1. 15 5月, 2019 2 次提交
    • D
      mm: shuffle initial free memory to improve memory-side-cache utilization · e900a918
      Dan Williams 提交于
      Patch series "mm: Randomize free memory", v10.
      
      This patch (of 3):
      
      Randomization of the page allocator improves the average utilization of
      a direct-mapped memory-side-cache.  Memory side caching is a platform
      capability that Linux has been previously exposed to in HPC
      (high-performance computing) environments on specialty platforms.  In
      that instance it was a smaller pool of high-bandwidth-memory relative to
      higher-capacity / lower-bandwidth DRAM.  Now, this capability is going
      to be found on general purpose server platforms where DRAM is a cache in
      front of higher latency persistent memory [1].
      
      Robert offered an explanation of the state of the art of Linux
      interactions with memory-side-caches [2], and I copy it here:
      
          It's been a problem in the HPC space:
          http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
      
          A kernel module called zonesort is available to try to help:
          https://software.intel.com/en-us/articles/xeon-phi-software
      
          and this abandoned patch series proposed that for the kernel:
          https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
      
          Dan's patch series doesn't attempt to ensure buffers won't conflict, but
          also reduces the chance that the buffers will. This will make performance
          more consistent, albeit slower than "optimal" (which is near impossible
          to attain in a general-purpose kernel).  That's better than forcing
          users to deploy remedies like:
              "To eliminate this gradual degradation, we have added a Stream
               measurement to the Node Health Check that follows each job;
               nodes are rebooted whenever their measured memory bandwidth
               falls below 300 GB/s."
      
      A replacement for zonesort was merged upstream in commit cc9aec03
      ("x86/numa_emulation: Introduce uniform split capability").  With this
      numa_emulation capability, memory can be split into cache sized
      ("near-memory" sized) numa nodes.  A bind operation to such a node, and
      disabling workloads on other nodes, enables full cache performance.
      However, once the workload exceeds the cache size then cache conflicts
      are unavoidable.  While HPC environments might be able to tolerate
      time-scheduling of cache sized workloads, for general purpose server
      platforms, the oversubscribed cache case will be the common case.
      
      The worst case scenario is that a server system owner benchmarks a
      workload at boot with an un-contended cache only to see that performance
      degrade over time, even below the average cache performance due to
      excessive conflicts.  Randomization clips the peaks and fills in the
      valleys of cache utilization to yield steady average performance.
      
      Here are some performance impact details of the patches:
      
      1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
         3X speedup in a contrived case that tries to force cache conflicts.
         The contrived cased used the numa_emulation capability to force an
         instance of the benchmark to be run in two of the near-memory sized
         numa nodes.  If both instances were placed on the same emulated they
         would fit and cause zero conflicts.  While on separate emulated nodes
         without randomization they underutilized the cache and conflicted
         unnecessarily due to the in-order allocation per node.
      
      2/ A well known Java server application benchmark was run with a heap
         size that exceeded cache size by 3X.  The cache conflict rate was 8%
         for the first run and degraded to 21% after page allocator aging.  With
         randomization enabled the rate levelled out at 11%.
      
      3/ A MongoDB workload did not observe measurable difference in
         cache-conflict rates, but the overall throughput dropped by 7% with
         randomization in one case.
      
      4/ Mel Gorman ran his suite of performance workloads with randomization
         enabled on platforms without a memory-side-cache and saw a mix of some
         improvements and some losses [3].
      
      While there is potentially significant improvement for applications that
      depend on low latency access across a wide working-set, the performance
      may be negligible to negative for other workloads.  For this reason the
      shuffle capability defaults to off unless a direct-mapped
      memory-side-cache is detected.  Even then, the page_alloc.shuffle=0
      parameter can be specified to disable the randomization on those systems.
      
      Outside of memory-side-cache utilization concerns there is potentially
      security benefit from randomization.  Some data exfiltration and
      return-oriented-programming attacks rely on the ability to infer the
      location of sensitive data objects.  The kernel page allocator, especially
      early in system boot, has predictable first-in-first out behavior for
      physical pages.  Pages are freed in physical address order when first
      onlined.
      
      Quoting Kees:
          "While we already have a base-address randomization
           (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
           memory layouts would certainly be using the predictability of
           allocation ordering (i.e. for attacks where the base address isn't
           important: only the relative positions between allocated memory).
           This is common in lots of heap-style attacks. They try to gain
           control over ordering by spraying allocations, etc.
      
           I'd really like to see this because it gives us something similar
           to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
      
      While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
      caches it leaves vast bulk of memory to be predictably in order allocated.
      However, it should be noted, the concrete security benefits are hard to
      quantify, and no known CVE is mitigated by this randomization.
      
      Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
      a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
      are initially populated with free memory at boot and at hotplug time.  Do
      this based on either the presence of a page_alloc.shuffle=Y command line
      parameter, or autodetection of a memory-side-cache (to be added in a
      follow-on patch).
      
      The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
      pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e.  10,
      4MB this trades off randomization granularity for time spent shuffling.
      MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
      while still showing memory-side cache behavior improvements, and the
      expectation that the security implications of finer granularity
      randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM.  The
      performance impact of the shuffling appears to be in the noise compared to
      other memory initialization work.
      
      This initial randomization can be undone over time so a follow-on patch is
      introduced to inject entropy on page free decisions.  It is reasonable to
      ask if the page free entropy is sufficient, but it is not enough due to
      the in-order initial freeing of pages.  At the start of that process
      putting page1 in front or behind page0 still keeps them close together,
      page2 is still near page1 and has a high chance of being adjacent.  As
      more pages are added ordering diversity improves, but there is still high
      page locality for the low address pages and this leads to no significant
      impact to the cache conflict rate.
      
      [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
      [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
      [3]: https://lkml.org/lkml/2018/10/12/309
      
      [dan.j.williams@intel.com: fix shuffle enable]
        Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
      [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
        Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
      Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.comSigned-off-by: NDan Williams <dan.j.williams@intel.com>
      Signed-off-by: NQian Cai <cai@lca.pw>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Keith Busch <keith.busch@intel.com>
      Cc: Robert Elliott <elliott@hpe.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e900a918
    • J
      mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API · 113b7dfd
      Johannes Weiner 提交于
      Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
      group them together.
      
      Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reviewed-by: NRoman Gushchin <guro@fb.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      113b7dfd
  2. 06 3月, 2019 3 次提交
  3. 09 1月, 2019 1 次提交
    • M
      mm, page_alloc: do not wake kswapd with zone lock held · 73444bc4
      Mel Gorman 提交于
      syzbot reported the following regression in the latest merge window and
      it was confirmed by Qian Cai that a similar bug was visible from a
      different context.
      
        ======================================================
        WARNING: possible circular locking dependency detected
        4.20.0+ #297 Not tainted
        ------------------------------------------------------
        syz-executor0/8529 is trying to acquire lock:
        000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
        __wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
      
        but task is already holding lock:
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
        include/linux/spinlock.h:329 [inline]
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
        mm/page_alloc.c:2548 [inline]
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
        mm/page_alloc.c:3021 [inline]
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
        mm/page_alloc.c:3050 [inline]
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
        mm/page_alloc.c:3072 [inline]
        000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
        get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
      
      It appears to be a false positive in that the only way the lock ordering
      should be inverted is if kswapd is waking itself and the wakeup
      allocates debugging objects which should already be allocated if it's
      kswapd doing the waking.  Nevertheless, the possibility exists and so
      it's best to avoid the problem.
      
      This patch flags a zone as needing a kswapd using the, surprisingly,
      unused zone flag field.  The flag is read without the lock held to do
      the wakeup.  It's possible that the flag setting context is not the same
      as the flag clearing context or for small races to occur.  However, each
      race possibility is harmless and there is no visible degredation in
      fragmentation treatment.
      
      While zone->flag could have continued to be unused, there is potential
      for moving some existing fields into the flags field instead.
      Particularly read-mostly ones like zone->initialized and
      zone->contiguous.
      
      Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
      Fixes: 1c30844d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
      Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Tested-by: NQian Cai <cai@lca.pw>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Michal Hocko <mhocko@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      73444bc4
  4. 29 12月, 2018 8 次提交
  5. 20 12月, 2018 1 次提交
    • C
      powerpc: use mm zones more sensibly · 25078dc1
      Christoph Hellwig 提交于
      Powerpc has somewhat odd usage where ZONE_DMA is used for all memory on
      common 64-bit configfs, and ZONE_DMA32 is used for 31-bit schemes.
      
      Move to a scheme closer to what other architectures use (and I dare to
      say the intent of the system):
      
       - ZONE_DMA: optionally for memory < 31-bit (64-bit embedded only)
       - ZONE_NORMAL: everything addressable by the kernel
       - ZONE_HIGHMEM: memory > 32-bit for 32-bit kernels
      
      Also provide information on how ZONE_DMA is used by defining
      ARCH_ZONE_DMA_BITS.
      
      Contains various fixes from Benjamin Herrenschmidt.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      25078dc1
  6. 15 12月, 2018 1 次提交
  7. 31 10月, 2018 1 次提交
  8. 27 10月, 2018 3 次提交
  9. 09 10月, 2018 1 次提交
  10. 02 10月, 2018 1 次提交
    • M
      mm, sched/numa: Remove rate-limiting of automatic NUMA balancing migration · efaffc5e
      Mel Gorman 提交于
      Rate limiting of page migrations due to automatic NUMA balancing was
      introduced to mitigate the worst-case scenario of migrating at high
      frequency due to false sharing or slowly ping-ponging between nodes.
      Since then, a lot of effort was spent on correctly identifying these
      pages and avoiding unnecessary migrations and the safety net may no longer
      be required.
      
      Jirka Hladky reported a regression in 4.17 due to a scheduler patch that
      avoids spreading STREAM tasks wide prematurely. However, once the task
      was properly placed, it delayed migrating the memory due to rate limiting.
      Increasing the limit fixed the problem for him.
      
      Currently, the limit is hard-coded and does not account for the real
      capabilities of the hardware. Even if an estimate was attempted, it would
      not properly account for the number of memory controllers and it could
      not account for the amount of bandwidth used for normal accesses. Rather
      than fudging, this patch simply eliminates the rate limiting.
      
      However, Jirka reports that a STREAM configuration using multiple
      processes achieved similar performance to 4.16. In local tests, this patch
      improved performance of STREAM relative to the baseline but it is somewhat
      machine-dependent. Most workloads show little or not performance difference
      implying that there is not a heavily reliance on the throttling mechanism
      and it is safe to remove.
      
      STREAM on 2-socket machine
                               4.19.0-rc5             4.19.0-rc5
                               numab-v1r1       noratelimit-v1r1
      MB/sec copy     43298.52 (   0.00%)    44673.38 (   3.18%)
      MB/sec scale    30115.06 (   0.00%)    31293.06 (   3.91%)
      MB/sec add      32825.12 (   0.00%)    34883.62 (   6.27%)
      MB/sec triad    32549.52 (   0.00%)    34906.60 (   7.24%
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Reviewed-by: NRik van Riel <riel@surriel.com>
      Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Jirka Hladky <jhladky@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Linux-MM <linux-mm@kvack.org>
      Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Link: http://lkml.kernel.org/r/20181001100525.29789-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
      efaffc5e
  11. 23 8月, 2018 2 次提交
  12. 12 4月, 2018 2 次提交
  13. 06 4月, 2018 2 次提交
  14. 27 3月, 2018 1 次提交
  15. 01 2月, 2018 1 次提交
  16. 16 11月, 2017 2 次提交
  17. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  18. 20 10月, 2017 1 次提交
  19. 04 10月, 2017 1 次提交
  20. 09 9月, 2017 2 次提交
    • K
      mm: update NUMA counter threshold size · 1d90ca89
      Kemi Wang 提交于
      There is significant overhead in cache bouncing caused by zone counters
      (NUMA associated counters) update in parallel in multi-threaded page
      allocation (suggested by Dave Hansen).
      
      This patch updates NUMA counter threshold to a fixed size of MAX_U16 - 2,
      as a small threshold greatly increases the update frequency of the global
      counter from local per cpu counter(suggested by Ying Huang).
      
      The rationality is that these statistics counters don't affect the
      kernel's decision, unlike other VM counters, so it's not a problem to use
      a large threshold.
      
      With this patchset, we see 31.3% drop of CPU cycles(537-->369) for per
      single page allocation and reclaim on Jesper's page_bench03 benchmark.
      
      Benchmark provided by Jesper D Brouer(increase loop times to 10000000):
      https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/
      bench
      
       Threshold   CPU cycles    Throughput(88 threads)
           32          799         241760478
           64          640         301628829
           125         537         358906028 <==> system by default (base)
           256         468         412397590
           512         428         450550704
           4096        399         482520943
           20000       394         489009617
           30000       395         488017817
           65533       369(-31.3%) 521661345(+45.3%) <==> with this patchset
           N/A         342(-36.3%) 562900157(+56.8%) <==> disable zone_statistics
      
      Link: http://lkml.kernel.org/r/1503568801-21305-3-git-send-email-kemi.wang@intel.comSigned-off-by: NKemi Wang <kemi.wang@intel.com>
      Reported-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Suggested-by: NDave Hansen <dave.hansen@intel.com>
      Suggested-by: NYing Huang <ying.huang@intel.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: Aaron Lu <aaron.lu@intel.com>
      Cc: Andi Kleen <andi.kleen@intel.com>
      Cc: Christopher Lameter <cl@linux.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Tim Chen <tim.c.chen@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1d90ca89
    • K
      mm: change the call sites of numa statistics items · 3a321d2a
      Kemi Wang 提交于
      Patch series "Separate NUMA statistics from zone statistics", v2.
      
      Each page allocation updates a set of per-zone statistics with a call to
      zone_statistics().  As discussed in 2017 MM summit, these are a
      substantial source of overhead in the page allocator and are very rarely
      consumed.  This significant overhead in cache bouncing caused by zone
      counters (NUMA associated counters) update in parallel in multi-threaded
      page allocation (pointed out by Dave Hansen).
      
      A link to the MM summit slides:
        http://people.netfilter.org/hawk/presentations/MM-summit2017/MM-summit2017-JesperBrouer.pdf
      
      To mitigate this overhead, this patchset separates NUMA statistics from
      zone statistics framework, and update NUMA counter threshold to a fixed
      size of MAX_U16 - 2, as a small threshold greatly increases the update
      frequency of the global counter from local per cpu counter (suggested by
      Ying Huang).  The rationality is that these statistics counters don't
      need to be read often, unlike other VM counters, so it's not a problem
      to use a large threshold and make readers more expensive.
      
      With this patchset, we see 31.3% drop of CPU cycles(537-->369, see
      below) for per single page allocation and reclaim on Jesper's
      page_bench03 benchmark.  Meanwhile, this patchset keeps the same style
      of virtual memory statistics with little end-user-visible effects (only
      move the numa stats to show behind zone page stats, see the first patch
      for details).
      
      I did an experiment of single page allocation and reclaim concurrently
      using Jesper's page_bench03 benchmark on a 2-Socket Broadwell-based
      server (88 processors with 126G memory) with different size of threshold
      of pcp counter.
      
      Benchmark provided by Jesper D Brouer(increase loop times to 10000000):
        https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
      
         Threshold   CPU cycles    Throughput(88 threads)
            32        799         241760478
            64        640         301628829
            125       537         358906028 <==> system by default
            256       468         412397590
            512       428         450550704
            4096      399         482520943
            20000     394         489009617
            30000     395         488017817
            65533     369(-31.3%) 521661345(+45.3%) <==> with this patchset
            N/A       342(-36.3%) 562900157(+56.8%) <==> disable zone_statistics
      
      This patch (of 3):
      
      In this patch, NUMA statistics is separated from zone statistics
      framework, all the call sites of NUMA stats are changed to use
      numa-stats-specific functions, it does not have any functionality change
      except that the number of NUMA stats is shown behind zone page stats
      when users *read* the zone info.
      
      E.g. cat /proc/zoneinfo
          ***Base***                           ***With this patch***
      nr_free_pages 3976                         nr_free_pages 3976
      nr_zone_inactive_anon 0                    nr_zone_inactive_anon 0
      nr_zone_active_anon 0                      nr_zone_active_anon 0
      nr_zone_inactive_file 0                    nr_zone_inactive_file 0
      nr_zone_active_file 0                      nr_zone_active_file 0
      nr_zone_unevictable 0                      nr_zone_unevictable 0
      nr_zone_write_pending 0                    nr_zone_write_pending 0
      nr_mlock     0                             nr_mlock     0
      nr_page_table_pages 0                      nr_page_table_pages 0
      nr_kernel_stack 0                          nr_kernel_stack 0
      nr_bounce    0                             nr_bounce    0
      nr_zspages   0                             nr_zspages   0
      numa_hit 0                                *nr_free_cma  0*
      numa_miss 0                                numa_hit     0
      numa_foreign 0                             numa_miss    0
      numa_interleave 0                          numa_foreign 0
      numa_local   0                             numa_interleave 0
      numa_other   0                             numa_local   0
      *nr_free_cma 0*                            numa_other 0
          ...                                        ...
      vm stats threshold: 10                     vm stats threshold: 10
          ...                                        ...
      
      The next patch updates the numa stats counter size and threshold.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Link: http://lkml.kernel.org/r/1503568801-21305-2-git-send-email-kemi.wang@intel.comSigned-off-by: NKemi Wang <kemi.wang@intel.com>
      Reported-by: NJesper Dangaard Brouer <brouer@redhat.com>
      Acked-by: NMel Gorman <mgorman@techsingularity.net>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Christopher Lameter <cl@linux.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Andi Kleen <andi.kleen@intel.com>
      Cc: Ying Huang <ying.huang@intel.com>
      Cc: Aaron Lu <aaron.lu@intel.com>
      Cc: Tim Chen <tim.c.chen@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3a321d2a
  21. 07 9月, 2017 3 次提交
    • M
      mm, memory_hotplug: get rid of zonelists_mutex · b93e0f32
      Michal Hocko 提交于
      zonelists_mutex was introduced by commit 4eaf3f64 ("mem-hotplug: fix
      potential race while building zonelist for new populated zone") to
      protect zonelist building from races.  This is no longer needed though
      because both memory online and offline are fully serialized.  New users
      have grown since then.
      
      Notably setup_per_zone_wmarks wants to prevent from races between memory
      hotplug, khugepaged setup and manual min_free_kbytes update via sysctl
      (see cfd3da1e ("mm: Serialize access to min_free_kbytes").  Let's
      add a private lock for that purpose.  This will not prevent from seeing
      halfway through memory hotplug operation but that shouldn't be a big
      deal becuse memory hotplug will update watermarks explicitly so we will
      eventually get a full picture.  The lock just makes sure we won't race
      when updating watermarks leading to weird results.
      
      Also __build_all_zonelists manipulates global data so add a private lock
      for it as well.  This doesn't seem to be necessary today but it is more
      robust to have a lock there.
      
      While we are at it make sure we document that memory online/offline
      depends on a full serialization either via mem_hotplug_begin() or
      device_lock.
      
      Link: http://lkml.kernel.org/r/20170721143915.14161-9-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Haicheng Li <haicheng.li@linux.intel.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b93e0f32
    • M
      mm, memory_hotplug: drop zone from build_all_zonelists · 72675e13
      Michal Hocko 提交于
      build_all_zonelists gets a zone parameter to initialize zone's pagesets.
      There is only a single user which gives a non-NULL zone parameter and
      that one doesn't really need the rest of the build_all_zonelists (see
      commit 6dcd73d7 ("memory-hotplug: allocate zone's pcp before
      onlining pages")).
      
      Therefore remove setup_zone_pageset from build_all_zonelists and call it
      from its only user directly.  This will also remove a pointless zonlists
      rebuilding which is always good.
      
      Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Wen Congyang <wency@cn.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      72675e13
    • M
      mm, page_alloc: rip out ZONELIST_ORDER_ZONE · c9bff3ee
      Michal Hocko 提交于
      Patch series "cleanup zonelists initialization", v1.
      
      This is aimed at cleaning up the zonelists initialization code we have
      but the primary motivation was bug report [2] which got resolved but the
      usage of stop_machine is just too ugly to live.  Most patches are
      straightforward but 3 of them need a special consideration.
      
      Patch 1 removes zone ordered zonelists completely.  I am CCing linux-api
      because this is a user visible change.  As I argue in the patch
      description I do not think we have a strong usecase for it these days.
      I have kept sysctl in place and warn into the log if somebody tries to
      configure zone lists ordering.  If somebody has a real usecase for it we
      can revert this patch but I do not expect anybody will actually notice
      runtime differences.  This patch is not strictly needed for the rest but
      it made patch 6 easier to implement.
      
      Patch 7 removes stop_machine from build_all_zonelists without adding any
      special synchronization between iterators and updater which I _believe_
      is acceptable as explained in the changelog.  I hope I am not missing
      anything.
      
      Patch 8 then removes zonelists_mutex which is kind of ugly as well and
      not really needed AFAICS but a care should be taken when double checking
      my thinking.
      
      This patch (of 9):
      
      Supporting zone ordered zonelists costs us just a lot of code while the
      usefulness is arguable if existent at all.  Mel has already made node
      ordering default on 64b systems.  32b systems are still using
      ZONELIST_ORDER_ZONE because it is considered better to fallback to a
      different NUMA node rather than consume precious lowmem zones.
      
      This argument is, however, weaken by the fact that the memory reclaim
      has been reworked to be node rather than zone oriented.  This means that
      lowmem requests have to skip over all highmem pages on LRUs already and
      so zone ordering doesn't save the reclaim time much.  So the only
      advantage of the zone ordering is under a light memory pressure when
      highmem requests do not ever hit into lowmem zones and the lowmem
      pressure doesn't need to reclaim.
      
      Considering that 32b NUMA systems are rather suboptimal already and it
      is generally advisable to use 64b kernel on such a HW I believe we
      should rather care about the code maintainability and just get rid of
      ZONELIST_ORDER_ZONE altogether.  Keep systcl in place and warn if
      somebody tries to set zone ordering either from kernel command line or
      the sysctl.
      
      [mhocko@suse.com: reading vm.numa_zonelist_order will never terminate]
      Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Shaohua Li <shaohua.li@intel.com>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: <linux-api@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c9bff3ee