- 04 5月, 2016 2 次提交
-
-
由 David Hildenbrand 提交于
While we can not fully fence of the Nonquiescing Key-Setting facility, we should as try our best to hide it. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We should never inject an exception after we manually rewound the PSW (to retry the ESSA instruction in this case). This will mess up the PSW. So this never worked and therefore never really triggered. Looking at the details, we don't even have to perform any validity checks. 1. Bits 52-63 of an entry are stored as 0 by the hardware. 2. We are dealing with absolute addresses but only check for the prefix starting at address 0. This isn't correct and doesn't make much sense, cpus could still zap the prefix of other cpus. But as prefix pages cannot be swapped out without a notifier being called for the affected VCPU, a zap can never remove a protected prefix. Reviewed-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 20 4月, 2016 2 次提交
-
-
由 Halil Pasic 提交于
Introduce a FLIC operation for clearing I/O interrupts for a subchannel. Rationale: According to the platform specification, pending I/O interruption requests have to be revoked in certain situations. For instance, according to the Principles of Operation (page 17-27), a subchannel put into the installed parameters initialized state is in the same state as after an I/O system reset (just parameters possibly changed). This implies that any I/O interrupts for that subchannel are no longer pending (as I/O system resets clear I/O interrupts). Therefore, we need an interface to clear pending I/O interrupts. Signed-off-by: NHalil Pasic <pasic@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NCornelia Huck <cornelia.huck@de.ibm.com>
-
由 Halil Pasic 提交于
HAS_ATTR is useful for determining the supported attributes; let's implement it. Signed-off-by: NHalil Pasic <pasic@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NCornelia Huck <cornelia.huck@de.ibm.com>
-
- 08 3月, 2016 12 次提交
-
-
由 Adam Buchbinder 提交于
Signed-off-by: NAdam Buchbinder <adam.buchbinder@gmail.com> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The pgtable.c file is quite big, before it grows any larger split it into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related header definitions into the new gmap.h header and all of the pgste helpers from pgtable.h to pgtable.c. Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The code in the various ptep_xxx functions has grown quite large, consolidate them to four out-of-line functions: ptep_xchg_direct to exchange a pte with another with immediate flushing ptep_xchg_lazy to exchange a pte with another in a batched update ptep_modify_prot_start to begin a protection flags update ptep_modify_prot_commit to commit a protection flags update Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
由 David Hildenbrand 提交于
We can fit the 2k for the STFLE interpretation and the crypto control block into one DMA page. As we now only have to allocate one DMA page, we can clean up the code a bit. As a nice side effect, this also fixes a problem with crycbd alignment in case special allocation debug options are enabled, debugged by Sascha Silbe. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Not setting the facility list designation disables STFLE interpretation, this is what we want if the guest was told to not have it. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
When the VCPU cpu timer expires, we have to wake up just like when the ckc triggers. For now, setting up a cpu timer in the guest and going into enabled wait will never lead to a wakeup. This patch fixes this problem. Just as for the ckc, we have to take care of waking up too early. We have to recalculate the sleep time and go back to sleep. Please note that the timer callback calls kvm_s390_get_cpu_timer() from interrupt context. As the timer is canceled when leaving handle_wait(), and we don't do any VCPU cpu timer writes/updates in that function, we can be sure that we will never try to read the VCPU cpu timer from the same cpu that is currentyl updating the timer (deadlock). Reported-by: NSascha Silbe <silbe@linux.vnet.ibm.com> Tested-by: NSascha Silbe <silbe@linux.vnet.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
The cpu timer is a mean to measure task execution time. We want to account everything for a VCPU for which it is responsible. Therefore, if the VCPU wants to sleep, it shall be accounted for it. We can easily get this done by not disabling cpu timer accounting when scheduled out while sleeping because of enabled wait. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
For now, only the owning VCPU thread (that has loaded the VCPU) can get a consistent cpu timer value when calculating the delta. However, other threads might also be interested in a more recent, consistent value. Of special interest will be the timer callback of a VCPU that executes without having the VCPU loaded and could run in parallel with the VCPU thread. The cpu timer has a nice property: it is only updated by the owning VCPU thread. And speaking about accounting, a consistent value can only be calculated by looking at cputm_start and the cpu timer itself in one shot, otherwise the result might be wrong. As we only have one writing thread at a time (owning VCPU thread), we can use a seqcount instead of a seqlock and retry if the VCPU refreshed its cpu timer. This avoids any heavy locking and only introduces a counter update/check plus a handful of smp_wmb(). The owning VCPU thread should never have to retry on reads, and also for other threads this might be a very rare scenario. Please note that we have to use the raw_* variants for locking the seqcount as lockdep will produce false warnings otherwise. The rq->lock held during vcpu_load/put is also acquired from hardirq context. Lockdep cannot know that we avoid potential deadlocks by disabling preemption and thereby disable concurrent write locking attempts (via vcpu_put/load). Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Architecturally we should only provide steal time if we are scheduled away, and not if the host interprets a guest exit. We have to step the guest CPU timer in these cases. In the first shot, we will step the VCPU timer only during the kvm_run ioctl. Therefore all time spent e.g. in interception handlers or on irq delivery will be accounted for that VCPU. We have to take care of a few special cases: - Other VCPUs can test for pending irqs. We can only report a consistent value for the VCPU thread itself when adding the delta. - We have to take care of STP sync, therefore we have to extend kvm_clock_sync() and disable preemption accordingly - During any call to disable/enable/start/stop we could get premeempted and therefore get start/stop calls. Therefore we have to make sure we don't get into an inconsistent state. Whenever a VCPU is scheduled out, sleeping, in user space or just about to enter the SIE, the guest cpu timer isn't stepped. Please note that all primitives are prepared to be called from both environments (cpu timer accounting enabled or not), although not completely used in this patch yet (e.g. kvm_s390_set_cpu_timer() will never be called while cpu timer accounting is enabled). Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We want to manually step the cpu timer in certain scenarios in the future. Let's abstract any access to the cpu timer, so we can hide the complexity internally. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
By storing the cpu id, we have a way to verify if the current cpu is owning a VCPU. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
With MACHINE_HAS_VX, we convert the floating point registers from the vector registeres when storing the status. For other VCPUs, these are stored to vcpu->run->s.regs.vrs, but we are using current->thread.fpu.vxrs, which resolves to the currently loaded VCPU. So kvm_s390_store_status_unloaded() currently writes the wrong floating point registers (converted from the vector registers) when called from another VCPU on a z13. This is only the case for old user space not handling SIGP STORE STATUS and SIGP STOP AND STORE STATUS, but relying on the kernel implementation. All other calls come from the loaded VCPU via kvm_s390_store_status(). Fixes: 9abc2a08 (KVM: s390: fix memory overwrites when vx is disabled) Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Cc: stable@vger.kernel.org # v4.4+ Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 25 2月, 2016 1 次提交
-
-
由 Marcelo Tosatti 提交于
The problem: On -rt, an emulated LAPIC timer instances has the following path: 1) hard interrupt 2) ksoftirqd is scheduled 3) ksoftirqd wakes up vcpu thread 4) vcpu thread is scheduled This extra context switch introduces unnecessary latency in the LAPIC path for a KVM guest. The solution: Allow waking up vcpu thread from hardirq context, thus avoiding the need for ksoftirqd to be scheduled. Normal waitqueues make use of spinlocks, which on -RT are sleepable locks. Therefore, waking up a waitqueue waiter involves locking a sleeping lock, which is not allowed from hard interrupt context. cyclictest command line: This patch reduces the average latency in my tests from 14us to 11us. Daniel writes: Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency benchmark on mainline. The test was run 1000 times on tip/sched/core 4.4.0-rc8-01134-g0905f04e: ./x86-run x86/tscdeadline_latency.flat -cpu host with idle=poll. The test seems not to deliver really stable numbers though most of them are smaller. Paolo write: "Anything above ~10000 cycles means that the host went to C1 or lower---the number means more or less nothing in that case. The mean shows an improvement indeed." Before: min max mean std count 1000.000000 1000.000000 1000.000000 1000.000000 mean 5162.596000 2019270.084000 5824.491541 20681.645558 std 75.431231 622607.723969 89.575700 6492.272062 min 4466.000000 23928.000000 5537.926500 585.864966 25% 5163.000000 1613252.750000 5790.132275 16683.745433 50% 5175.000000 2281919.000000 5834.654000 23151.990026 75% 5190.000000 2382865.750000 5861.412950 24148.206168 max 5228.000000 4175158.000000 6254.827300 46481.048691 After min max mean std count 1000.000000 1000.00000 1000.000000 1000.000000 mean 5143.511000 2076886.10300 5813.312474 21207.357565 std 77.668322 610413.09583 86.541500 6331.915127 min 4427.000000 25103.00000 5529.756600 559.187707 25% 5148.000000 1691272.75000 5784.889825 17473.518244 50% 5160.000000 2308328.50000 5832.025000 23464.837068 75% 5172.000000 2393037.75000 5853.177675 24223.969976 max 5222.000000 3922458.00000 6186.720500 42520.379830 [Patch was originaly based on the swait implementation found in the -rt tree. Daniel ported it to mainline's version and gathered the benchmark numbers for tscdeadline_latency test.] Signed-off-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-rt-users@vger.kernel.org Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 10 2月, 2016 14 次提交
-
-
由 Christian Borntraeger 提交于
A KVM_GET_DIRTY_LOG ioctl might take a long time. This can result in fatal signals seemingly being ignored. Lets bail out during the dirty bit sync, if a fatal signal is pending. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Christian Borntraeger 提交于
When doing dirty logging on huge guests (e.g.600GB) we sometimes get rcu stall timeouts with backtraces like [ 2753.194083] ([<0000000000112fb2>] show_trace+0x12a/0x130) [ 2753.194092] [<0000000000113024>] show_stack+0x6c/0xe8 [ 2753.194094] [<00000000001ee6a8>] rcu_pending+0x358/0xa48 [ 2753.194099] [<00000000001f20cc>] rcu_check_callbacks+0x84/0x168 [ 2753.194102] [<0000000000167654>] update_process_times+0x54/0x80 [ 2753.194107] [<00000000001bdb5c>] tick_sched_handle.isra.16+0x4c/0x60 [ 2753.194113] [<00000000001bdbd8>] tick_sched_timer+0x68/0x90 [ 2753.194115] [<0000000000182a88>] __run_hrtimer+0x88/0x1f8 [ 2753.194119] [<00000000001838ba>] hrtimer_interrupt+0x122/0x2b0 [ 2753.194121] [<000000000010d034>] do_extint+0x16c/0x170 [ 2753.194123] [<00000000005e206e>] ext_skip+0x38/0x3e [ 2753.194129] [<000000000012157c>] gmap_test_and_clear_dirty+0xcc/0x118 [ 2753.194134] ([<00000000001214ea>] gmap_test_and_clear_dirty+0x3a/0x118) [ 2753.194137] [<0000000000132da4>] kvm_vm_ioctl_get_dirty_log+0xd4/0x1b0 [ 2753.194143] [<000000000012ac12>] kvm_vm_ioctl+0x21a/0x548 [ 2753.194146] [<00000000002b57f6>] do_vfs_ioctl+0x30e/0x518 [ 2753.194149] [<00000000002b5a9c>] SyS_ioctl+0x9c/0xb0 [ 2753.194151] [<00000000005e1ae6>] sysc_tracego+0x14/0x1a [ 2753.194153] [<000003ffb75f3972>] 0x3ffb75f3972 We should do a cond_resched in here. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Christian Borntraeger 提交于
Dirty log query can take a long time for huge guests. Holding the mmap_sem for very long times can cause some unwanted latencies. Turns out that we do not need to hold the mmap semaphore. We hold the slots_lock for gfn->hva translation and walk the page tables with that address, so no need to look at the VMAs. KVM also holds a reference to the mm, which should prevent other things going away. During the walk we take the necessary ptl locks. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
On instruction-fetch exceptions, we have to forward the PSW by any valid ilc and correctly use that ilc when injecting the irq. Injection will already take care of rewinding the PSW if we injected a nullifying program irq, so we don't need special handling prior to injection. Until now, autodetection would have guessed an ilc of 0. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
On SIE faults, the ilc cannot be detected automatically, as the icptcode is 0. The ilc indicated in the program irq will always be 0. Therefore we have to manually specify the ilc in order to tell the guest which ilen was used when forwarding the PSW. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Program irq injection during program irq intercepts is the last candidates that injects nullifying irqs and relies on delivery to do the right thing. As we should not rely on the icptcode during any delivery (because that value will not be migrated), let's add a flag, telling prog IRQ delivery to not rewind the PSW in case of nullifying prog IRQs. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
__extract_prog_irq() is used only once for getting the program check data in one place. Let's combine it with an injection function to avoid a memset and to prevent misuse on injection by simplifying the interface to only have the VCPU as parameter. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's use our fresh new function read_guest_instr() to access guest storage via the correct addressing schema. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
When an instruction is to be fetched, special handling applies to secondary-space mode and access-register mode. The instruction is to be fetched from primary space. We can easily support this by selecting the right asce for translation. Access registers will never be used during translation, so don't include them in the interface. As we only want to read from the current PSW address for now, let's also hide that detail. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We will need special handling when fetching instructions, so let's introduce new guest access modes GACC_FETCH and GACC_STORE instead of a write flag. An additional patch will then introduce GACC_IFETCH. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We have to migrate the program irq ilc and someday we will have to specify the ilc without KVM trying to autodetect the value. Let's reuse one of the spare fields in our program irq that should always be set to 0 by user space. Because we also want to make use of 0 ilcs ("not available"), we need a validity indicator. If no valid ilc is given, we try to autodetect the ilc via the current icptcode and icptstatus + parameter and store the valid ilc in the irq structure. This has a nice effect: QEMU's making use of KVM_S390_IRQ / KVM_S390_SET_IRQ_STATE / KVM_S390_GET_IRQ_STATE for migration will directly migrate the ilc without any changes. Please note that we use bit 0 as validity and bit 1,2 for the ilc, so by applying the ilc mask we directly get the ilen which is usually what we work with. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We have some confusion about ilc vs. ilen in our current code. So let's correctly use the term ilen when dealing with (ilc << 1). Program irq injection didn't take care of the correct ilc in case of irqs triggered by EXECUTE functions, let's provide one function kvm_s390_get_ilen() to take care of all that. Also, manually specifying in intercept handlers the size of the instruction (and sometimes overwriting that value for EXECUTE internally) doesn't make too much sense. So also provide the functions: - kvm_s390_retry_instr to retry the currently intercepted instruction - kvm_s390_rewind_psw to rewind the PSW without internal overwrites - kvm_s390_forward_psw to forward the PSW Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
As we already store the floating point registers in the vector save area in floating point register format when we don't have MACHINE_HAS_VX, we can directly expose them to user space using a new sync flag. The floating point registers will be valid when KVM_SYNC_FPRS is set. The fpc will also be valid when KVM_SYNC_FPRS is set. Either KVM_SYNC_FPRS or KVM_SYNC_VRS will be enabled, never both. Let's also change two positions where we access vrs, making the code easier to read and one comment superfluous. Suggested-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
If we have MACHINE_HAS_VX, the floating point registers are stored in the vector register format, event if the guest isn't enabled for vector registers. So we can allow KVM_SYNC_VRS as soon as MACHINE_HAS_VX is available. This can in return be used by user space to support floating point registers via struct kvm_run when the machine has vector registers. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 26 1月, 2016 3 次提交
-
-
由 David Hildenbrand 提交于
The kernel now always uses vector registers when available, however KVM has special logic if support is really enabled for a guest. If support is disabled, guest_fpregs.fregs will only contain memory for the fpu. The kernel, however, will store vector registers into that area, resulting in crazy memory overwrites. Simply extending that area is not enough, because the format of the registers also changes. We would have to do additional conversions, making the code even more complex. Therefore let's directly use one place for the vector/fpu registers + fpc (in kvm_run). We just have to convert the data properly when accessing it. This makes current code much easier. Please note that vector/fpu registers are now always stored to vcpu->run->s.regs.vrs. Although this data is visible to QEMU and used for migration, we only guarantee valid values to user space when KVM_SYNC_VRS is set. As that is only the case when we have vector register support, we are on the safe side. Fixes: b5510d9b ("s390/fpu: always enable the vector facility if it is available") Cc: stable@vger.kernel.org # v4.4 d9a3a09a s390/kvm: remove dependency on struct save_area definition Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> [adopt to d9a3a09a]
-
由 Dong Jia Shi 提交于
The KVM-VFIO device is used by the QEMU VFIO device. It is used to record the list of in-use VFIO groups so that KVM can manipulate them. While we don't need this on s390 currently, let's try to be like everyone else. Signed-off-by: NDong Jia Shi <bjsdjshi@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
fprs is never freed, therefore resulting in a memory leak if kvm_vcpu_init() fails or the vcpu is destroyed. Fixes: 9977e886 ("s390/kernel: lazy restore fpu registers") Cc: stable@vger.kernel.org # v4.3+ Reported-by: NEric Farman <farman@linux.vnet.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NEric Farman <farman@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 19 1月, 2016 1 次提交
-
-
由 Heiko Carstens 提交于
Yet another leftover from the 31 bit era. The usual operation "y = x & PSW_ADDR_INSN" with the PSW_ADDR_INSN mask is a nop for CONFIG_64BIT. Therefore remove all usages and hope the code is a bit less confusing. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com>
-
- 11 1月, 2016 1 次提交
-
-
由 Heiko Carstens 提交于
Finally get rid of the leading underscore. I tried this already two or three years ago, however Michael Holzheu objected since this would break the crash utility (again). However Michael integrated support for the new name into the crash utility back then, so it doesn't break if the name will be changed now. So finally get rid of the ever confusing leading underscore. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
-
- 07 1月, 2016 2 次提交
-
-
由 Fan Zhang 提交于
This patch adds runtime instrumentation support for KVM guest. We need to setup a save area for the runtime instrumentation-controls control block(RICCB) and implement the necessary interfaces to live migrate the guest settings. We setup the sie control block in a way, that the runtime instrumentation instructions of a guest are handled by hardware. We also add a capability KVM_CAP_S390_RI to make this feature opt-in as it needs migration support. Signed-off-by: NFan Zhang <zhangfan@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Michael S. Tsirkin 提交于
smp_mb on vcpu destroy isn't paired with anything, violating pairing rules, and seems to be useless. Drop it. Signed-off-by: NMichael S. Tsirkin <mst@redhat.com> Message-Id: <1452010811-25486-1-git-send-email-mst@redhat.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 16 12月, 2015 2 次提交
-
-
由 Guenther Hutzl 提交于
Verify that the guest maximum storage address is below the MHA (maximum host address) value allowed on the host. Acked-by: NMichael Holzheu <holzheu@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NGuenther Hutzl <hutzl@linux.vnet.ibm.com> Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> [adopt to match recent limit,size changes] Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Dominik Dingel 提交于
While the userspace interface requests the maximum size the gmap code expects to get a maximum address. This error resulted in bigger page tables than necessary for some guest sizes, e.g. a 2GB guest used 3 levels instead of 2. At the same time we introduce KVM_S390_NO_MEM_LIMIT, which allows in a bright future that a guest spans the complete 64 bit address space. We also switch to TASK_MAX_SIZE for the initial memory size, this is a cosmetic change as the previous size also resulted in a 4 level pagetable creation. Reported-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-