00 (  0.63%)
      Min      total-odr0-16384           317.00 (  0.00%)           315.00 (  0.63%)
      Min      total-odr1-1               742.00 (  0.00%)           712.00 (  4.04%)
      Min      total-odr1-2               562.00 (  0.00%)           530.00 (  5.69%)
      Min      total-odr1-4               457.00 (  0.00%)           433.00 (  5.25%)
      Min      total-odr1-8               411.00 (  0.00%)           381.00 (  7.30%)
      Min      total-odr1-16              381.00 (  0.00%)           356.00 (  6.56%)
      Min      total-odr1-32              372.00 (  0.00%)           346.00 (  6.99%)
      Min      total-odr1-64              372.00 (  0.00%)           343.00 (  7.80%)
      Min      total-odr1-128             375.00 (  0.00%)           351.00 (  6.40%)
      Min      total-odr1-256             379.00 (  0.00%)           351.00 (  7.39%)
      Min      total-odr1-512             385.00 (  0.00%)           355.00 (  7.79%)
      Min      total-odr1-1024            386.00 (  0.00%)           358.00 (  7.25%)
      Min      total-odr1-2048            390.00 (  0.00%)           362.00 (  7.18%)
      Min      total-odr1-4096            390.00 (  0.00%)           362.00 (  7.18%)
      Min      total-odr1-8192            388.00 (  0.00%)           363.00 (  6.44%)
      
      This shows a steady improvement throughout. The primary benefit is from
      reduced system CPU usage which is obvious from the overall times;
      
                 4.7.0-rc4   4.7.0-rc4
              mmotm-20160623nodelru-v8
      User          189.19      191.80
      System       2604.45     2533.56
      Elapsed      2855.30     2786.39
      
      The vmstats also showed that the fair zone allocation policy was definitely
      removed as can be seen here;
      
                                   4.7.0-rc3   4.7.0-rc3
                               mmotm-20160623 nodelru-v8
      DMA32 allocs               28794729769           0
      Normal allocs              48432501431 77227309877
      Movable allocs                       0           0
      
      tiobench on ext4
      ----------------
      
      tiobench is a benchmark that artifically benefits if old pages remain resident
      while new pages get reclaimed. The fair zone allocation policy mitigates this
      problem so pages age fairly. While the benchmark has problems, it is important
      that tiobench performance remains constant as it implies that page aging
      problems that the fair zone allocation policy fixes are not re-introduced.
      
                                               4.7.0-rc4             4.7.0-rc4
                                          mmotm-20160623            nodelru-v9
      Min      PotentialReadSpeed        89.65 (  0.00%)       90.21 (  0.62%)
      Min      SeqRead-MB/sec-1          82.68 (  0.00%)       82.01 ( -0.81%)
      Min      SeqRead-MB/sec-2          72.76 (  0.00%)       72.07 ( -0.95%)
      Min      SeqRead-MB/sec-4          75.13 (  0.00%)       74.92 ( -0.28%)
      Min      SeqRead-MB/sec-8          64.91 (  0.00%)       65.19 (  0.43%)
      Min      SeqRead-MB/sec-16         62.24 (  0.00%)       62.22 ( -0.03%)
      Min      RandRead-MB/sec-1          0.88 (  0.00%)        0.88 (  0.00%)
      Min      RandRead-MB/sec-2          0.95 (  0.00%)        0.92 ( -3.16%)
      Min      RandRead-MB/sec-4          1.43 (  0.00%)        1.34 ( -6.29%)
      Min      RandRead-MB/sec-8          1.61 (  0.00%)        1.60 ( -0.62%)
      Min      RandRead-MB/sec-16         1.80 (  0.00%)        1.90 (  5.56%)
      Min      SeqWrite-MB/sec-1         76.41 (  0.00%)       76.85 (  0.58%)
      Min      SeqWrite-MB/sec-2         74.11 (  0.00%)       73.54 ( -0.77%)
      Min      SeqWrite-MB/sec-4         80.05 (  0.00%)       80.13 (  0.10%)
      Min      SeqWrite-MB/sec-8         72.88 (  0.00%)       73.20 (  0.44%)
      Min      SeqWrite-MB/sec-16        75.91 (  0.00%)       76.44 (  0.70%)
      Min      RandWrite-MB/sec-1         1.18 (  0.00%)        1.14 ( -3.39%)
      Min      RandWrite-MB/sec-2         1.02 (  0.00%)        1.03 (  0.98%)
      Min      RandWrite-MB/sec-4         1.05 (  0.00%)        0.98 ( -6.67%)
      Min      RandWrite-MB/sec-8         0.89 (  0.00%)        0.92 (  3.37%)
      Min      RandWrite-MB/sec-16        0.92 (  0.00%)        0.93 (  1.09%)
      
                 4.7.0-rc4   4.7.0-rc4
              mmotm-20160623 approx-v9
      User          645.72      525.90
      System        403.85      331.75
      Elapsed      6795.36     6783.67
      
      This shows that the series has little or not impact on tiobench which is
      desirable and a reduction in system CPU usage. It indicates that the fair
      zone allocation policy was removed in a manner that didn't reintroduce
      one class of page aging bug. There were only minor differences in overall
      reclaim activity
      
                                   4.7.0-rc4   4.7.0-rc4
                                mmotm-20160623nodelru-v8
      Minor Faults                    645838      647465
      Major Faults                       573         640
      Swap Ins                             0           0
      Swap Outs                            0           0
      DMA allocs                           0           0
      DMA32 allocs                  46041453    44190646
      Normal allocs                 78053072    79887245
      Movable allocs                       0           0
      Allocation stalls                   24          67
      Stall zone DMA                       0           0
      Stall zone DMA32                     0           0
      Stall zone Normal                    0           2
      Stall zone HighMem                   0           0
      Stall zone Movable                   0          65
      Direct pages scanned             10969       30609
      Kswapd pages scanned          93375144    93492094
      Kswapd pages reclaimed        93372243    93489370
      Direct pages reclaimed           10969       30609
      Kswapd efficiency                  99%         99%
      Kswapd velocity              13741.015   13781.934
      Direct efficiency                 100%        100%
      Direct velocity                  1.614       4.512
      Percentage direct scans             0%          0%
      
      kswapd activity was roughly comparable. There were differences in direct
      reclaim activity but negligible in the context of the overall workload
      (velocity of 4 pages per second with the patches applied, 1.6 pages per
      second in the baseline kernel).
      
      pgbench read-only large configuration on ext4
      ---------------------------------------------
      
      pgbench is a database benchmark that can be sensitive to page reclaim
      decisions. This also checks if removing the fair zone allocation policy
      is safe
      
      pgbench Transactions
                              4.7.0-rc4             4.7.0-rc4
                         mmotm-20160623            nodelru-v8
      Hmean    1       188.26 (  0.00%)      189.78 (  0.81%)
      Hmean    5       330.66 (  0.00%)      328.69 ( -0.59%)
      Hmean    12      370.32 (  0.00%)      380.72 (  2.81%)
      Hmean    21      368.89 (  0.00%)      369.00 (  0.03%)
      Hmean    30      382.14 (  0.00%)      360.89 ( -5.56%)
      Hmean    32      428.87 (  0.00%)      432.96 (  0.95%)
      
      Negligible differences again. As with tiobench, overall reclaim activity
      was comparable.
      
      bonnie++ on ext4
      ----------------
      
      No interesting performance difference, negligible differences on reclaim
      stats.
      
      paralleldd on ext4
      ------------------
      
      This workload uses varying numbers of dd instances to read large amounts of
      data from disk.
      
                                     4.7.0-rc3             4.7.0-rc3
                                mmotm-20160623            nodelru-v9
      Amean    Elapsd-1       186.04 (  0.00%)      189.41 ( -1.82%)
      Amean    Elapsd-3       192.27 (  0.00%)      191.38 (  0.46%)
      Amean    Elapsd-5       185.21 (  0.00%)      182.75 (  1.33%)
      Amean    Elapsd-7       183.71 (  0.00%)      182.11 (  0.87%)
      Amean    Elapsd-12      180.96 (  0.00%)      181.58 ( -0.35%)
      Amean    Elapsd-16      181.36 (  0.00%)      183.72 ( -1.30%)
      
                 4.7.0-rc4   4.7.0-rc4
              mmotm-20160623 nodelru-v9
      User         1548.01     1552.44
      System       8609.71     8515.08
      Elapsed      3587.10     3594.54
      
      There is little or no change in performance but some drop in system CPU usage.
      
                                   4.7.0-rc3   4.7.0-rc3
                              mmotm-20160623  nodelru-v9
      Minor Faults                    362662      367360
      Major Faults                      1204        1143
      Swap Ins                            22           0
      Swap Outs                         2855        1029
      DMA allocs                           0           0
      DMA32 allocs                  31409797    28837521
      Normal allocs                 46611853    49231282
      Movable allocs                       0           0
      Direct pages scanned                 0           0
      Kswapd pages scanned          40845270    40869088
      Kswapd pages reclaimed        40830976    40855294
      Direct pages reclaimed               0           0
      Kswapd efficiency                  99%         99%
      Kswapd velocity              11386.711   11369.769
      Direct efficiency                 100%        100%
      Direct velocity                  0.000       0.000
      Percentage direct scans             0%          0%
      Page writes by reclaim            2855        1029
      Page writes file                     0           0
      Page writes anon                  2855        1029
      Page reclaim immediate             771        1628
      Sector Reads                 293312636   293536360
      Sector Writes                 18213568    18186480
      Page rescued immediate               0           0
      Slabs scanned                   128257      132747
      Direct inode steals                181          56
      Kswapd inode steals                 59        1131
      
      It basically shows that kswapd was active at roughly the same rate in
      both kernels. There was also comparable slab scanning activity and direct
      reclaim was avoided in both cases. There appears to be a large difference
      in numbers of inodes reclaimed but the workload has few active inodes and
      is likely a timing artifact.
      
      stutter
      -------
      
      stutter simulates a simple workload. One part uses a lot of anonymous
      memory, a second measures mmap latency and a third copies a large file.
      The primary metric is checking for mmap latency.
      
      stutter
                                   4.7.0-rc4             4.7.0-rc4
                              mmotm-20160623            nodelru-v8
      Min         mmap     16.6283 (  0.00%)     13.4258 ( 19.26%)
      1st-qrtle   mmap     54.7570 (  0.00%)     34.9121 ( 36.24%)
      2nd-qrtle   mmap     57.3163 (  0.00%)     46.1147 ( 19.54%)
      3rd-qrtle   mmap     58.9976 (  0.00%)     47.1882 ( 20.02%)
      Max-90%     mmap     59.7433 (  0.00%)     47.4453 ( 20.58%)
      Max-93%     mmap     60.1298 (  0.00%)     47.6037 ( 20.83%)
      Max-95%     mmap     73.4112 (  0.00%)     82.8719 (-12.89%)
      Max-99%     mmap     92.8542 (  0.00%)     88.8870 (  4.27%)
      Max         mmap   1440.6569 (  0.00%)    121.4201 ( 91.57%)
      Mean        mmap     59.3493 (  0.00%)     42.2991 ( 28.73%)
      Best99%Mean mmap     57.2121 (  0.00%)     41.8207 ( 26.90%)
      Best95%Mean mmap     55.9113 (  0.00%)     39.9620 ( 28.53%)
      Best90%Mean mmap     55.6199 (  0.00%)     39.3124 ( 29.32%)
      Best50%Mean mmap     53.2183 (  0.00%)     33.1307 ( 37.75%)
      Best10%Mean mmap     45.9842 (  0.00%)     20.4040 ( 55.63%)
      Best5%Mean  mmap     43.2256 (  0.00%)     17.9654 ( 58.44%)
      Best1%Mean  mmap     32.9388 (  0.00%)     16.6875 ( 49.34%)
      
      This shows a number of improvements with the worst-case outlier greatly
      improved.
      
      Some of the vmstats are interesting
      
                                   4.7.0-rc4   4.7.0-rc4
                                mmotm-20160623nodelru-v8
      Swap Ins                           163         502
      Swap Outs                            0           0
      DMA allocs                           0           0
      DMA32 allocs                 618719206  1381662383
      Normal allocs                891235743   564138421
      Movable allocs                       0           0
      Allocation stalls                 2603           1
      Direct pages scanned            216787           2
      Kswapd pages scanned          50719775    41778378
      Kswapd pages reclaimed        41541765    41777639
      Direct pages reclaimed          209159           0
      Kswapd efficiency                  81%         99%
      Kswapd velocity              16859.554   14329.059
      Direct efficiency                  96%          0%
      Direct velocity                 72.061       0.001
      Percentage direct scans             0%          0%
      Page writes by reclaim         6215049           0
      Page writes file               6215049           0
      Page writes anon                     0           0
      Page reclaim immediate           70673          90
      Sector Reads                  81940800    81680456
      Sector Writes                100158984    98816036
      Page rescued immediate               0           0
      Slabs scanned                  1366954       22683
      
      While this is not guaranteed in all cases, this particular test showed
      a large reduction in direct reclaim activity. It's also worth noting
      that no page writes were issued from reclaim context.
      
      This series is not without its hazards. There are at least three areas
      that I'm concerned with even though I could not reproduce any problems in
      that area.
      
      1. Reclaim/compaction is going to be affected because the amount of reclaim is
         no longer targetted at a specific zone. Compaction works on a per-zone basis
         so there is no guarantee that reclaiming a few THP's worth page pages will
         have a positive impact on compaction success rates.
      
      2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers
         are called is now different. This may or may not be a problem but if it
         is, it'll be because shrinkers are not called enough and some balancing
         is required.
      
      3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are
         distributed between zones and the fair zone allocation policy used to do
         something very similar for anon. The distribution is now different but not
         necessarily in any way that matters but it's still worth bearing in mind.
      
      VM statistic counters for reclaim decisions are zone-based.  If the kernel
      is to reclaim on a per-node basis then we need to track per-node
      statistics but there is no infrastructure for that.  The most notable
      change is that the old node_page_state is renamed to
      sum_zone_node_page_state.  The new node_page_state takes a pglist_data and
      uses per-node stats but none exist yet.  There is some renaming such as
      vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming
      of mod_state to mod_zone_state.  Otherwise, this is mostly a mechanical
      patch with no functional change.  There is a lot of similarity between the
      node and zone helpers which is unfortunate but there was no obvious way of
      reusing the code and maintaining type safety.
      
      Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Rik van Riel <riel@surriel.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Minchan Kim <minchan@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      75ef7184
    • S
      MD: fix null pointer deference · 5d881783
      Shaohua Li 提交于
      The md device might not have personality (for example, ddf raid array). The
      issue is introduced by 8430e7e0(md: disconnect device from personality
      before trying to remove it)
      Reported-by: Nkernel test robot <xiaolong.ye@intel.com>
      Signed-off-by: NShaohua Li <shli@fb.com>
      5d881783
  3. 28 7月, 2016 3 次提交
  4. 27 7月, 2016 25 次提交
    • T
      ipmi: remove trydefaults parameter and default init · b07b58a3
      Tony Camuso 提交于
      Parameter trydefaults=1 causes the ipmi_init to initialize ipmi through
      the legacy port io space that was designated for ipmi. Architectures
      that do not map legacy port io can panic when trydefaults=1.
      
      Rather than implement build-time conditional exceptions for each
      architecture that does not map legacy port io, we have removed legacy
      port io from the driver.
      
      Parameter 'trydefaults' has been removed. Attempts to use it hereafter
      will evoke the "Unknown symbol in module, or unknown parameter" message.
      
      The patch was built against a number of architectures and tested for
      regressions and functionality on x86_64 and ARM64.
      Signed-off-by: NTony Camuso <tcamuso@redhat.com>
      
      Removed the config entry and the address source entry for default,
      since neither were used any more.
      Signed-off-by: NCorey Minyard <cminyard@mvista.com>
      b07b58a3
    • D
      xgene: Fix build warning with ACPI disabled. · 36232012
      David S. Miller 提交于
      drivers/net/ethernet/apm/xgene/xgene_enet_hw.c: In function 'xgene_enet_phy_connect':
      drivers/net/ethernet/apm/xgene/xgene_enet_hw.c:759:22: warning: unused variable 'adev' [-Wunused-variable]
      
      Fixes: 8089a96f ("drivers: net: xgene: Add backward compatibility")
      Reported-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      36232012
    • G
      be2net: perform temperature query in adapter regardless of its interface state · d3480615
      Guilherme G. Piccoli 提交于
      The be2net driver performs fw temperature queries on be_worker() routine,
      which is executed each second for each be_adapter. There is a frequency
      threshold to avoid fw query to happens at each call to be_worker();
      instead, currently a fw query occurs once in 64 runs of the procedure.
      
      Nevertheless, this fw temperature query is invoked only for adapters which
      interface is up, so we can see I/O errors on read of hwmon counters from
      userspace (from tools like lm-sensors) in case we have adapters' functions
      which interface is down.
      
      This patch moves the fw query code to be invoked even if interface is down.
      No functional changes were introduced.
      Signed-off-by: NGuilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
      Acked-by: NSathya Perla <sathya.perla@broadcom.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d3480615
    • M
      mm: fix build warnings in <linux/compaction.h> · dd4123f3
      Minchan Kim 提交于
      Randy reported below build error.
      
      > In file included from ../include/linux/balloon_compaction.h:48:0,
      >                  from ../mm/balloon_compaction.c:11:
      > ../include/linux/compaction.h:237:51: warning: 'struct node' declared inside parameter list [enabled by default]
      >  static inline int compaction_register_node(struct node *node)
      > ../include/linux/compaction.h:237:51: warning: its scope is only this definition or declaration, which is probably not what you want [enabled by default]
      > ../include/linux/compaction.h:242:54: warning: 'struct node' declared inside parameter list [enabled by default]
      >  static inline void compaction_unregister_node(struct node *node)
      >
      
      It was caused by non-lru page migration which needs compaction.h but
      compaction.h doesn't include any header to be standalone.
      
      I think proper header for non-lru page migration is migrate.h rather
      than compaction.h because migrate.h has already headers needed to work
      non-lru page migration indirectly like isolate_mode_t, migrate_mode
      MIGRATEPAGE_SUCCESS.
      
      [akpm@linux-foundation.org: revert mm-balloon-use-general-non-lru-movable-page-feature-fix.patch temp fix]
      Link: http://lkml.kernel.org/r/20160610003304.GE29779@bboxSigned-off-by: NMinchan Kim <minchan@kernel.org>
      Reported-by: NRandy Dunlap <rdunlap@infradead.org>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Gioh Kim <gi-oh.kim@profitbricks.com>
      Cc: Rafael Aquini <aquini@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dd4123f3
    • H
      shmem: get_unmapped_area align huge page · c01d5b30
      Hugh Dickins 提交于
      Provide a shmem_get_unmapped_area method in file_operations, called at
      mmap time to decide the mapping address.  It could be conditional on
      CONFIG_TRANSPARENT_HUGEPAGE, but save #ifdefs in other places by making
      it unconditional.
      
      shmem_get_unmapped_area() first calls the usual mm->get_unmapped_area
      (which we treat as a black box, highly dependent on architecture and
      config and executable layout).  Lots of conditions, and in most cases it
      just goes with the address that chose; but when our huge stars are
      rightly aligned, yet that did not provide a suitable address, go back to
      ask for a larger arena, within which to align the mapping suitably.
      
      There have to be some direct calls to shmem_get_unmapped_area(), not via
      the file_operations: because of the way shmem_zero_setup() is called to
      create a shmem object late in the mmap sequence, when MAP_SHARED is
      requested with MAP_ANONYMOUS or /dev/zero.  Though this only matters
      when /proc/sys/vm/shmem_huge has been set.
      
      Link: http://lkml.kernel.org/r/1466021202-61880-29-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c01d5b30
    • K
      mm, rmap: account shmem thp pages · 65c45377
      Kirill A. Shutemov 提交于
      Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and
      smaps.  It indicates how many times we allocate and map shmem THP.
      
      NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS.
      
      Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      65c45377
    • K
    • V
      mm, frontswap: convert frontswap_enabled to static key · 8ea1d2a1
      Vlastimil Babka 提交于
      I have noticed that frontswap.h first declares "frontswap_enabled" as
      extern bool variable, and then overrides it with "#define
      frontswap_enabled (1)" for CONFIG_FRONTSWAP=Y or (0) when disabled.  The
      bool variable isn't actually instantiated anywhere.
      
      This all looks like an unfinished attempt to make frontswap_enabled
      reflect whether a backend is instantiated.  But in the current state,
      all frontswap hooks call unconditionally into frontswap.c just to check
      if frontswap_ops is non-NULL.  This should at least be checked inline,
      but we can further eliminate the overhead when CONFIG_FRONTSWAP is
      enabled and no backend registered, using a static key that is initially
      disabled, and gets enabled only upon first backend registration.
      
      Thus, checks for "frontswap_enabled" are replaced with
      "frontswap_enabled()" wrapping the static key check.  There are two
      exceptions:
      
      - xen's selfballoon_process() was testing frontswap_enabled in code guarded
        by #ifdef CONFIG_FRONTSWAP, which was effectively always true when reachable.
        The patch just removes this check. Using frontswap_enabled() does not sound
        correct here, as this can be true even without xen's own backend being
        registered.
      
      - in SYSCALL_DEFINE2(swapon), change the check to IS_ENABLED(CONFIG_FRONTSWAP)
        as it seems the bitmap allocation cannot currently be postponed until a
        backend is registered. This means that frontswap will still have some
        memory overhead by being configured, but without a backend.
      
      After the patch, we can expect that some functions in frontswap.c are
      called only when frontswap_ops is non-NULL.  Change the checks there to
      VM_BUG_ONs.  While at it, convert other BUG_ONs to VM_BUG_ONs as
      frontswap has been stable for some time.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Link: http://lkml.kernel.org/r/1463152235-9717-1-git-send-email-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8ea1d2a1
    • M
      zram: use __GFP_MOVABLE for memory allocation · 9bc482d3
      Minchan Kim 提交于
      Zsmalloc is ready for page migration so zram can use __GFP_MOVABLE from
      now on.
      
      I did test to see how it helps to make higher order pages.  Test
      scenario is as follows.
      
      KVM guest, 1G memory, ext4 formated zram block device,
      
        for i in `seq 1 8`;
        do
                dd if=/dev/vda1 of=mnt/test$i.txt bs=128M count=1 &
        done
      
        wait `pidof dd`
      
        for i in `seq 1 2 8`;
        do
                rm -rf mnt/test$i.txt
        done
        fstrim -v mnt
      
        echo "init"
        cat /proc/buddyinfo
      
        echo "compaction"
        echo 1 > /proc/sys/vm/compact_memory
        cat /proc/buddyinfo
      
      old:
      
        init
        Node 0, zone      DMA    208    120     51     41     11      0      0      0      0      0      0
        Node 0, zone    DMA32  16380  13777   9184   3805    789     54      3      0      0      0      0
        compaction
        Node 0, zone      DMA    132     82     40     39     16      2      1      0      0      0      0
        Node 0, zone    DMA32   5219   5526   4969   3455   1831    677    139     15      0      0      0
      
      new:
      
        init
        Node 0, zone      DMA    379    115     97     19      2      0      0      0      0      0      0
        Node 0, zone    DMA32  18891  16774  10862   3947    637     21      0      0      0      0      0
        compaction
        Node 0, zone      DMA    214     66     87     29     10      3      0      0      0      0      0
        Node 0, zone    DMA32   1612   3139   3154   2469   1745    990    384     94      7      0      0
      
      As you can see, compaction made so many high-order pages. Yay!
      
      Link: http://lkml.kernel.org/r/1464736881-24886-13-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org>
      Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9bc482d3
    • M
      mm: balloon: use general non-lru movable page feature · b1123ea6
      Minchan Kim 提交于
      Now, VM has a feature to migrate non-lru movable pages so balloon
      doesn't need custom migration hooks in migrate.c and compaction.c.
      
      Instead, this patch implements the page->mapping->a_ops->
      {isolate|migrate|putback} functions.
      
      With that, we could remove hooks for ballooning in general migration
      functions and make balloon compaction simple.
      
      [akpm@linux-foundation.org: compaction.h requires that the includer first include node.h]
      Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.orgSigned-off-by: NGioh Kim <gi-oh.kim@profitbricks.com>
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Rafael Aquini <aquini@redhat.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b1123ea6
    • S
      zram: drop gfp_t from zcomp_strm_alloc() · 16d37725
      Sergey Senozhatsky 提交于
      We now allocate streams from CPU_UP hot-plug path, there are no
      context-dependent stream allocations anymore and we can schedule from
      zcomp_strm_alloc().  Use GFP_KERNEL directly and drop a gfp_t parameter.
      
      Link: http://lkml.kernel.org/r/20160531122017.2878-9-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      16d37725
    • S
      zram: add more compression algorithms · eb9f56d8
      Sergey Senozhatsky 提交于
      Add "deflate", "lz4hc", "842" algorithms to the list of known
      compression backends.  The real availability of those algorithms,
      however, depends on the corresponding CONFIG_CRYPTO_FOO config options.
      
      [sergey.senozhatsky@gmail.com: zram-add-more-compression-algorithms-v3]
        Link: http://lkml.kernel.org/r/20160604024902.11778-7-sergey.senozhatsky@gmail.com
      Link: http://lkml.kernel.org/r/20160531122017.2878-8-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      eb9f56d8
    • S
      zram: delete custom lzo/lz4 · ce1ed9f9
      Sergey Senozhatsky 提交于
      Remove lzo/lz4 backends, we use crypto API now.
      
      [sergey.senozhatsky@gmail.com: zram-delete-custom-lzo-lz4-v3]
        Link: http://lkml.kernel.org/r/20160604024902.11778-6-sergey.senozhatsky@gmail.com
      Link: http://lkml.kernel.org/r/20160531122017.2878-7-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ce1ed9f9
    • S
      zram: use crypto api to check alg availability · 415403be
      Sergey Senozhatsky 提交于
      There is no way to get a string with all the crypto comp algorithms
      supported by the crypto comp engine, so we need to maintain our own
      backends list.  At the same time we additionally need to use
      crypto_has_comp() to make sure that the user has requested a compression
      algorithm that is recognized by the crypto comp engine.  Relying on
      /proc/crypto is not an options here, because it does not show
      not-yet-inserted compression modules.
      
      Example:
      
       modprobe zram
       cat /proc/crypto | grep -i lz4
       modprobe lz4
       cat /proc/crypto | grep -i lz4
      name         : lz4
      driver       : lz4-generic
      module       : lz4
      
      So the user can't tell exactly if the lz4 is really supported from
      /proc/crypto output, unless someone or something has loaded it.
      
      This patch also adds crypto_has_comp() to zcomp_available_show().  We
      store all the compression algorithms names in zcomp's `backends' array,
      regardless the CONFIG_CRYPTO_FOO configuration, but show only those that
      are also supported by crypto engine.  This helps user to know the exact
      list of compression algorithms that can be used.
      
      Example:
        module lz4 is not loaded yet, but is supported by the crypto
        engine. /proc/crypto has no information on this module, while
        zram's `comp_algorithm' lists it:
      
       cat /proc/crypto | grep -i lz4
      
       cat /sys/block/zram0/comp_algorithm
      [lzo] lz4 deflate lz4hc 842
      
      We still use the `backends' array to determine if the requested
      compression backend is known to crypto api.  This array, however, may not
      contain some entries, therefore as the last step we call crypto_has_comp()
      function which attempts to insmod the requested compression algorithm to
      determine if crypto api supports it.  The advantage of this method is that
      now we permit the usage of out-of-tree crypto compression modules
      (implementing S/W or H/W compression).
      
      [sergey.senozhatsky@gmail.com: zram-use-crypto-api-to-check-alg-availability-v3]
        Link: http://lkml.kernel.org/r/20160604024902.11778-4-sergey.senozhatsky@gmail.com
      Link: http://lkml.kernel.org/r/20160531122017.2878-5-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      415403be
    • S
      zram: switch to crypto compress API · ebaf9ab5
      Sergey Senozhatsky 提交于
      We don't have an idle zstreams list anymore and our write path now works
      absolutely differently, preventing preemption during compression.  This
      removes possibilities of read paths preempting writes at wrong places
      (which could badly affect the performance of both paths) and at the same
      time opens the door for a move from custom LZO/LZ4 compression backends
      implementation to a more generic one, using crypto compress API.
      
      Joonsoo Kim [1] attempted to do this a while ago, but faced with the
      need of introducing a new crypto API interface.  The root cause was the
      fact that crypto API compression algorithms require a compression stream
      structure (in zram terminology) for both compression and decompression
      ops, while in reality only several of compression algorithms really need
      it.  This resulted in a concept of context-less crypto API compression
      backends [2].  Both write and read paths, though, would have been
      executed with the preemption enabled, which in the worst case could have
      resulted in a decreased worst-case performance, e.g.  consider the
      following case:
      
      	CPU0
      
      	zram_write()
      	  spin_lock()
      	    take the last idle stream
      	  spin_unlock()
      
      	<< preempted >>
      
      		zram_read()
      		  spin_lock()
      		   no idle streams
      			  spin_unlock()
      			  schedule()
      
      	resuming zram_write compression()
      
      but it took me some time to realize that, and it took even longer to
      evolve zram and to make it ready for crypto API.  The key turned out to be
      -- drop the idle streams list entirely.  Without the idle streams list we
      are free to use compression algorithms that require compression stream for
      decompression (read), because streams are now placed in per-cpu data and
      each write path has to disable preemption for compression op, almost
      completely eliminating the aforementioned case (technically, we still have
      a small chance, because write path has a fast and a slow paths and the
      slow path is executed with the preemption enabled; but the frequency of
      failed fast path is too low).
      
      TEST
      ====
      
      - 4 CPUs, x86_64 system
      - 3G zram, lzo
      - fio tests: read, randread, write, randwrite, rw, randrw
      
      test script [3] command:
       ZRAM_SIZE=3G LOG_SUFFIX=XXXX FIO_LOOPS=5 ./zram-fio-test.sh
      
                         BASE           PATCHED
      jobs1
      READ:           2527.2MB/s	 2482.7MB/s
      READ:           2102.7MB/s	 2045.0MB/s
      WRITE:          1284.3MB/s	 1324.3MB/s
      WRITE:          1080.7MB/s	 1101.9MB/s
      READ:           430125KB/s	 437498KB/s
      WRITE:          430538KB/s	 437919KB/s
      READ:           399593KB/s	 403987KB/s
      WRITE:          399910KB/s	 404308KB/s
      jobs2
      READ:           8133.5MB/s	 7854.8MB/s
      READ:           7086.6MB/s	 6912.8MB/s
      WRITE:          3177.2MB/s	 3298.3MB/s
      WRITE:          2810.2MB/s	 2871.4MB/s
      READ:           1017.6MB/s	 1023.4MB/s
      WRITE:          1018.2MB/s	 1023.1MB/s
      READ:           977836KB/s	 984205KB/s
      WRITE:          979435KB/s	 985814KB/s
      jobs3
      READ:           13557MB/s	 13391MB/s
      READ:           11876MB/s	 11752MB/s
      WRITE:          4641.5MB/s	 4682.1MB/s
      WRITE:          4164.9MB/s	 4179.3MB/s
      READ:           1453.8MB/s	 1455.1MB/s
      WRITE:          1455.1MB/s	 1458.2MB/s
      READ:           1387.7MB/s	 1395.7MB/s
      WRITE:          1386.1MB/s	 1394.9MB/s
      jobs4
      READ:           20271MB/s	 20078MB/s
      READ:           18033MB/s	 17928MB/s
      WRITE:          6176.8MB/s	 6180.5MB/s
      WRITE:          5686.3MB/s	 5705.3MB/s
      READ:           2009.4MB/s	 2006.7MB/s
      WRITE:          2007.5MB/s	 2004.9MB/s
      READ:           1929.7MB/s	 1935.6MB/s
      WRITE:          1926.8MB/s	 1932.6MB/s
      jobs5
      READ:           18823MB/s	 19024MB/s
      READ:           18968MB/s	 19071MB/s
      WRITE:          6191.6MB/s	 6372.1MB/s
      WRITE:          5818.7MB/s	 5787.1MB/s
      READ:           2011.7MB/s	 1981.3MB/s
      WRITE:          2011.4MB/s	 1980.1MB/s
      READ:           1949.3MB/s	 1935.7MB/s
      WRITE:          1940.4MB/s	 1926.1MB/s
      jobs6
      READ:           21870MB/s	 21715MB/s
      READ:           19957MB/s	 19879MB/s
      WRITE:          6528.4MB/s	 6537.6MB/s
      WRITE:          6098.9MB/s	 6073.6MB/s
      READ:           2048.6MB/s	 2049.9MB/s
      WRITE:          2041.7MB/s	 2042.9MB/s
      READ:           2013.4MB/s	 1990.4MB/s
      WRITE:          2009.4MB/s	 1986.5MB/s
      jobs7
      READ:           21359MB/s	 21124MB/s
      READ:           19746MB/s	 19293MB/s
      WRITE:          6660.4MB/s	 6518.8MB/s
      WRITE:          6211.6MB/s	 6193.1MB/s
      READ:           2089.7MB/s	 2080.6MB/s
      WRITE:          2085.8MB/s	 2076.5MB/s
      READ:           2041.2MB/s	 2052.5MB/s
      WRITE:          2037.5MB/s	 2048.8MB/s
      jobs8
      READ:           20477MB/s	 19974MB/s
      READ:           18922MB/s	 18576MB/s
      WRITE:          6851.9MB/s	 6788.3MB/s
      WRITE:          6407.7MB/s	 6347.5MB/s
      READ:           2134.8MB/s	 2136.1MB/s
      WRITE:          2132.8MB/s	 2134.4MB/s
      READ:           2074.2MB/s	 2069.6MB/s
      WRITE:          2087.3MB/s	 2082.4MB/s
      jobs9
      READ:           19797MB/s	 19994MB/s
      READ:           18806MB/s	 18581MB/s
      WRITE:          6878.7MB/s	 6822.7MB/s
      WRITE:          6456.8MB/s	 6447.2MB/s
      READ:           2141.1MB/s	 2154.7MB/s
      WRITE:          2144.4MB/s	 2157.3MB/s
      READ:           2084.1MB/s	 2085.1MB/s
      WRITE:          2091.5MB/s	 2092.5MB/s
      jobs10
      READ:           19794MB/s	 19784MB/s
      READ:           18794MB/s	 18745MB/s
      WRITE:          6984.4MB/s	 6676.3MB/s
      WRITE:          6532.3MB/s	 6342.7MB/s
      READ:           2150.6MB/s	 2155.4MB/s
      WRITE:          2156.8MB/s	 2161.5MB/s
      READ:           2106.4MB/s	 2095.6MB/s
      WRITE:          2109.7MB/s	 2098.4MB/s
      
                                          BASE                       PATCHED
      jobs1                              perfstat
      stalled-cycles-frontend     102,480,595,419 (  41.53%)	  114,508,864,804 (  46.92%)
      stalled-cycles-backend       51,941,417,832 (  21.05%)	   46,836,112,388 (  19.19%)
      instructions                283,612,054,215 (    1.15)	  283,918,134,959 (    1.16)
      branches                     56,372,560,385 ( 724.923)	   56,449,814,753 ( 733.766)
      branch-misses                   374,826,000 (   0.66%)	      326,935,859 (   0.58%)
      jobs2                              perfstat
      stalled-cycles-frontend     155,142,745,777 (  40.99%)	  164,170,979,198 (  43.82%)
      stalled-cycles-backend       70,813,866,387 (  18.71%)	   66,456,858,165 (  17.74%)
      instructions                463,436,648,173 (    1.22)	  464,221,890,191 (    1.24)
      branches                     91,088,733,902 ( 760.088)	   91,278,144,546 ( 769.133)
      branch-misses                   504,460,363 (   0.55%)	      394,033,842 (   0.43%)
      jobs3                              perfstat
      stalled-cycles-frontend     201,300,397,212 (  39.84%)	  223,969,902,257 (  44.44%)
      stalled-cycles-backend       87,712,593,974 (  17.36%)	   81,618,888,712 (  16.19%)
      instructions                642,869,545,023 (    1.27)	  644,677,354,132 (    1.28)
      branches                    125,724,560,594 ( 690.682)	  126,133,159,521 ( 694.542)
      branch-misses                   527,941,798 (   0.42%)	      444,782,220 (   0.35%)
      jobs4                              perfstat
      stalled-cycles-frontend     246,701,197,429 (  38.12%)	  280,076,030,886 (  43.29%)
      stalled-cycles-backend      119,050,341,112 (  18.40%)	  110,955,641,671 (  17.15%)
      instructions                822,716,962,127 (    1.27)	  825,536,969,320 (    1.28)
      branches                    160,590,028,545 ( 688.614)	  161,152,996,915 ( 691.068)
      branch-misses                   650,295,287 (   0.40%)	      550,229,113 (   0.34%)
      jobs5                              perfstat
      stalled-cycles-frontend     298,958,462,516 (  38.30%)	  344,852,200,358 (  44.16%)
      stalled-cycles-backend      137,558,742,122 (  17.62%)	  129,465,067,102 (  16.58%)
      instructions              1,005,714,688,752 (    1.29)	1,007,657,999,432 (    1.29)
      branches                    195,988,773,962 ( 697.730)	  196,446,873,984 ( 700.319)
      branch-misses                   695,818,940 (   0.36%)	      624,823,263 (   0.32%)
      jobs6                              perfstat
      stalled-cycles-frontend     334,497,602,856 (  36.71%)	  387,590,419,779 (  42.38%)
      stalled-cycles-backend      163,539,365,335 (  17.95%)	  152,640,193,639 (  16.69%)
      instructions              1,184,738,177,851 (    1.30)	1,187,396,281,677 (    1.30)
      branches                    230,592,915,640 ( 702.902)	  231,253,802,882 ( 702.356)
      branch-misses                   747,934,786 (   0.32%)	      643,902,424 (   0.28%)
      jobs7                              perfstat
      stalled-cycles-frontend     396,724,684,187 (  37.71%)	  460,705,858,952 (  43.84%)
      stalled-cycles-backend      188,096,616,496 (  17.88%)	  175,785,787,036 (  16.73%)
      instructions              1,364,041,136,608 (    1.30)	1,366,689,075,112 (    1.30)
      branches                    265,253,096,936 ( 700.078)	  265,890,524,883 ( 702.839)
      branch-misses                   784,991,589 (   0.30%)	      729,196,689 (   0.27%)
      jobs8                              perfstat
      stalled-cycles-frontend     440,248,299,870 (  36.92%)	  509,554,793,816 (  42.46%)
      stalled-cycles-backend      222,575,930,616 (  18.67%)	  213,401,248,432 (  17.78%)
      instructions              1,542,262,045,114 (    1.29)	1,545,233,932,257 (    1.29)
      branches                    299,775,178,439 ( 697.666)	  300,528,458,505 ( 694.769)
      branch-misses                   847,496,084 (   0.28%)	      748,794,308 (   0.25%)
      jobs9                              perfstat
      stalled-cycles-frontend     506,269,882,480 (  37.86%)	  592,798,032,820 (  44.43%)
      stalled-cycles-backend      253,192,498,861 (  18.93%)	  233,727,666,185 (  17.52%)
      instructions              1,721,985,080,913 (    1.29)	1,724,666,236,005 (    1.29)
      branches                    334,517,360,255 ( 694.134)	  335,199,758,164 ( 697.131)
      branch-misses                   873,496,730 (   0.26%)	      815,379,236 (   0.24%)
      jobs10                             perfstat
      stalled-cycles-frontend     549,063,363,749 (  37.18%)	  651,302,376,662 (  43.61%)
      stalled-cycles-backend      281,680,986,810 (  19.07%)	  277,005,235,582 (  18.55%)
      instructions              1,901,859,271,180 (    1.29)	1,906,311,064,230 (    1.28)
      branches                    369,398,536,153 ( 694.004)	  370,527,696,358 ( 688.409)
      branch-misses                   967,929,335 (   0.26%)	      890,125,056 (   0.24%)
      
                                  BASE           PATCHED
      seconds elapsed        79.421641008	78.735285546
      seconds elapsed        61.471246133	60.869085949
      seconds elapsed        62.317058173	62.224188495
      seconds elapsed        60.030739363	60.081102518
      seconds elapsed        74.070398362	74.317582865
      seconds elapsed        84.985953007	85.414364176
      seconds elapsed        97.724553255	98.173311344
      seconds elapsed        109.488066758	110.268399318
      seconds elapsed        122.768189405	122.967164498
      seconds elapsed        135.130035105	136.934770801
      
      On my other system (8 x86_64 CPUs, short version of test results):
      
                                  BASE           PATCHED
      seconds elapsed        19.518065994	19.806320662
      seconds elapsed        15.172772749	15.594718291
      seconds elapsed        13.820925970	13.821708564
      seconds elapsed        13.293097816	14.585206405
      seconds elapsed        16.207284118	16.064431606
      seconds elapsed        17.958376158	17.771825767
      seconds elapsed        19.478009164	19.602961508
      seconds elapsed        21.347152811	21.352318709
      seconds elapsed        24.478121126	24.171088735
      seconds elapsed        26.865057442	26.767327618
      
      So performance-wise the numbers are quite similar.
      
      Also update zcomp interface to be more aligned with the crypto API.
      
      [1] http://marc.info/?l=linux-kernel&m=144480832108927&w=2
      [2] http://marc.info/?l=linux-kernel&m=145379613507518&w=2
      [3] https://github.com/sergey-senozhatsky/zram-perf-test
      
      Link: http://lkml.kernel.org/r/20160531122017.2878-3-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Suggested-by: NMinchan Kim <minchan@kernel.org>
      Suggested-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ebaf9ab5
    • S
      zram: rename zstrm find-release functions · 2aea8493
      Sergey Senozhatsky 提交于
      This has started as a 'add zlib support' work, but after some thinking I
      saw no blockers for a bigger change -- a switch to crypto API.
      
      We don't have an idle zstreams list anymore and our write path now works
      absolutely differently, preventing preemption during compression.  This
      removes possibilities of read paths preempting writes at wrong places
      and opens the door for a move from custom LZO/LZ4 compression backends
      implementation to a more generic one, using crypto compress API.
      
      This patch set also eliminates the need of a new context-less crypto API
      interface, which was quite hard to sell, so we can move along faster.
      
      benchmarks:
      
      (x86_64, 4GB, zram-perf script)
      
      perf reported run-time fio (max jobs=3).  I performed fio test with the
      increasing number of parallel jobs (max to 3) on a 3G zram device, using
      `static' data and the following crypto comp algorithms:
      
      	842, deflate, lz4, lz4hc, lzo
      
      the output was:
      
       - test running time (which can tell us what algorithms performs faster)
      
      and
      
       - zram mm_stat (which tells the compressed memory size, max used memory, etc).
      
      It's just for information.  for example, LZ4HC has twice the running
      time of LZO, but the compressed memory size is: 23592960 vs 34603008
      bytes.
      
        test-fio-zram-842
           197.907655282 seconds time elapsed
           201.623142884 seconds time elapsed
           226.854291345 seconds time elapsed
        test-fio-zram-DEFLATE
           253.259516155 seconds time elapsed
           258.148563401 seconds time elapsed
           290.251909365 seconds time elapsed
        test-fio-zram-LZ4
            27.022598717 seconds time elapsed
            29.580522717 seconds time elapsed
            33.293463430 seconds time elapsed
        test-fio-zram-LZ4HC
            56.393954615 seconds time elapsed
            74.904659747 seconds time elapsed
           101.940998564 seconds time elapsed
        test-fio-zram-LZO
            28.155948075 seconds time elapsed
            30.390036330 seconds time elapsed
            34.455773159 seconds time elapsed
      
      zram mm_stat-s (max fio jobs=3)
      
        test-fio-zram-842
        mm_stat (jobs1): 3221225472 673185792 690266112        0 690266112        0        0
        mm_stat (jobs2): 3221225472 673185792 690266112        0 690266112        0        0
        mm_stat (jobs3): 3221225472 673185792 690266112        0 690266112        0        0
        test-fio-zram-DEFLATE
        mm_stat (jobs1): 3221225472  24379392  37761024        0  37761024        0        0
        mm_stat (jobs2): 3221225472  24379392  37761024        0  37761024        0        0
        mm_stat (jobs3): 3221225472  24379392  37761024        0  37761024        0        0
        test-fio-zram-LZ4
        mm_stat (jobs1): 3221225472  23592960  37761024        0  37761024        0        0
        mm_stat (jobs2): 3221225472  23592960  37761024        0  37761024        0        0
        mm_stat (jobs3): 3221225472  23592960  37761024        0  37761024        0        0
        test-fio-zram-LZ4HC
        mm_stat (jobs1): 3221225472  23592960  37761024        0  37761024        0        0
        mm_stat (jobs2): 3221225472  23592960  37761024        0  37761024        0        0
        mm_stat (jobs3): 3221225472  23592960  37761024        0  37761024        0        0
        test-fio-zram-LZO
        mm_stat (jobs1): 3221225472  34603008  50335744        0  50335744        0        0
        mm_stat (jobs2): 3221225472  34603008  50335744        0  50335744        0        0
        mm_stat (jobs3): 3221225472  34603008  50335744        0  50339840        0        0
      
      This patch (of 8):
      
      We don't perform any zstream idle list lookup anymore, so
      zcomp_strm_find()/zcomp_strm_release() names are not representative.
      
      Rename to zcomp_stream_get()/zcomp_stream_put().
      
      Link: http://lkml.kernel.org/r/20160531122017.2878-2-sergey.senozhatsky@gmail.comSigned-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2aea8493
    • V
      mm: oom: add memcg to oom_control · 2a966b77
      Vladimir Davydov 提交于
      It's a part of oom context just like allocation order and nodemask, so
      let's move it to oom_control instead of passing it in the argument list.
      
      Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.comSigned-off-by: NVladimir Davydov <vdavydov@virtuozzo.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: David Rientjes <rientjes@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2a966b77
    • R
      memory-hotplug: use zone_can_shift() for sysfs valid_zones attribute · a371d9f1
      Reza Arbab 提交于
      Since zone_can_shift() is being used to validate the target zone during
      onlining, it should also be used to determine the content of
      valid_zones.
      
      Link: http://lkml.kernel.org/r/1462816419-4479-4-git-send-email-arbab@linux.vnet.ibm.comSigned-off-by: NReza Arbab <arbab@linux.vnet.ibm.com>
      Reviewd-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Daniel Kiper <daniel.kiper@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Tang Chen <tangchen@cn.fujitsu.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Andrew Banman <abanman@sgi.com>
      Cc: Chen Yucong <slaoub@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a371d9f1
    • A
      fbmon: remove unused function argument · 3bd96463
      Arnd Bergmann 提交于
      When building with "make W=1", we get a warning about an empty stub
      function that does nothing but reassign its one of its arguments:
      
        drivers/video/fbdev/core/fbmon.c: In function 'fb_edid_to_monspecs':
        drivers/video/fbdev/core/fbmon.c:1497:67: error: parameter 'specs' set but not used [-Werror=unused-but-set-parameter]
      
      We can simply make that function completely empty to avoid the warning.
      
      This prevents a warning which everyone will see after "CFLAGS: add
      -Wunused-but-set-parameter" is merged.
      
      Link: http://lkml.kernel.org/r/20160715203229.1771162-1-arnd@arndb.deSigned-off-by: NArnd Bergmann <arnd@arndb.de>
      Cc: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com>
      Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
      Cc: Alexey Dobriyan <adobriyan@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3bd96463
    • D
      ide: missing break statement in set_timings_mdma() · d4f8c2e0
      Dan Carpenter 提交于
      There was clearly supposed to be a break statement here.  Currently we
      use the k2 ata timings instead of sh ata ones we intended.  Probably no
      one has this hardware anymore so it likely doesn't make a difference
      beyond the static checker warning.
      Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com>
      Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d4f8c2e0
    • C
      ide: hpt366: fix incorrect mask when checking at cmd_high_time · 45969e16
      Colin Ian King 提交于
      According to the HPT366 data sheet, PCI config space dword 0x40-0x43
      bits 11:8 specify the primary drive cmd_high_time, however,
      currently just 3 bits of the 4 are being used because the mask
      is 0x07 and not 0x0f.  Fix the mask, allowing for the 40MHz clock
      to be detected.
      
      Also add in missing space between switch and parenthesis to clean
      up a checkpatch warning.
      Signed-off-by: NColin Ian King <colin.king@canonical.com>
      Acked-by: NSergei Shtylyov <sergei.shtylyov@cogentembedded.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      45969e16
    • A
      ide-tape: fix misprint in failure handling in idetape_init() · 79f18a06
      Alexey Khoroshilov 提交于
      If driver_register() failed there is no sense to call driver_unregister().
      unregister_chrdev() should be called here.
      
      Found by Linux Driver Verification project (linuxtesting.org).
      Signed-off-by: NAlexey Khoroshilov <khoroshilov@ispras.ru>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      79f18a06
    • J
      cmd640: add __init attribute · 40506d40
      Julia Lawall 提交于
      Add __init attribute on a function that is only called from other __init
      functions and that is not inlined, at least with gcc version 4.8.4 on an
      x86 machine with allyesconfig.  Currently, the function is put in the
      .text.unlikely segment.  Declaring it as __init will cause it to be put in
      the .init.text and to disappear after initialization.
      
      The result of objdump -x on the function before the change is as follows:
      
      0000000000000000 l     F .text.unlikely 00000000000000e4 cmd640x_init_one
      
      And after the change it is as follows:
      
      00000000000000d2 l     F .init.text	00000000000000df cmd640x_init_one
      
      Done with the help of Coccinelle.  The semantic patch checks for local
      static non-init functions that are called from an __init function and are
      not called from any other function.
      Signed-off-by: NJulia Lawall <Julia.Lawall@lip6.fr>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      40506d40
    • B
      net/mlx5_core/health: Remove deprecated create_singlethread_workqueue · 0a91605c
      Bhaktipriya Shridhar 提交于
      The workqueue health->wq was used as per device private health thread.
      This was done to perform delayed work.
      
      The workqueue has a single workitem(&health->work) and
      hence doesn't require ordering. It is involved in handling the health of
      the device and is not being used on a memory reclaim path.
      Hence, the singlethreaded workqueue has been replaced with the use of
      system_wq.
      
      Work item has been flushed in mlx5_health_cleanup() to ensure that
      there are no pending tasks while disconnecting the driver.
      Signed-off-by: NBhaktipriya Shridhar <bhaktipriya96@gmail.com>
      Acked-by: NLeon Romanovsky <leonro@mellanox.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      0a91605c
    • B
      macsec: ensure rx_sa is set when validation is disabled · e3a3b626
      Beniamino Galvani 提交于
      macsec_decrypt() is not called when validation is disabled and so
      macsec_skb_cb(skb)->rx_sa is not set; but it is used later in
      macsec_post_decrypt(), ensure that it's always initialized.
      
      Fixes: c09440f7 ("macsec: introduce IEEE 802.1AE driver")
      Signed-off-by: NBeniamino Galvani <bgalvani@redhat.com>
      Acked-by: NSabrina Dubroca <sd@queasysnail.net>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e3a3b626
  5. 26 7月, 2016 4 次提交