- 30 4月, 2019 1 次提交
-
-
由 Cédric Le Goater 提交于
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to let QEMU connect the vCPU presenters to the XIVE KVM device if required. The capability is not advertised for now as the full support for the XIVE native exploitation mode is not yet available. When this is case, the capability will be advertised on PowerNV Hypervisors only. Nested guests (pseries KVM Hypervisor) are not supported. Internally, the interface to the new KVM device is protected with a new interrupt mode: KVMPPC_IRQ_XIVE. Signed-off-by: NCédric Le Goater <clg@kaod.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 01 3月, 2019 1 次提交
-
-
由 Suraj Jitindar Singh 提交于
Add KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST & KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE to the characteristics returned from the H_GET_CPU_CHARACTERISTICS H-CALL, as queried from either the hypervisor or the device tree. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 2月, 2019 1 次提交
-
-
由 Paul Mackerras 提交于
Currently, the KVM code assumes that if the host kernel is using the XIVE interrupt controller (the new interrupt controller that first appeared in POWER9 systems), then the in-kernel XICS emulation will use the XIVE hardware to deliver interrupts to the guest. However, this only works when the host is running in hypervisor mode and has full access to all of the XIVE functionality. It doesn't work in any nested virtualization scenario, either with PR KVM or nested-HV KVM, because the XICS-on-XIVE code calls directly into the native-XIVE routines, which are not initialized and cannot function correctly because they use OPAL calls, and OPAL is not available in a guest. This means that using the in-kernel XICS emulation in a nested hypervisor that is using XIVE as its interrupt controller will cause a (nested) host kernel crash. To fix this, we change most of the places where the current code calls xive_enabled() to select between the XICS-on-XIVE emulation and the plain XICS emulation to call a new function, xics_on_xive(), which returns false in a guest. However, there is a further twist. The plain XICS emulation has some functions which are used in real mode and access the underlying XICS controller (the interrupt controller of the host) directly. In the case of a nested hypervisor, this means doing XICS hypercalls directly. When the nested host is using XIVE as its interrupt controller, these hypercalls will fail. Therefore this also adds checks in the places where the XICS emulation wants to access the underlying interrupt controller directly, and if that is XIVE, makes the code use the virtual mode fallback paths, which call generic kernel infrastructure rather than doing direct XICS access. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NCédric Le Goater <clg@kaod.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 17 12月, 2018 4 次提交
-
-
由 Suraj Jitindar Singh 提交于
Allow for a device which is being emulated at L0 (the host) for an L1 guest to be passed through to a nested (L2) guest. The existing kvmppc_hv_emulate_mmio function can be used here. The main challenge is that for a load the result must be stored into the L2 gpr, not an L1 gpr as would normally be the case after going out to qemu to complete the operation. This presents a challenge as at this point the L2 gpr state has been written back into L1 memory. To work around this we store the address in L1 memory of the L2 gpr where the result of the load is to be stored and use the new io_gpr value KVM_MMIO_REG_NESTED_GPR to indicate that this is a nested load for which completion must be done when returning back into the kernel. Then in kvmppc_complete_mmio_load() the resultant value is written into L1 memory at the location of the indicated L2 gpr. Note that we don't currently let an L1 guest emulate a device for an L2 guest which is then passed through to an L3 guest. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
The functions kvmppc_st and kvmppc_ld are used to access guest memory from the host using a guest effective address. They do so by translating through the process table to obtain a guest real address and then using kvm_read_guest or kvm_write_guest to make the access with the guest real address. This method of access however only works for L1 guests and will give the incorrect results for a nested guest. We can however use the store_to_eaddr and load_from_eaddr kvmppc_ops to perform the access for a nested guesti (and a L1 guest). So attempt this method first and fall back to the old method if this fails and we aren't running a nested guest. At this stage there is no fall back method to perform the access for a nested guest and this is left as a future improvement. For now we will return to the nested guest and rely on the fact that a translation should be faulted in before retrying the access. Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suraj Jitindar Singh 提交于
The kvm capability KVM_CAP_SPAPR_TCE_VFIO is used to indicate the availability of in kernel tce acceleration for vfio. However it is currently the case that this is only available on a powernv machine, not for a pseries machine. Thus make this capability dependent on having the cpu feature CPU_FTR_HVMODE. [paulus@ozlabs.org - fixed compilation for Book E.] Signed-off-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Bharata B Rao 提交于
Currently, kvm_arch_commit_memory_region() gets called with a parameter indicating what type of change is being made to the memslot, but it doesn't pass it down to the platform-specific memslot commit functions. This adds the `change' parameter to the lower-level functions so that they can use it in future. [paulus@ozlabs.org - fix book E also.] Signed-off-by: NBharata B Rao <bharata@linux.vnet.ibm.com> Reviewed-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 14 12月, 2018 1 次提交
-
-
由 Paolo Bonzini 提交于
The first such capability to be handled in virt/kvm/ will be manual dirty page reprotection. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 09 10月, 2018 2 次提交
-
-
由 Paul Mackerras 提交于
With this, userspace can enable a KVM-HV guest to run nested guests under it. The administrator can control whether any nested guests can be run; setting the "nested" module parameter to false prevents any guests becoming nested hypervisors (that is, any attempt to enable the nested capability on a guest will fail). Guests which are already nested hypervisors will continue to be so. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
With this, the KVM-HV module can be loaded in a guest running under KVM-HV, and if the hypervisor supports nested virtualization, this guest can now act as a nested hypervisor and run nested guests. This also adds some checks to inform userspace that HPT guests are not supported by nested hypervisors (by returning false for the KVM_CAP_PPC_MMU_HASH_V3 capability), and to prevent userspace from configuring a guest to use HPT mode. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 7月, 2018 1 次提交
-
-
由 Christophe Leroy 提交于
asm/tlbflush.h is only needed for: - using functions xxx_flush_tlb_xxx() - using MMU_NO_CONTEXT - including asm-generic/pgtable.h Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 18 7月, 2018 1 次提交
-
-
由 Simon Guo 提交于
Originally PPC KVM MMIO emulation uses only 0~31#(5 bits) for VSR reg number, and use mmio_vsx_tx_sx_enabled field together for 0~63# VSR regs. Currently PPC KVM MMIO emulation is reimplemented with analyse_instr() assistance. analyse_instr() returns 0~63 for VSR register number, so it is not necessary to use additional mmio_vsx_tx_sx_enabled field any more. This patch extends related reg bits (expand io_gpr to u16 from u8 and use 6 bits for VSR reg#), so that mmio_vsx_tx_sx_enabled can be removed. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 02 6月, 2018 1 次提交
-
-
由 Souptick Joarder 提交于
Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. commit 1c8f4220 ("mm: change return type to vm_fault_t") Signed-off-by: NSouptick Joarder <jrdr.linux@gmail.com> Reviewed-by: NMatthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 01 6月, 2018 3 次提交
-
-
由 Simon Guo 提交于
Since the vcpu mutex locking/unlock has been moved out of vcpu_load() /vcpu_put(), KVM_GET_ONE_REG and KVM_SET_ONE_REG doesn't need to do ioctl with loading vcpu anymore. This patch removes vcpu_load()/vcpu_put() from KVM_GET_ONE_REG and KVM_SET_ONE_REG ioctl. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Simon Guo 提交于
Although we already have kvm_arch_vcpu_async_ioctl() which doesn't require ioctl to load vcpu, the sync ioctl code need to be cleaned up when CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL is not configured. This patch moves vcpu_load/vcpu_put down to each ioctl switch case so that each ioctl can decide to do vcpu_load/vcpu_put or not independently. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Simon Guo 提交于
With current patch set, PR KVM now supports HTM. So this patch turns it on for PR KVM. Tested with: https://github.com/justdoitqd/publicFiles/blob/master/test_kvm_htm_cap.cSigned-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 22 5月, 2018 4 次提交
-
-
由 Simon Guo 提交于
This patch reimplements LOAD_VMX/STORE_VMX MMIO emulation with analyse_instr() input. When emulating the store, the VMX reg will need to be flushed so that the right reg val can be retrieved before writing to IO MEM. This patch also adds support for lvebx/lvehx/lvewx/stvebx/stvehx/stvewx MMIO emulation. To meet the requirement of handling different element sizes, kvmppc_handle_load128_by2x64()/kvmppc_handle_store128_by2x64() were replaced with kvmppc_handle_vmx_load()/kvmppc_handle_vmx_store(). The framework used is similar to VSX instruction MMIO emulation. Suggested-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Simon Guo 提交于
VSX MMIO emulation uses mmio_vsx_copy_type to represent VSX emulated element size/type, such as KVMPPC_VSX_COPY_DWORD_LOAD, etc. This patch expands mmio_vsx_copy_type to cover VMX copy type, such as KVMPPC_VMX_COPY_BYTE(stvebx/lvebx), etc. As a result, mmio_vsx_copy_type is also renamed to mmio_copy_type. It is a preparation for reimplementing VMX MMIO emulation. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Simon Guo 提交于
Currently HV will save math regs(FP/VEC/VSX) when trap into host. But PR KVM will only save math regs when qemu task switch out of CPU, or when returning from qemu code. To emulate FP/VEC/VSX mmio load, PR KVM need to make sure that math regs were flushed firstly and then be able to update saved VCPU FPR/VEC/VSX area reasonably. This patch adds giveup_ext() field to KVM ops. Only PR KVM has non-NULL giveup_ext() ops. kvmppc_complete_mmio_load() can invoke that hook (when not NULL) to flush math regs accordingly, before updating saved register vals. Math regs flush is also necessary for STORE, which will be covered in later patch within this patch series. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Simon Guo 提交于
Some VSX instructions like lxvwsx will splat word into VSR. This patch adds a new VSX copy type KVMPPC_VSX_COPY_WORD_LOAD_DUMP to support this. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Reviewed-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 18 5月, 2018 1 次提交
-
-
由 Simon Guo 提交于
When KVM emulates VMX store, it will invoke kvmppc_get_vmx_data() to retrieve VMX reg val. kvmppc_get_vmx_data() will check mmio_host_swabbed to decide which double word of vr[] to be used. But the mmio_host_swabbed can be uninitialized during VMX store procedure: kvmppc_emulate_loadstore \- kvmppc_handle_store128_by2x64 \- kvmppc_get_vmx_data So vcpu->arch.mmio_host_swabbed is not meant to be used at all for emulation of store instructions, and this patch makes that true for VMX stores. This patch also initializes mmio_host_swabbed to avoid possible future problems. Signed-off-by: NSimon Guo <wei.guo.simon@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 23 3月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
POWER9 has hardware bugs relating to transactional memory and thread reconfiguration (changes to hardware SMT mode). Specifically, the core does not have enough storage to store a complete checkpoint of all the architected state for all four threads. The DD2.2 version of POWER9 includes hardware modifications designed to allow hypervisor software to implement workarounds for these problems. This patch implements those workarounds in KVM code so that KVM guests see a full, working transactional memory implementation. The problems center around the use of TM suspended state, where the CPU has a checkpointed state but execution is not transactional. The workaround is to implement a "fake suspend" state, which looks to the guest like suspended state but the CPU does not store a checkpoint. In this state, any instruction that would cause a transition to transactional state (rfid, rfebb, mtmsrd, tresume) or would use the checkpointed state (treclaim) causes a "soft patch" interrupt (vector 0x1500) to the hypervisor so that it can be emulated. The trechkpt instruction also causes a soft patch interrupt. On POWER9 DD2.2, we avoid returning to the guest in any state which would require a checkpoint to be present. The trechkpt in the guest entry path which would normally create that checkpoint is replaced by either a transition to fake suspend state, if the guest is in suspend state, or a rollback to the pre-transactional state if the guest is in transactional state. Fake suspend state is indicated by a flag in the PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and reads back as 0. On exit from the guest, if the guest is in fake suspend state, we still do the treclaim instruction as we would in real suspend state, in order to get into non-transactional state, but we do not save the resulting register state since there was no checkpoint. Emulation of the instructions that cause a softpatch interrupt is handled in two paths. If the guest is in real suspend mode, we call kvmhv_p9_tm_emulation_early() to handle the cases where the guest is transitioning to transactional state. This is called before we do the treclaim in the guest exit path; because we haven't done treclaim, we can get back to the guest with the transaction still active. If the instruction is a case that kvmhv_p9_tm_emulation_early() doesn't handle, or if the guest is in fake suspend state, then we proceed to do the complete guest exit path and subsequently call kvmhv_p9_tm_emulation() in host context with the MMU on. This handles all the cases including the cases that generate program interrupts (illegal instruction or TM Bad Thing) and facility unavailable interrupts. The emulation is reasonably straightforward and is mostly concerned with checking for exception conditions and updating the state of registers such as MSR and CR0. The treclaim emulation takes care to ensure that the TEXASR register gets updated as if it were the guest treclaim instruction that had done failure recording, not the treclaim done in hypervisor state in the guest exit path. With this, the KVM_CAP_PPC_HTM capability returns true (1) even if transactional memory is not available to host userspace. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 13 2月, 2018 2 次提交
-
-
由 Paul Mackerras 提交于
Some versions of gcc generate a warning that the variable "emulated" may be used uninitialized in function kvmppc_handle_load128_by2x64(). It would be used uninitialized if kvmppc_handle_load128_by2x64 was ever called with vcpu->arch.mmio_vmx_copy_nums == 0, but neither of the callers ever do that, so there is no actual bug. When gcc generates a warning, it causes the build to fail because arch/powerpc is compiled with -Werror. This silences the warning by initializing "emulated" to EMULATE_DONE. Fixes: 09f98496 ("KVM: PPC: Book3S: Add MMIO emulation for VMX instructions") Reported-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
Commit accb757d ("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_run", 2017-12-04) added a "goto out" statement and an "out:" label to kvm_arch_vcpu_ioctl_run(). Since the only "goto out" is inside a CONFIG_VSX block, compiling with CONFIG_VSX=n gives a warning that label "out" is defined but not used, and because arch/powerpc is compiled with -Werror, that becomes a compile error that makes the kernel build fail. Merge commit 1ab03c07 ("Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc", 2018-02-09) added a similar block of code inside a #ifdef CONFIG_ALTIVEC, with a "goto out" statement. In order to make the build succeed, this adds a #ifdef around the "out:" label. This is a minimal, ugly fix, to be replaced later by a refactoring of the code. Since CONFIG_VSX depends on CONFIG_ALTIVEC, it is sufficient to use #ifdef CONFIG_ALTIVEC here. Fixes: accb757d ("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_run") Reported-by: NChristian Zigotzky <chzigotzky@xenosoft.de> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 09 2月, 2018 2 次提交
-
-
由 Jose Ricardo Ziviani 提交于
This patch provides the MMIO load/store vector indexed X-Form emulation. Instructions implemented: lvx: the quadword in storage addressed by the result of EA & 0xffff_ffff_ffff_fff0 is loaded into VRT. stvx: the contents of VRS are stored into the quadword in storage addressed by the result of EA & 0xffff_ffff_ffff_fff0. Reported-by: NGopesh Kumar Chaudhary <gopchaud@in.ibm.com> Reported-by: NBalamuruhan S <bala24@linux.vnet.ibm.com> Signed-off-by: NJose Ricardo Ziviani <joserz@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 David Gibson 提交于
This adds code to enable the HPT resizing code to work on POWER9, which uses a slightly modified HPT entry format compared to POWER8. On POWER9, we convert HPTEs read from the HPT from the new format to the old format so that the rest of the HPT resizing code can work as before. HPTEs written to the new HPT are converted to the new format as the last step before writing them into the new HPT. This takes out the checks added by commit bcd3bb63 ("KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now", 2017-02-18), now that HPT resizing works on POWER9. On POWER9, when we pivot to the new HPT, we now call kvmppc_setup_partition_table() to update the partition table in order to make the hardware use the new HPT. [paulus@ozlabs.org - added kvmppc_setup_partition_table() call, wrote commit message.] Tested-by: NLaurent Vivier <lvivier@redhat.com> Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 1月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
This adds a new ioctl, KVM_PPC_GET_CPU_CHAR, that gives userspace information about the underlying machine's level of vulnerability to the recently announced vulnerabilities CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754, and whether the machine provides instructions to assist software to work around the vulnerabilities. The ioctl returns two u64 words describing characteristics of the CPU and required software behaviour respectively, plus two mask words which indicate which bits have been filled in by the kernel, for extensibility. The bit definitions are the same as for the new H_GET_CPU_CHARACTERISTICS hypercall. There is also a new capability, KVM_CAP_PPC_GET_CPU_CHAR, which indicates whether the new ioctl is available. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 16 1月, 2018 1 次提交
-
-
由 Paul Mackerras 提交于
This adds a register identifier for use with the one_reg interface to allow the decrementer expiry time to be read and written by userspace. The decrementer expiry time is in guest timebase units and is equal to the sum of the decrementer and the guest timebase. (The expiry time is used rather than the decrementer value itself because the expiry time is not constantly changing, though the decrementer value is, while the guest vcpu is not running.) Without this, a guest vcpu migrated to a new host will see its decrementer set to some random value. On POWER8 and earlier, the decrementer is 32 bits wide and counts down at 512MHz, so the guest vcpu will potentially see no decrementer interrupts for up to about 4 seconds, which will lead to a stall. With POWER9, the decrementer is now 56 bits side, so the stall can be much longer (up to 2.23 years) and more noticeable. To help work around the problem in cases where userspace has not been updated to migrate the decrementer expiry time, we now set the default decrementer expiry at vcpu creation time to the current time rather than the maximum possible value. This should mean an immediate decrementer interrupt when a migrated vcpu starts running. In cases where the decrementer is 32 bits wide and more than 4 seconds elapse between the creation of the vcpu and when it first runs, the decrementer would have wrapped around to positive values and there may still be a stall - but this is no worse than the current situation. In the large-decrementer case, we are sure to get an immediate decrementer interrupt (assuming the time from vcpu creation to first run is less than 2.23 years) and we thus avoid a very long stall. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 14 12月, 2017 3 次提交
-
-
由 Paolo Bonzini 提交于
After the vcpu_load/vcpu_put pushdown, the handling of asynchronous VCPU ioctl is already much clearer in that it is obvious that they bypass vcpu_load and vcpu_put. However, it is still not perfect in that the different state of the VCPU mutex is still hidden in the caller. Separate those ioctls into a new function kvm_arch_vcpu_async_ioctl that returns -ENOIOCTLCMD for more "traditional" synchronous ioctls. Cc: James Hogan <jhogan@kernel.org> Cc: Paul Mackerras <paulus@ozlabs.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NCornelia Huck <cohuck@redhat.com> Suggested-by: NCornelia Huck <cohuck@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Christoffer Dall 提交于
Move the calls to vcpu_load() and vcpu_put() in to the architecture specific implementations of kvm_arch_vcpu_ioctl() which dispatches further architecture-specific ioctls on to other functions. Some architectures support asynchronous vcpu ioctls which cannot call vcpu_load() or take the vcpu->mutex, because that would prevent concurrent execution with a running VCPU, which is the intended purpose of these ioctls, for example because they inject interrupts. We repeat the separate checks for these specifics in the architecture code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and calling vcpu_load for these ioctls. Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Christoffer Dall 提交于
Move vcpu_load() and vcpu_put() into the architecture specific implementations of kvm_arch_vcpu_ioctl_run(). Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts Reviewed-by: NCornelia Huck <cohuck@redhat.com> [Rebased. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 11月, 2017 1 次提交
-
-
由 Jan H. Schönherr 提交于
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that "any unblocked signal received [...] will cause KVM_RUN to return with -EINTR" and that "the signal will only be delivered if not blocked by the original signal mask". This, however, is only true, when the calling task has a signal handler registered for a signal. If not, signal evaluation is short-circuited for SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN returning or the whole process is terminated. Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar to that in do_sigtimedwait() to avoid short-circuiting of signals. Signed-off-by: NJan H. Schönherr <jschoenh@amazon.de> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 23 11月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
In an excess of caution, commit 6f63e81b ("KVM: PPC: Book3S: Add MMIO emulation for FP and VSX instructions", 2017-02-21) included checks for the case that vcpu->arch.mmio_vsx_copy_nums is less than zero, even though its type is u8. This causes a Coverity warning, so we remove the check for < 0. We also adjust the associated comment to be more accurate ("4 or less" rather than "less than 4"). Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 01 11月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
This sets up the machinery for switching a guest between HPT (hashed page table) and radix MMU modes, so that in future we can run a HPT guest on a radix host on POWER9 machines. * The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or radix mode, on a radix host. * The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9 with HV KVM on a radix host. * The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a radix host. * The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the guest to HPT mode and allocate a HPT. * For simplicity, we now allocate the rmap array for each memslot, even on a radix host, since it will be needed if the guest switches to HPT mode. * Since we cannot yet run a HPT guest on a radix host, the KVM_RUN ioctl will return an EINVAL error in that case. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 20 10月, 2017 1 次提交
-
-
由 Michael Ellerman 提交于
Currently we use CPU_FTR_TM to decide if the CPU/kernel can support TM (Transactional Memory), and if it's true we advertise that to Qemu (or similar) via KVM_CAP_PPC_HTM. PPC_FEATURE2_HTM is the user-visible feature bit, which indicates that the CPU and kernel can support TM. Currently CPU_FTR_TM and PPC_FEATURE2_HTM always have the same value, either true or false, so using the former for KVM_CAP_PPC_HTM is correct. However some Power9 CPUs can operate in a mode where TM is enabled but TM suspended state is disabled. In this mode CPU_FTR_TM is true, but PPC_FEATURE2_HTM is false. Instead a different PPC_FEATURE2 bit is set, to indicate that this different mode of TM is available. It is not safe to let guests use TM as-is, when the CPU is in this mode. So to prevent that from happening, use PPC_FEATURE2_HTM to determine the value of KVM_CAP_PPC_HTM. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 14 10月, 2017 1 次提交
-
-
由 Greg Kurz 提交于
The following program causes a kernel oops: #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/ioctl.h> #include <linux/kvm.h> main() { int fd = open("/dev/kvm", O_RDWR); ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_PPC_HTM); } This happens because when using the global KVM fd with KVM_CHECK_EXTENSION, kvm_vm_ioctl_check_extension() gets called with a NULL kvm argument, which gets dereferenced in is_kvmppc_hv_enabled(). Spotted while reading the code. Let's use the hv_enabled fallback variable, like everywhere else in this function. Fixes: 23528bb2 ("KVM: PPC: Introduce KVM_CAP_PPC_HTM") Cc: stable@vger.kernel.org # v4.7+ Signed-off-by: NGreg Kurz <groug@kaod.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Reviewed-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 08 8月, 2017 1 次提交
-
-
由 Longpeng(Mike) 提交于
If a vcpu exits due to request a user mode spinlock, then the spinlock-holder may be preempted in user mode or kernel mode. (Note that not all architectures trap spin loops in user mode, only AMD x86 and ARM/ARM64 currently do). But if a vcpu exits in kernel mode, then the holder must be preempted in kernel mode, so we should choose a vcpu in kernel mode as a more likely candidate for the lock holder. This introduces kvm_arch_vcpu_in_kernel() to decide whether the vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's new argument says the same of the spinning VCPU. Signed-off-by: NLongpeng(Mike) <longpeng2@huawei.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 22 6月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
Now that userspace can set the virtual SMT mode by enabling the KVM_CAP_PPC_SMT capability, it is useful for userspace to be able to query the set of possible virtual SMT modes. This provides a new capability, KVM_CAP_PPC_SMT_POSSIBLE, to provide this information. The return value is a bitmap of possible modes, with bit N set if virtual SMT mode 2^N is available. That is, 1 indicates SMT1 is available, 2 indicates that SMT2 is available, 3 indicates that both SMT1 and SMT2 are available, and so on. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 21 6月, 2017 1 次提交
-
-
由 Aravinda Prasad 提交于
This introduces a new KVM capability to control how KVM behaves on machine check exception (MCE) in HV KVM guests. If this capability has not been enabled, KVM redirects machine check exceptions to guest's 0x200 vector, if the address in error belongs to the guest. With this capability enabled, KVM will cause a guest exit with the exit reason indicating an NMI. The new capability is required to avoid problems if a new kernel/KVM is used with an old QEMU, running a guest that doesn't issue "ibm,nmi-register". As old QEMU does not understand the NMI exit type, it treats it as a fatal error. However, the guest could have handled the machine check error if the exception was delivered to guest's 0x200 interrupt vector instead of NMI exit in case of old QEMU. [paulus@ozlabs.org - Reworded the commit message to be clearer, enable only on HV KVM.] Signed-off-by: NAravinda Prasad <aravinda@linux.vnet.ibm.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 19 6月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
On POWER9, we no longer have the restriction that we had on POWER8 where all threads in a core have to be in the same partition, so the CPU threads are now independent. However, we still want to be able to run guests with a virtual SMT topology, if only to allow migration of guests from POWER8 systems to POWER9. A guest that has a virtual SMT mode greater than 1 will expect to be able to use the doorbell facility; it will expect the msgsndp and msgclrp instructions to work appropriately and to be able to read sensible values from the TIR (thread identification register) and DPDES (directed privileged doorbell exception status) special-purpose registers. However, since each CPU thread is a separate sub-processor in POWER9, these instructions and registers can only be used within a single CPU thread. In order for these instructions to appear to act correctly according to the guest's virtual SMT mode, we have to trap and emulate them. We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR register. The emulation is triggered by the hypervisor facility unavailable interrupt that occurs when the guest uses them. To cause a doorbell interrupt to occur within the guest, we set the DPDES register to 1. If the guest has interrupts enabled, the CPU will generate a doorbell interrupt and clear the DPDES register in hardware. The DPDES hardware register for the guest is saved in the vcpu->arch.vcore->dpdes field. Since this gets written by the guest exit code, other VCPUs wishing to cause a doorbell interrupt don't write that field directly, but instead set a vcpu->arch.doorbell_request flag. This is consumed and set to 0 by the guest entry code, which then sets DPDES to 1. Emulating reads of the DPDES register is somewhat involved, because it requires reading the doorbell pending interrupt status of all of the VCPU threads in the virtual core, and if any of those VCPUs are running, their doorbell status is only up-to-date in the hardware DPDES registers of the CPUs where they are running. In order to get a reasonable approximation of the current doorbell status, we send those CPUs an IPI, causing an exit from the guest which will update the vcpu->arch.vcore->dpdes field. We then use that value in constructing the emulated DPDES register value. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-