- 08 11月, 2019 1 次提交
-
-
由 Marc Zyngier 提交于
Just like we do for WFE trapping, it can be useful to turn off WFI trapping when the physical CPU is not oversubscribed (that is, the vcpu is the only runnable process on this CPU) *and* that we're using direct injection of interrupts. The conditions are reevaluated on each vcpu_load(), ensuring that we don't switch to this mode on a busy system. On a GICv4 system, this has the effect of reducing the generation of doorbell interrupts to zero when the right conditions are met, which is a huge improvement over the current situation (where the doorbells are screaming if the CPU ever hits a blocking WFI). Signed-off-by: NMarc Zyngier <maz@kernel.org> Reviewed-by: NZenghui Yu <yuzenghui@huawei.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191107160412.30301-3-maz@kernel.org
-
- 29 10月, 2019 1 次提交
-
-
由 Christoffer Dall 提交于
On CPUs that support S2FWB (Armv8.4+), KVM configures the stage 2 page tables to override the memory attributes of memory accesses, regardless of the stage 1 page table configurations, and also when the stage 1 MMU is turned off. This results in all memory accesses to RAM being cacheable, including during early boot of the guest. On CPUs without this feature, memory accesses were non-cacheable during boot until the guest turned on the stage 1 MMU, and we had to detect when the guest turned on the MMU, such that we could invalidate all cache entries and ensure a consistent view of memory with the MMU turned on. When the guest turned on the caches, we would call stage2_flush_vm() from kvm_toggle_cache(). However, stage2_flush_vm() walks all the stage 2 tables, and calls __kvm_flush-dcache_pte, which on a system with S2FWB does ... absolutely nothing. We can avoid that whole song and dance, and simply not set TVM when creating a VM on a system that has S2FWB. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <maz@kernel.org> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20191028130541.30536-1-christoffer.dall@arm.com
-
- 05 7月, 2019 2 次提交
-
-
由 Dave Martin 提交于
Currently, the {read,write}_sysreg_el*() accessors for accessing particular ELs' sysregs in the presence of VHE rely on some local hacks and define their system register encodings in a way that is inconsistent with the core definitions in <asm/sysreg.h>. As a result, it is necessary to add duplicate definitions for any system register that already needs a definition in sysreg.h for other reasons. This is a bit of a maintenance headache, and the reasons for the _el*() accessors working the way they do is a bit historical. This patch gets rid of the shadow sysreg definitions in <asm/kvm_hyp.h>, converts the _el*() accessors to use the core __msr_s/__mrs_s interface, and converts all call sites to use the standard sysreg #define names (i.e., upper case, with SYS_ prefix). This patch will conflict heavily anyway, so the opportunity to clean up some bad whitespace in the context of the changes is taken. The change exposes a few system registers that have no sysreg.h definition, due to msr_s/mrs_s being used in place of msr/mrs: additions are made in order to fill in the gaps. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Link: https://www.spinics.net/lists/kvm-arm/msg31717.html [Rebased to v4.21-rc1] Signed-off-by: NSudeep Holla <sudeep.holla@arm.com> [Rebased to v5.2-rc5, changelog updates] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Andre Przywara 提交于
KVM implements the firmware interface for mitigating cache speculation vulnerabilities. Guests may use this interface to ensure mitigation is active. If we want to migrate such a guest to a host with a different support level for those workarounds, migration might need to fail, to ensure that critical guests don't loose their protection. Introduce a way for userland to save and restore the workarounds state. On restoring we do checks that make sure we don't downgrade our mitigation level. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Reviewed-by: NEric Auger <eric.auger@redhat.com> Reviewed-by: NSteven Price <steven.price@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 6月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 503 file(s). Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NAlexios Zavras <alexios.zavras@intel.com> Reviewed-by: NAllison Randal <allison@lohutok.net> Reviewed-by: NEnrico Weigelt <info@metux.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.deSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 4月, 2019 1 次提交
-
-
由 Mark Rutland 提交于
When pointer authentication is supported, a guest may wish to use it. This patch adds the necessary KVM infrastructure for this to work, with a semi-lazy context switch of the pointer auth state. Pointer authentication feature is only enabled when VHE is built in the kernel and present in the CPU implementation so only VHE code paths are modified. When we schedule a vcpu, we disable guest usage of pointer authentication instructions and accesses to the keys. While these are disabled, we avoid context-switching the keys. When we trap the guest trying to use pointer authentication functionality, we change to eagerly context-switching the keys, and enable the feature. The next time the vcpu is scheduled out/in, we start again. However the host key save is optimized and implemented inside ptrauth instruction/register access trap. Pointer authentication consists of address authentication and generic authentication, and CPUs in a system might have varied support for either. Where support for either feature is not uniform, it is hidden from guests via ID register emulation, as a result of the cpufeature framework in the host. Unfortunately, address authentication and generic authentication cannot be trapped separately, as the architecture provides a single EL2 trap covering both. If we wish to expose one without the other, we cannot prevent a (badly-written) guest from intermittently using a feature which is not uniformly supported (when scheduled on a physical CPU which supports the relevant feature). Hence, this patch expects both type of authentication to be present in a cpu. This switch of key is done from guest enter/exit assembly as preparation for the upcoming in-kernel pointer authentication support. Hence, these key switching routines are not implemented in C code as they may cause pointer authentication key signing error in some situations. Signed-off-by: NMark Rutland <mark.rutland@arm.com> [Only VHE, key switch in full assembly, vcpu_has_ptrauth checks , save host key in ptrauth exception trap] Signed-off-by: NAmit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: kvmarm@lists.cs.columbia.edu [maz: various fixups] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 20 2月, 2019 3 次提交
-
-
由 Ard Biesheuvel 提交于
On SMP ARM systems, cache maintenance by set/way should only ever be done in the context of onlining or offlining CPUs, which is typically done by bare metal firmware and never in a virtual machine. For this reason, we trap set/way cache maintenance operations and replace them with conditional flushing of the entire guest address space. Due to this trapping, the set/way arguments passed into the set/way ops are completely ignored, and thus irrelevant. This also means that the set/way geometry is equally irrelevant, and we can simply report it as 1 set and 1 way, so that legacy 32-bit ARM system software (i.e., the kind that only receives odd fixes) doesn't take a performance hit due to the trapping when iterating over the cachelines. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Ard Biesheuvel 提交于
We currently permit CPUs in the same system to deviate in the exact topology of the caches, and we subsequently hide this fact from user space by exposing a sanitised value of the cache type register CTR_EL0. However, guests running under KVM see the bare value of CTR_EL0, which could potentially result in issues with, e.g., JITs or other pieces of code that are sensitive to misreported cache line sizes. So let's start trapping cache ID instructions if there is a mismatch, and expose the sanitised version of CTR_EL0 to guests. Note that CTR_EL0 is treated as an invariant to KVM user space, so update that part as well. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Move this little function to the header files for arm/arm64 so other code can make use of it directly. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 18 12月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
When we emulate a guest instruction, we don't advance the hardware singlestep state machine, and thus the guest will receive a software step exception after a next instruction which is not emulated by the host. We bodge around this in an ad-hoc fashion. Sometimes we explicitly check whether userspace requested a single step, and fake a debug exception from within the kernel. Other times, we advance the HW singlestep state rely on the HW to generate the exception for us. Thus, the observed step behaviour differs for host and guest. Let's make this simpler and consistent by always advancing the HW singlestep state machine when we skip an instruction. Thus we can rely on the hardware to generate the singlestep exception for us, and never need to explicitly check for an active-pending step, nor do we need to fake a debug exception from the guest. Cc: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 21 9月, 2018 1 次提交
-
-
由 Anshuman Khandual 提交于
Extracting target register from ESR.ISS encoding has already been required at multiple instances. Just make it a macro definition and replace all the existing use cases. Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 21 7月, 2018 1 次提交
-
-
由 Dongjiu Geng 提交于
For the migrating VMs, user space may need to know the exception state. For example, in the machine A, KVM make an SError pending, when migrate to B, KVM also needs to pend an SError. This new IOCTL exports user-invisible states related to SError. Together with appropriate user space changes, user space can get/set the SError exception state to do migrate/snapshot/suspend. Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> Reviewed-by: NJames Morse <james.morse@arm.com> [expanded documentation wording] Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 09 7月, 2018 2 次提交
-
-
由 Marc Zyngier 提交于
Trapping blocking WFE is extremely beneficial in situations where the system is oversubscribed, as it allows another thread to run while being blocked. In a non-oversubscribed environment, this is the complete opposite, and trapping WFE is just unnecessary overhead. Let's only enable WFE trapping if the CPU has more than a single task to run (that is, more than just the vcpu thread). Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes results in the strongest attribute of the two stages. This means that the hypervisor has to perform quite a lot of cache maintenance just in case the guest has some non-cacheable mappings around. ARMv8.4 solves this problem by offering a different mode (FWB) where Stage-2 has total control over the memory attribute (this is limited to systems where both I/O and instruction fetches are coherent with the dcache). This is achieved by having a different set of memory attributes in the page tables, and a new bit set in HCR_EL2. On such a system, we can then safely sidestep any form of dcache management. Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 06 7月, 2018 1 次提交
-
-
由 Mark Rutland 提交于
Some code cares about the SPSR_ELx format for exceptions taken from AArch32 to inspect or manipulate the SPSR_ELx value, which is already in the SPSR_ELx format, and not in the AArch32 PSR format. To separate these from cases where we care about the AArch32 PSR format, migrate these cases to use the PSR_AA32_* definitions rather than COMPAT_PSR_*. There should be no functional change as a result of this patch. Note that arm64 KVM does not support a compat KVM API, and always uses the SPSR_ELx format, even for AArch32 guests. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 04 5月, 2018 1 次提交
-
-
由 James Morse 提交于
A typo in kvm_vcpu_set_be()'s call: | vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr) causes us to use the 32bit register value as an index into the sys_reg[] array, and sail off the end of the linear map when we try to bring up big-endian secondaries. | Unable to handle kernel paging request at virtual address ffff80098b982c00 | Mem abort info: | ESR = 0x96000045 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000045 | CM = 0, WnR = 1 | swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a | [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000 | Internal error: Oops: 96000045 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323 | Hardware name: ARM Juno development board (r1) (DT) | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : vcpu_write_sys_reg+0x50/0x134 | lr : vcpu_write_sys_reg+0x50/0x134 | Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b) | Call trace: | vcpu_write_sys_reg+0x50/0x134 | kvm_psci_vcpu_on+0x14c/0x150 | kvm_psci_0_2_call+0x244/0x2a4 | kvm_hvc_call_handler+0x1cc/0x258 | handle_hvc+0x20/0x3c | handle_exit+0x130/0x1ec | kvm_arch_vcpu_ioctl_run+0x340/0x614 | kvm_vcpu_ioctl+0x4d0/0x840 | do_vfs_ioctl+0xc8/0x8d0 | ksys_ioctl+0x78/0xa8 | sys_ioctl+0xc/0x18 | el0_svc_naked+0x30/0x34 | Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8) |---[ end trace 4b4a4f9628596602 ]--- Fix the order of the arguments. Fixes: 8d404c4c ("KVM: arm64: Rewrite system register accessors to read/write functions") CC: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 19 3月, 2018 6 次提交
-
-
由 Christoffer Dall 提交于
32-bit registers are not used by a 64-bit host kernel and can be deferred, but we need to rework the accesses to these register to access the latest values depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. The handling of accessing the various banked SPSRs for 32-bit VMs is a bit clunky, but this will be improved in following patches which will first prepare and subsequently implement deferred save/restore of the 32-bit registers, including the 32-bit SPSRs. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <cdall@cs.columbia.edu> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We have numerous checks around that checks if the HCR_EL2 has the RW bit set to figure out if we're running an AArch64 or AArch32 VM. In some cases, directly checking the RW bit (given its unintuitive name), is a bit confusing, and that's not going to improve as we move logic around for the following patches that optimize KVM on AArch64 hosts with VHE. Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing direct checks of HCR_EL2.RW with the helper. Reviewed-by: NJulien Grall <julien.grall@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NAndrew Jones <drjones@redhat.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 26 2月, 2018 1 次提交
-
-
由 Dave Martin 提交于
The HCR_EL2.TID3 flag needs to be set when trapping guest access to the CPU ID registers is required. However, the decision about whether to set this bit does not need to be repeated at every switch to the guest. Instead, it's sufficient to make this decision once and record the outcome. This patch moves the decision to vcpu_reset_hcr() and records the choice made in vcpu->arch.hcr_el2. The world switch code can then load this directly when switching to the guest without the need for conditional logic on the critical path. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Suggested-by: NChristoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 16 1月, 2018 3 次提交
-
-
由 Dongjiu Geng 提交于
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps all Non-secure EL1&0 error record accesses to EL2. This patch enables the two bits for the guest OS, guaranteeing that KVM takes external aborts and traps attempts to access the physical error registers. ERRIDR_EL1 advertises the number of error records, we return zero meaning we can treat all the other registers as RAZ/WI too. Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> [removed specific emulation, use trap_raz_wi() directly for everything, rephrased parts of the commit message] Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. The current SError from EL2 code unmasks SError and tries to fence any pending SError into a single instruction window. It then leaves SError unmasked. With the v8.2 RAS Extensions we may take an SError for a 'corrected' error, but KVM is only able to handle SError from EL2 if they occur during this single instruction window... The RAS Extensions give us a new instruction to synchronise and consume SErrors. The RAS Extensions document (ARM DDI0587), '2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising SError interrupts generated by 'instructions, translation table walks, hardware updates to the translation tables, and instruction fetches on the same PE'. This makes ESB equivalent to KVMs existing 'dsb, mrs-daifclr, isb' sequence. Use the alternatives to synchronise and consume any SError using ESB instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT in the exit_code so that we can restart the vcpu if it turns out this SError has no impact on the vcpu. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 James Morse 提交于
Prior to v8.2's RAS Extensions, the HCR_EL2.VSE 'virtual SError' feature generated an SError with an implementation defined ESR_EL1.ISS, because we had no mechanism to specify the ESR value. On Juno this generates an all-zero ESR, the most significant bit 'ISV' is clear indicating the remainder of the ISS field is invalid. With the RAS Extensions we have a mechanism to specify this value, and the most significant bit has a new meaning: 'IDS - Implementation Defined Syndrome'. An all-zero SError ESR now means: 'RAS error: Uncategorized' instead of 'no valid ISS'. Add KVM support for the VSESR_EL2 register to specify an ESR value when HCR_EL2.VSE generates a virtual SError. Change kvm_inject_vabt() to specify an implementation-defined value. We only need to restore the VSESR_EL2 value when HCR_EL2.VSE is set, KVM save/restores this bit during __{,de}activate_traps() and hardware clears the bit once the guest has consumed the virtual-SError. Future patches may add an API (or KVM CAP) to pend a virtual SError with a specified ESR. Cc: Dongjiu Geng <gengdongjiu@huawei.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 06 11月, 2017 2 次提交
-
-
由 Dongjiu Geng 提交于
kvm_vcpu_dabt_isextabt() tries to match a full fault syndrome, but calls kvm_vcpu_trap_get_fault_type() that only returns the fault class, thus reducing the scope of the check. This doesn't cause any observable bug yet as we end-up matching a closely related syndrome for which we return the same value. Using kvm_vcpu_trap_get_fault() instead fixes it for good. Signed-off-by: NDongjiu Geng <gengdongjiu@huawei.com> Acked-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
Both arm and arm64 implementations are capable of injecting faults, and yet have completely divergent implementations, leading to different bugs and reduced maintainability. Let's elect the arm64 version as the canonical one and move it into aarch32.c, which is common to both architectures. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 05 9月, 2017 1 次提交
-
-
由 James Morse 提交于
The ARM-ARM has two bits in the ESR/HSR relevant to external aborts. A range of {I,D}FSC values (of which bit 5 is always set) and bit 9 'EA' which provides: > an IMPLEMENTATION DEFINED classification of External Aborts. This bit is in addition to the {I,D}FSC range, and has an implementation defined meaning. KVM should always ignore this bit when handling external aborts from a guest. Remove the ESR_ELx_EA definition and rewrite its helper kvm_vcpu_dabt_isextabt() to check the {I,D}FSC range. This merges kvm_vcpu_dabt_isextabt() and the recently added is_abort_sea() helper. CC: Tyler Baicar <tbaicar@codeaurora.org> Reported-by: Ngengdongjiu <gengdj.1984@gmail.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 02 5月, 2017 1 次提交
-
-
由 Marc Zyngier 提交于
Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling the trapped system registers, completely missing the fact that the fields for Rt and Rt2 are now 5 bit wide, and not 4... Let's fix it, and provide an accessor for the most common Rt case. Cc: stable@vger.kernel.org Reviewed-by: NChristoffer Dall <cdall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <cdall@linaro.org>
-
- 22 10月, 2016 1 次提交
-
-
由 Will Deacon 提交于
The WnR bit in the HSR/ESR_EL2 indicates whether a data abort was generated by a read or a write instruction. For stage 2 data aborts generated by a stage 1 translation table walk (i.e. the actual page table access faults at EL2), the WnR bit therefore reports whether the instruction generating the walk was a load or a store, *not* whether the page table walker was reading or writing the entry. For page tables marked as read-only at stage 2 (e.g. due to KSM merging them with the tables from another guest), this could result in livelock, where a page table walk generated by a load instruction attempts to set the access flag in the stage 1 descriptor, but fails to trigger CoW in the host since only a read fault is reported. This patch modifies the arm64 kvm_vcpu_dabt_iswrite function to take into account stage 2 faults in stage 1 walks. Since DBM cannot be disabled at EL2 for CPUs that implement it, we assume that these faults are always causes by writes, avoiding the livelock situation at the expense of occasional, spurious CoWs. We could, in theory, do a bit better by checking the guest TCR configuration and inspecting the page table to see why the PTE faulted. However, I doubt this is measurable in practice, and the threat of livelock is real. Cc: <stable@vger.kernel.org> Cc: Julien Grall <julien.grall@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 08 9月, 2016 2 次提交
-
-
由 Marc Zyngier 提交于
Now that we're able to context switch the HCR_EL2.VA bit, let's introduce a helper that injects an Abort into a vcpu. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
由 Marc Zyngier 提交于
In order to make emulate.c more generic, move the arch-specific manupulation bits out of emulate.c. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 22 6月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
Now that we have a helper to extract the EC from an ESR_ELx value, make use of this in the arm64 KVM code for simplicity and consistency. There should be no functional changes as a result of this patch. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Dave P Martin <dave.martin@arm.com> Cc: Huang Shijie <shijie.huang@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: kvmarm@lists.cs.columbia.edu Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 01 3月, 2016 2 次提交
-
-
由 Marc Zyngier 提交于
Running the kernel in HYP mode requires the HCR_E2H bit to be set at all times, and the HCR_TGE bit to be set when running as a host (and cleared when running as a guest). At the same time, the vector must be set to the current role of the kernel (either host or hypervisor), and a couple of system registers differ between VHE and non-VHE. We implement these by using another set of alternate functions that get dynamically patched. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
So far, our handling of cache maintenance by VA has been pretty simple: Either the access is in the guest RAM and generates a S2 fault, which results in the page being mapped RW, or we go down the io_mem_abort() path, and nuke the guest. The first one is fine, but the second one is extremely weird. Treating the CM as an I/O is wrong, and nothing in the ARM ARM indicates that we should generate a fault for something that cannot end-up in the cache anyway (even if the guest maps it, it will keep on faulting at stage-2 for emulation). So let's just skip this instruction, and let the guest get away with it. Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 25 1月, 2016 1 次提交
-
-
由 Shannon Zhao 提交于
The values of CPSR MODE mask are different between aarch32 and aarch64. It should use the right one according to the execution state. Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NShannon Zhao <shannon.zhao@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 14 12月, 2015 1 次提交
-
-
由 Marc Zyngier 提交于
Having the system register numbers as #defines has been a pain since day one, as the ordering is pretty fragile, and moving things around leads to renumbering and epic conflict resolutions. Now that we're mostly acessing the sysreg file in C, an enum is a much better type to use, and we can clean things up a bit. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org>
-
- 05 12月, 2015 2 次提交
-
-
由 Pavel Fedin 提交于
Using oldstyle vcpu_reg() accessor is proven to be inappropriate and unsafe on ARM64. This patch converts the rest of use cases to new accessors and completely removes vcpu_reg() on ARM64. Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Pavel Fedin 提交于
On ARM64 register index of 31 corresponds to both zero register and SP. However, all memory access instructions, use ZR as transfer register. SP is used only as a base register in indirect memory addressing, or by register-register arithmetics, which cannot be trapped here. Correct emulation is achieved by introducing new register accessor functions, which can do special handling for reg_num == 31. These new accessors intentionally do not rely on old vcpu_reg() on ARM64, because it is to be removed. Since the affected code is shared by both ARM flavours, implementations of these accessors are also added to ARM32 code. This patch fixes setting MMIO register to a random value (actually SP) instead of zero by something like: *((volatile int *)reg) = 0; compilers tend to generate "str wzr, [xx]" here [Marc: Fixed 32bit splat] Signed-off-by: NPavel Fedin <p.fedin@samsung.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-