- 08 1月, 2014 2 次提交
-
-
由 Thierry Escande 提交于
This patch sets the correct rf tech value and crc functions in target mode when receiving a PSL_REQ, as done when receiving an ATR_REQ. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
The curr_protocol field of nfc_digital_dev structure used to determine if a target is currently active was set too soon, immediately when a target is found. This is not good since there is no other way than deactivate_target() to reset curr_protocol and if activate_target() is not called, the target remains active and it's not possible to put the device in poll mode anymore. With this patch curr_protocol is set when nfc core activates a target, puts a device up, or when an ATR_REQ is received in target mode. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 07 1月, 2014 3 次提交
-
-
由 Amitkumar Karwar 提交于
This API can be used by drivers to send their custom configuration using SET_CONFIG NCI command to the device. Signed-off-by: NAmitkumar Karwar <akarwar@marvell.com> Signed-off-by: NBing Zhao <bzhao@marvell.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Amitkumar Karwar 提交于
Some drivers require special configuration while initializing. This patch adds setup handler for this custom configuration. Signed-off-by: NAmitkumar Karwar <akarwar@marvell.com> Signed-off-by: NBing Zhao <bzhao@marvell.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Amitkumar Karwar 提交于
Local general bytes returned by nfc_get_local_general_bytes() are already in correct order. We don't need to reverse them. Remove local_gb[] local array as it's not needed any more. Signed-off-by: NAmitkumar Karwar <akarwar@marvell.com> Signed-off-by: NBing Zhao <bzhao@marvell.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 06 1月, 2014 1 次提交
-
-
由 Amitkumar Karwar 提交于
nci_close_device() sends nci reset command to the device. If there is no response for this command, nci request timeout occurs first and then cmd timeout happens. Because command timer has started after sending the command. We are immediately flushing command workqueue after nci timeout. Later we will try to schedule cmd_work in command timer which leads to a crash. Cancel cmd_timer before flushing the workqueue to fix the problem. Signed-off-by: NAmitkumar Karwar <akarwar@marvell.com> Signed-off-by: NBing Zhao <bzhao@marvell.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 04 1月, 2014 6 次提交
-
-
由 Thierry Escande 提交于
This removes the declaration of NFCID3 size in digital_dep.c and now uses the one from nfc.h. This also removes a faulty and unneeded call to max(). Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
It's bad to use these macros when not dealing with error code. this patch changes calls to these macros with correct casts. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
SE discovery errors are currently overwriting the dev_up() return error. This is wrong for many reasons: - We don't want to report an error if we actually brought the device up but it failed to discover SEs. By doing so we pretend we don't have an NFC functional device even we do. The only thing we could not do was checking for SEs availability. This is the false negative case. - In some cases the actual device power up failed but the SE discovery succeeded. Userspace then believes the device is up while it's not. This is the false positive case. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Szymon Janc 提交于
If MIUX is not present in CONNECT or CC use default MIU value (128) instead of one announced durring link setup. This was affecting Bluetooth handover with Android 4.3+ NCI stack. Signed-off-by: NSzymon Janc <szymon.janc@gmail.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Szymon Janc 提交于
If sending was not completed due to low memory condition msg_data was not free before returning from function. Signed-off-by: NSzymon Janc <szymon.janc@gmail.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
If the device is polling, this will trigger a netlink event to notify userspace about the polling error. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 11 12月, 2013 1 次提交
-
-
由 Jeff Kirsher 提交于
Several files refer to an old address for the Free Software Foundation in the file header comment. Resolve by replacing the address with the URL <http://www.gnu.org/licenses/> so that we do not have to keep updating the header comments anytime the address changes. CC: linux-wireless@vger.kernel.org CC: Lauro Ramos Venancio <lauro.venancio@openbossa.org> CC: Aloisio Almeida Jr <aloisio.almeida@openbossa.org> CC: Samuel Ortiz <sameo@linux.intel.com> Signed-off-by: NJeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: NJohn W. Linville <linville@tuxdriver.com>
-
- 21 11月, 2013 1 次提交
-
-
由 Hannes Frederic Sowa 提交于
This patch now always passes msg->msg_namelen as 0. recvmsg handlers must set msg_namelen to the proper size <= sizeof(struct sockaddr_storage) to return msg_name to the user. This prevents numerous uninitialized memory leaks we had in the recvmsg handlers and makes it harder for new code to accidentally leak uninitialized memory. Optimize for the case recvfrom is called with NULL as address. We don't need to copy the address at all, so set it to NULL before invoking the recvmsg handler. We can do so, because all the recvmsg handlers must cope with the case a plain read() is called on them. read() also sets msg_name to NULL. Also document these changes in include/linux/net.h as suggested by David Miller. Changes since RFC: Set msg->msg_name = NULL if user specified a NULL in msg_name but had a non-null msg_namelen in verify_iovec/verify_compat_iovec. This doesn't affect sendto as it would bail out earlier while trying to copy-in the address. It also more naturally reflects the logic by the callers of verify_iovec. With this change in place I could remove " if (!uaddr || msg_sys->msg_namelen == 0) msg->msg_name = NULL ". This change does not alter the user visible error logic as we ignore msg_namelen as long as msg_name is NULL. Also remove two unnecessary curly brackets in ___sys_recvmsg and change comments to netdev style. Cc: David Miller <davem@davemloft.net> Suggested-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 11月, 2013 3 次提交
-
-
由 Johannes Berg 提交于
Register generic netlink multicast groups as an array with the family and give them contiguous group IDs. Then instead of passing the global group ID to the various functions that send messages, pass the ID relative to the family - for most families that's just 0 because the only have one group. This avoids the list_head and ID in each group, adding a new field for the mcast group ID offset to the family. At the same time, this allows us to prevent abusing groups again like the quota and dropmon code did, since we can now check that a family only uses a group it owns. Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Johannes Berg 提交于
This doesn't really change anything, but prepares for the next patch that will change the APIs to pass the group ID within the family, rather than the global group ID. Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Johannes Berg 提交于
As suggested by David Miller, make genl_register_family_with_ops() a macro and pass only the array, evaluating ARRAY_SIZE() in the macro, this is a little safer. The openvswitch has some indirection, assing ops/n_ops directly in that code. This might ultimately just assign the pointers in the family initializations, saving the struct genl_family_and_ops and code (once mcast groups are handled differently.) Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 11月, 2013 1 次提交
-
-
由 Johannes Berg 提交于
Now that genl_ops are no longer modified in place when registering, they can be made const. This patch was done mostly with spatch: @@ identifier ops; @@ +const struct genl_ops ops[] = { ... }; (except the struct thing in net/openvswitch/datapath.c) Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 10月, 2013 1 次提交
-
-
由 Samuel Ortiz 提交于
se_io_cb can be declared static. This fixes the following sparse warning: net/nfc/netlink.c:1287:6: warning: symbol 'se_io_cb' was not declared. Should it be static? Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 25 9月, 2013 21 次提交
-
-
由 Eric Lapuyade 提交于
The NFC Forum NCI specification defines both a hardware and software protocol when using a SPI physical transport to connect an NFC NCI Chipset. The hardware requirement is that, after having raised the chip select line, the SPI driver must wait for an INT line from the NFC chipset to raise before it sends the data. The chip select must be raised first though, because this is the signal that the NFC chipset will detect to wake up and then raise its INT line. If the INT line doesn't raise in a timely fashion, the SPI driver should abort operation. When data is transferred from Device host (DH) to NFC Controller (NFCC), the signaling sequence is the following: Data Transfer from DH to NFCC • 1-Master asserts SPI_CSN • 2-Slave asserts SPI_INT • 3-Master sends NCI-over-SPI protocol header and payload data • 4-Slave deasserts SPI_INT • 5-Master deasserts SPI_CSN When data must be transferred from NFCC to DH, things are a little bit different. Data Transfer from NFCC to DH • 1-Slave asserts SPI_INT -> NFC chipset irq handler called -> process reading from SPI • 2-Master asserts SPI_CSN • 3-Master send 2-octet NCI-over-SPI protocol header • 4-Slave sends 2-octet NCI-over-SPI protocol payload length • 5-Slave sends NCI-over-SPI protocol payload • 6-Master deasserts SPI_CSN In this case, SPI driver should function normally as it does today. Note that the INT line can and will be lowered anytime between beginning of step 3 and end of step 5. A low INT is therefore valid after chip select has been raised. This would be easily implemented in a single driver. Unfortunately, we don't write the SPI driver and I had to imagine some workaround trick to get the SPI and NFC drivers to work in a synchronized fashion. The trick is the following: - send an empty spi message: this will raise the chip select line, and send nothing. We expect the /CS line will stay arisen because we asked for it in the spi_transfer cs_change field - wait for a completion, that will be completed by the NFC driver IRQ handler when it knows we are in the process of sending data (NFC spec says that we use SPI in a half duplex mode, so we are either sending or receiving). - when completed, proceed with the normal data send. This has been tested and verified to work very consistently on a Nexus 10 (spi-s3c64xx driver). It may not work the same with other spi drivers. The previously defined nci_spi_ops{} whose intended purpose were to address this problem are not used anymore and therefore totally removed. The nci_spi_send() takes a new optional write_handshake_completion completion pointer. If non NULL, the nci spi layer will run the above trick when sending data to the NFC Chip. If NULL, the data is sent normally all at once and it is then the NFC driver responsibility to know what it's doing. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Previously, nci_spi_recv_frame() would directly transmit incoming frames to the NCI Core. However, it turns out that some NFC NCI Chips will add additional proprietary headers that must be handled/removed before NCI Core gets a chance to handle the frame. With this modification, the chip phy or driver are now responsible to transmit incoming frames to NCI Core after proper treatment, and NCI SPI becomes a driver helper instead of sitting between the NFC driver and NCI Core. As a general rule in NFC, *_recv_frame() APIs are used to deliver an incoming frame to an upper layer. To better suit the actual purpose of nci_spi_recv_frame(), and go along with its nci_spi_send() counterpart, the function is renamed to nci_spi_read() The skb is returned as the function result Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Using ARM compiler, and without zero-ing spi_transfer, spi-s3c64xx driver would issue abnormal errors due to bpw field value being set to unexpected value. This structure MUST be set to all zeros except for those field specifically used. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
Implementation of the NFC_CMD_SE_IO command for sending ISO7816 APDUs to NFC embedded secure elements. The reply is forwarded to user space through NFC_CMD_SE_IO as well. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This was triggered by the following sparse warning: net/nfc/digital_technology.c:272:20: sparse: cast to restricted __be16 The SENS_RES response must be treated as __le16 with the first byte received as LSB and the second one as MSB. This is the way neard handles it in the sens_res field of the nfc_target structure which is treated as u16 in cpu endianness. So le16_to_cpu() is used on the received SENS_RES instead of memcpy'ing it. SENS_RES test macros have also been fixed accordingly. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
In the rawsock data exchange callback, the sk_buff is not freed on error. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Fengguang Wu 提交于
Fixes sparse hint: net/nfc/digital_technology.c:640:5: sparse: symbol 'digital_tg_send_sensf_res' was not declared. Should it be static? Cc: Thierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
We do not add the newline to the pr_fmt macro, in order to give more flexibility to the caller and to keep the logging style consistent with the rest of the NFC and kernel code. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
They can be replaced by the standard pr_err and pr_debug one after defining the right pr_fmt macro. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Storing the spi device was forgotten in the original implementation, which would pretty obviously cause some kind of serious crash when actually trying to send something through that device. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds support for NFC-DEP target mode for NFC-A and NFC-F technologies. If the driver provides it, the stack uses an automatic mode for technology detection and automatic anti-collision. Otherwise the stack tries to use non-automatic synchronization and listens for SENS_REQ and SENSF_REQ commands. The detection, activation, and data exchange procedures work exactly the same way as in initiator mode, as described in the previous commits, except that the digital stack waits for commands and sends responses back to the peer device. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds polling support for NFC-F technology at 212 kbits/s and 424 kbits/s. A user space application like neard can send type 3 tag commands through the NFC core. Process flow for NFC-F detection is as follow: 1 - The digital stack sends the SENSF_REQ command to the NFC device. 2 - A peer device replies with a SENSF_RES response. 3 - The digital stack notifies the NFC core of the presence of a target in the operation field and passes the target NFCID2. This also adds support for CRC calculation of type CRC-F. The CRC calculation is handled by the digital stack if the NFC device doesn't support it. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds support for NFC-A technology at 106 kbits/s. The stack can detect tags of type 1 and 2. There is no support for collision detection. Tags can be read and written by using a user space application or a daemon like neard. The flow of polling operations for NFC-A detection is as follow: 1 - The digital stack sends the SENS_REQ command to the NFC device. 2 - The NFC device receives a SENS_RES response from a peer device and passes it to the digital stack. 3 - If the SENS_RES response identifies a type 1 tag, detection ends. NFC core is notified through nfc_targets_found(). 4 - Otherwise, the digital stack sets the cascade level of NFCID1 to CL1 and sends the SDD_REQ command. 5 - The digital stack selects SEL_CMD and SEL_PAR according to the cascade level and sends the SDD_REQ command. 4 - The digital stack receives a SDD_RES response for the cascade level passed in the SDD_REQ command. 5 - The digital stack analyses (part of) NFCID1 and verify BCC. 6 - The digital stack sends the SEL_REQ command with the NFCID1 received in the SDD_RES. 6 - The peer device replies with a SEL_RES response 7 - Detection ends if NFCID1 is complete. NFC core notified of new target by nfc_targets_found(). 8 - If NFCID1 is not complete, the cascade level is incremented (up to and including CL3) and the execution continues at step 5 to get the remaining bytes of NFCID1. Once target detection is done, type 1 and 2 tag commands must be handled by a user space application (i.e neard) through the NFC core. Responses for type 1 tag are returned directly to user space via NFC core. Responses of type 2 commands are handled differently. The digital stack doesn't analyse the type of commands sent through im_transceive() and must differentiate valid responses from error ones. The response process flow is as follow: 1 - If the response length is 16 bytes, it is a valid response of a READ command. the packet is returned to the NFC core through the callback passed to im_transceive(). Processing stops. 2 - If the response is 1 byte long and is a ACK byte (0x0A), it is a valid response of a WRITE command for example. First packet byte is set to 0 for no-error and passed back to the NFC core. Processing stops. 3 - Any other response is treated as an error and -EIO error code is returned to the NFC core through the response callback. Moreover, since the driver can't differentiate success response from a NACK response, the digital stack has to handle CRC calculation. Thus, this patch also adds support for CRC calculation. If the driver doesn't handle it, the digital stack will calculate CRC and will add it to sent frames. CRC will also be checked and removed from received frames. Pointers to the correct CRC calculation functions are stored in the digital stack device structure when a target is detected. This avoids the need to check the current target type for every call to im_transceive() and for every response received from a peer device. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This implements the mechanism used to send commands to the driver in initiator mode through in_send_cmd(). Commands are serialized and sent to the driver by using a work item on the system workqueue. Responses are handled asynchronously by another work item. Once the digital stack receives the response through the command_complete callback, the next command is sent to the driver. This also implements the polling mechanism. It's handled by a work item cycling on all supported protocols. The start poll command for a given protocol is sent to the driver using the mechanism described above. The process continues until a peer is discovered or stop_poll is called. This patch implements the poll function for NFC-A that sends a SENS_REQ command and waits for the SENS_RES response. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
As we can potentially get DEP up events without having sent a netlink command, we need to set the active target properly from dep_link_is_up. Spontaneous DEP up events can come from devices that detected an active p2p target. In that case there is no need to call the netlink DEP up command as the link is already up and running. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
NCI SPI layer should not manage the nci dev, this is the job of the nci chipset driver. This layer should be limited to frame/deframe nci packets, and optionnaly check integrity (crc) and manage the ack/nak protocol. The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are therefore renamed to a simple spi for more clarity. The header and crc sizes are moved to nci.h so that drivers can use them to reserve space in outgoing skbs. nci_spi_send() is exported to be accessible by drivers. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
An hci dev is an hdev. An nci dev is an ndev. Calling an nci spi dev an ndev is misleading since it's not the same thing. The nci dev contained in the nci spi dev is also named inconsistently. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
This will be needed by all NFC driver implementing the SE ops. Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-