- 24 2月, 2020 24 次提交
-
-
由 Ard Biesheuvel 提交于
There are currently two ways to specify the initrd to be passed to the Linux kernel when booting via the EFI stub: - it can be passed as a initrd= command line option when doing a pure PE boot (as opposed to the EFI handover protocol that exists for x86) - otherwise, the bootloader or firmware can load the initrd into memory, and pass the address and size via the bootparams struct (x86) or device tree (ARM) In the first case, we are limited to loading from the same file system that the kernel was loaded from, and it is also problematic in a trusted boot context, given that we cannot easily protect the command line from tampering without either adding complicated white/blacklisting of boot arguments or locking down the command line altogether. In the second case, we force the bootloader to duplicate knowledge about the boot protocol which is already encoded in the stub, and which may be subject to change over time, e.g., bootparams struct definitions, memory allocation/alignment requirements for the placement of the initrd etc etc. In the ARM case, it also requires the bootloader to modify the hardware description provided by the firmware, as it is passed in the same file. On systems where the initrd is measured after loading, it creates a time window where the initrd contents might be manipulated in memory before handing over to the kernel. Address these concerns by adding support for loading the initrd into memory by invoking the EFI LoadFile2 protocol installed on a vendor GUIDed device path that specifically designates a Linux initrd. This addresses the above concerns, by putting the EFI stub in charge of placement in memory and of passing the base and size to the kernel proper (via whatever means it desires) while still leaving it up to the firmware or bootloader to obtain the file contents, potentially from other file systems than the one the kernel itself was loaded from. On platforms that implement measured boot, it permits the firmware to take the measurement right before the kernel actually consumes the contents. Acked-by: NLaszlo Ersek <lersek@redhat.com> Tested-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Acked-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
The memory for files is allocated not reallocated. Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Link: https://lore.kernel.org/r/20200221191829.18149-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
Provide descriptions for the functions invoking the EFI_RNG_PROTOCOL. Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Reviewed-by: NDominik Brodowski <linux@dominikbrodowski.net> Link: https://lore.kernel.org/r/20200221114716.4372-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
Update the description of of efi_relocate_kernel() to match Sphinx style. Update parameter references in the description of other memory functions to use @param style. Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Acked-by: NRandy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20200220065317.9096-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
Provide descriptions of: * efi_get_memory_map() * efi_low_alloc_above() * efi_free() Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Acked-by: NRandy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20200218063038.3436-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
Do not check the value of status twice. Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Link: https://lore.kernel.org/r/20200216184050.3100-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Heinrich Schuchardt 提交于
Provide a Sphinx style function description for efi_allocate_pages(). Signed-off-by: NHeinrich Schuchardt <xypron.glpk@gmx.de> Link: https://lore.kernel.org/r/20200216171340.6070-1-xypron.glpk@gmx.deSigned-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Add the protocol definitions, GUIDs and mixed mode glue so that the EFI loadfile protocol can be used from the stub. This will be used in a future patch to load the initrd. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We will be adding support for loading the initrd from a GUIDed device path in a subsequent patch, so update the prototype of the LocateDevicePath() boot service to make it callable from our code. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We currently parse the command non-destructively, to avoid having to allocate memory for a copy before passing it to the standard parsing routines that are used by the core kernel, and which modify the input to delineate the parsed tokens with NUL characters. Instead, we call strstr() and strncmp() to go over the input multiple times, and match prefixes rather than tokens, which implies that we would match, e.g., 'nokaslrfoo' in the stub and disable KASLR, while the kernel would disregard the option and run with KASLR enabled. In order to avoid having to reason about whether and how this behavior may be abused, let's clean up the parsing routines, and rebuild them on top of the existing helpers. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
On x86, the preferred load address of the initrd is still below 4 GB, even though in some cases, we can cope with an initrd that is loaded above that. To simplify the code, and to make it more straightforward to introduce other ways to load the initrd, pass the soft and hard memory limits at the same time, and let the code handling the initrd= command line option deal with this. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The file I/O routine that is used to load initrd or dtb files from the EFI system partition suffers from a few issues: - it converts the u8[] command line back to a UTF-16 string, which is pointless since we only handle initrd or dtb arguments provided via the loaded image protocol anyway, which is where we got the UTF-16[] command line from in the first place when booting via the PE entry point, - in the far majority of cases, only a single initrd= option is present, but it optimizes for multiple options, by going over the command line twice, allocating heap buffers for dynamically sized arrays, etc. - the coding style is hard to follow, with few comments, and all logic including string parsing etc all combined in a single routine. Let's fix this by rewriting most of it, based on the idea that in the case of multiple initrds, we can just allocate a new, bigger buffer and copy over the data before freeing the old one. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Split off the file I/O support code into a separate source file so it ends up in a separate object file in the static library, allowing the linker to omit it if the routines are not used. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
get_dram_base() is only called from arm-stub.c so move it into the same source file as its caller. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
efi_random_alloc() is only used on arm64, but as it shares a source file with efi_random_get_seed(), the latter will pull in the former on other architectures as well. Let's take advantage of the fact that libstub is a static library, and so the linker will only incorporate objects that are needed to satisfy dependencies in other objects. This means we can move the random alloc code to a separate source file that gets built unconditionally, but only used when needed. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We now support cmdline data that is located in memory that is not 32-bit addressable, so relax the allocation limit on systems where this feature is enabled. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Move all the declarations that are only used in stub code from linux/efi.h to efistub.h which is only included locally. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
We now support bootparams structures that are located in memory that is not 32-bit addressable, so relax the allocation limit on systems where this feature is enabled. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Align the naming of efi_file_io_interface_t and efi_file_handle_t with the UEFI spec, and call them efi_simple_file_system_protocol_t and efi_file_protocol_t, respectively, using the same convention we use for all other type definitions that originate in the UEFI spec. While at it, move the definitions to efistub.h, so they are only seen by code that needs them. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Most of the EFI stub source files of all architectures reside under drivers/firmware/efi/libstub, where they share a Makefile with special CFLAGS and an include file with declarations that are only relevant for stub code. Currently, we carry a lot of stub specific stuff in linux/efi.h only because eboot.c in arch/x86 needs them as well. So let's move eboot.c into libstub/, and move the contents of eboot.h that we still care about into efistub.h Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The implementation of efi_high_alloc() uses a complicated way of traversing the memory map to find an available region that is located as close as possible to the provided upper limit, and calls AllocatePages subsequently to create the allocation at that exact address. This is precisely what the EFI_ALLOCATE_MAX_ADDRESS allocation type argument to AllocatePages() does, and considering that EFI_ALLOC_ALIGN only exceeds EFI_PAGE_SIZE on arm64, let's use AllocatePages() directly and implement the alignment using code that the compiler can remove if it does not exceed EFI_PAGE_SIZE. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Create a new source file mem.c to keep the routines involved in memory allocation and deallocation and manipulation of the EFI memory map. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
The arm64 kernel no longer requires the FDT blob to fit inside a naturally aligned 2 MB memory block, so remove the code that aligns the allocation to 2 MB. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Instead of setting the visibility pragma for a small set of symbol declarations that could result in absolute references that we cannot support in the stub, declare hidden visibility for all code in the EFI stub, which is more robust and future proof. To ensure that the #pragma is taken into account before any other includes are processed, put it in a header file of its own and include it via the compiler command line using the -include option. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 23 2月, 2020 2 次提交
-
-
由 Ard Biesheuvel 提交于
The UEFI spec defines (and deprecates) a misguided and shortlived memory protection feature that is based on splitting memory regions covering PE/COFF executables into separate code and data regions, without annotating them as belonging to the same executable image. When the OS assigns the virtual addresses of these regions, it may move them around arbitrarily, without taking into account that the PE/COFF code sections may contain relative references into the data sections, which means the relative placement of these segments has to be preserved or the executable image will be corrupted. The original workaround on arm64 was to ensure that adjacent regions of the same type were mapped adjacently in the virtual mapping, but this requires sorting of the memory map, which we would prefer to avoid. Considering that the native physical mapping of the PE/COFF images does not suffer from this issue, let's preserve it at runtime, and install it as the virtual mapping as well. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
由 Ard Biesheuvel 提交于
Expose efi_entry() as the PE/COFF entrypoint directly, instead of jumping into a wrapper that fiddles with stack buffers and other stuff that the compiler is much better at. The only reason this code exists is to obtain a pointer to the base of the image, but we can get the same value from the loaded_image protocol, which we already need for other reasons anyway. Update the return type as well, to make it consistent with what is required for a PE/COFF executable entrypoint. Signed-off-by: NArd Biesheuvel <ardb@kernel.org>
-
- 11 1月, 2020 2 次提交
-
-
由 Matthew Garrett 提交于
Add an option to disable the busmaster bit in the control register on all PCI bridges before calling ExitBootServices() and passing control to the runtime kernel. System firmware may configure the IOMMU to prevent malicious PCI devices from being able to attack the OS via DMA. However, since firmware can't guarantee that the OS is IOMMU-aware, it will tear down IOMMU configuration when ExitBootServices() is called. This leaves a window between where a hostile device could still cause damage before Linux configures the IOMMU again. If CONFIG_EFI_DISABLE_PCI_DMA is enabled or "efi=disable_early_pci_dma" is passed on the command line, the EFI stub will clear the busmaster bit on all PCI bridges before ExitBootServices() is called. This will prevent any malicious PCI devices from being able to perform DMA until the kernel reenables busmastering after configuring the IOMMU. This option may cause failures with some poorly behaved hardware and should not be enabled without testing. The kernel commandline options "efi=disable_early_pci_dma" or "efi=no_disable_early_pci_dma" may be used to override the default. Note that PCI devices downstream from PCI bridges are disconnected from their drivers first, using the UEFI driver model API, so that DMA can be disabled safely at the bridge level. [ardb: disconnect PCI I/O handles first, as suggested by Arvind] Co-developed-by: NMatthew Garrett <mjg59@google.com> Signed-off-by: NMatthew Garrett <mjg59@google.com> Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Matthew Garrett <matthewgarrett@google.com> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20200103113953.9571-18-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Arvind Sankar 提交于
Introduce the ability to define macros to perform argument translation for the calls that need it, and define them for the boot services that we currently use. When calling 32-bit firmware methods in mixed mode, all output parameters that are 32-bit according to the firmware, but 64-bit in the kernel (ie OUT UINTN * or OUT VOID **) must be initialized in the kernel, or the upper 32 bits may contain garbage. Define macros that zero out the upper 32 bits of the output before invoking the firmware method. When a 32-bit EFI call takes 64-bit arguments, the mixed-mode call must push the two 32-bit halves as separate arguments onto the stack. This can be achieved by splitting the argument into its two halves when calling the assembler thunk. Define a macro to do this for the free_pages boot service. Signed-off-by: NArvind Sankar <nivedita@alum.mit.edu> Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Matthew Garrett <mjg59@google.com> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20200103113953.9571-17-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 12月, 2019 12 次提交
-
-
由 Ard Biesheuvel 提交于
Drop leading underscores and use bool not int for true/false variables set on the command line. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-25-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The macros efi_call_early and efi_call_runtime are used to call EFI boot services and runtime services, respectively. However, the naming is confusing, given that the early vs runtime distinction may suggest that these are used for calling the same set of services either early or late (== at runtime), while in reality, the sets of services they can be used with are completely disjoint, and efi_call_runtime is also only usable in 'early' code. So do a global sweep to replace all occurrences with efi_bs_call or efi_rt_call, respectively, where BS and RT match the idiom used by the UEFI spec to refer to boot time or runtime services. While at it, use 'func' as the macro parameter name for the function pointers, which is less likely to collide and cause weird build errors. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-24-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
None of the definitions of the efi_table_attr() still refer to their 'table' argument so let's get rid of it entirely. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-23-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
After refactoring the mixed mode support code, efi_call_proto() no longer uses its protocol argument in any of its implementation, so let's remove it altogether. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-22-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Mixed mode translates calls from the 64-bit kernel into the 32-bit firmware by wrapping them in a call to a thunking routine that pushes a 32-bit word onto the stack for each argument passed to the function, regardless of the argument type. This works surprisingly well for most services and protocols, with the exception of ones that take explicit 64-bit arguments. efi_free() invokes the FreePages() EFI boot service, which takes a efi_physical_addr_t as its address argument, and this is one of those 64-bit types. This means that the 32-bit firmware will interpret the (addr, size) pair as a single 64-bit quantity, and since it is guaranteed to have the high word set (as size > 0), it will always fail due to the fact that EFI memory allocations are always < 4 GB on 32-bit firmware. So let's fix this by giving the thunking code a little hand, and pass two values for the address, and a third one for the size. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-21-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
We have a helper efi_system_table() that gives us the address of the EFI system table in memory, so there is no longer point in passing it around from each function to the next. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-20-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
As a first step towards getting rid of the need to pass around a function parameter 'sys_table_arg' pointing to the EFI system table, remove the references to it in the printing code, which is represents the majority of the use cases. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-19-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Use a single implementation for efi_char16_printk() across all architectures. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-17-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The efi_call macros on ARM have a dependency on a variable 'sys_table_arg' existing in the scope of the macro instantiation. Since this variable always points to the same data structure, let's create a global getter for it and use that instead. Note that the use of a global variable with external linkage is avoided, given the problems we had in the past with early processing of the GOT tables. While at it, drop the redundant casts in the efi_table_attr and efi_call_proto macros. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-16-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
The EFI file I/O routines built on top of the file I/O firmware services are incompatible with mixed mode, so there is no need to obfuscate them by using protocol wrappers whose only purpose is to hide the mixed mode handling. So let's switch to plain indirect calls instead. This also means we can drop the mixed_mode aliases from the various types involved. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-15-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
Annotate all the firmware routines (boot services, runtime services and protocol methods) called in the boot context as __efiapi, and make it expand to __attribute__((ms_abi)) on 64-bit x86. This allows us to use the compiler to generate the calls into firmware that use the MS calling convention instead of the SysV one. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-13-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Ard Biesheuvel 提交于
We will soon remove another level of pointer casting, so let's make sure all type handling involving firmware calls at boot time is correct. Signed-off-by: NArd Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191224151025.32482-12-ardb@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-