1. 27 5月, 2011 1 次提交
  2. 24 5月, 2011 4 次提交
    • A
      BTRFS: Remove unused node_lock · 0956c798
      Andi Kleen 提交于
      240f62c8 replaced the node_lock with rcu_read_lock, but forgot
      to remove the actual lock in the data structure. Remove it here.
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      0956c798
    • J
      Btrfs: kill BTRFS_I(inode)->block_group · d82a6f1d
      Josef Bacik 提交于
      Originally this was going to be used as a way to give hints to the allocator,
      but frankly we can get much better hints elsewhere and it's not even used at all
      for anything usefull.  In addition to be completely useless, when we initialize
      an inode we try and find a freeish block group to set as the inodes block group,
      and with a completely full 40gb fs this takes _forever_, so I imagine with say
      1tb fs this is just unbearable.  So just axe the thing altoghether, we don't
      need it and it saves us 8 bytes in the inode and saves us 500 microseconds per
      inode lookup in my testcase.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      d82a6f1d
    • J
      Btrfs: fix how we do space reservation for truncate · fcb80c2a
      Josef Bacik 提交于
      The ceph guys keep running into problems where we have space reserved in our
      orphan block rsv when freeing it up.  This is because they tend to do snapshots
      alot, so their truncates tend to use a bunch of space, so when we go to do
      things like update the inode we have to steal reservation space in order to make
      the reservation happen.  This happens because truncate can use as much space as
      it freaking feels like, but we still have to hold space for removing the orphan
      item and updating the inode, which will definitely always happen.  So in order
      to fix this we need to split all of the reservation stuf up.  So with this patch
      we have
      
      1) The orphan block reserve which only holds the space for deleting our orphan
      item when everything is over.
      
      2) The truncate block reserve which gets allocated and used specifically for the
      space that the truncate will use on a per truncate basis.
      
      3) The transaction will always have 1 item's worth of data reserved so we can
      update the inode normally.
      
      Hopefully this will make the ceph problem go away.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      fcb80c2a
    • J
      Btrfs: kill trans_mutex · a4abeea4
      Josef Bacik 提交于
      We use trans_mutex for lots of things, here's a basic list
      
      1) To serialize trans_handles joining the currently running transaction
      2) To make sure that no new trans handles are started while we are committing
      3) To protect the dead_roots list and the transaction lists
      
      Really the serializing trans_handles joining is not too hard, and can really get
      bogged down in acquiring a reference to the transaction.  So replace the
      trans_mutex with a trans_lock spinlock and use it to do the following
      
      1) Protect fs_info->running_transaction.  All trans handles have to do is check
      this, and then take a reference of the transaction and keep on going.
      2) Protect the fs_info->trans_list.  This doesn't get used too much, basically
      it just holds the current transactions, which will usually just be the currently
      committing transaction and the currently running transaction at most.
      3) Protect the dead roots list.  This is only ever processed by splicing the
      list so this is relatively simple.
      4) Protect the fs_info->reloc_ctl stuff.  This is very lightweight and was using
      the trans_mutex before, so this is a pretty straightforward change.
      5) Protect fs_info->no_trans_join.  Because we don't hold the trans_lock over
      the entirety of the commit we need to have a way to block new people from
      creating a new transaction while we're doing our work.  So we set no_trans_join
      and in join_transaction we test to see if that is set, and if it is we do a
      wait_on_commit.
      6) Make the transaction use count atomic so we don't need to take locks to
      modify it when we're dropping references.
      7) Add a commit_lock to the transaction to make sure multiple people trying to
      commit the same transaction don't race and commit at the same time.
      8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl
      trans.
      
      I have tested this with xfstests, but obviously it is a pretty hairy change so
      lots of testing is greatly appreciated.  Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      a4abeea4
  3. 21 5月, 2011 1 次提交
    • M
      btrfs: implement delayed inode items operation · 16cdcec7
      Miao Xie 提交于
      Changelog V5 -> V6:
      - Fix oom when the memory load is high, by storing the delayed nodes into the
        root's radix tree, and letting btrfs inodes go.
      
      Changelog V4 -> V5:
      - Fix the race on adding the delayed node to the inode, which is spotted by
        Chris Mason.
      - Merge Chris Mason's incremental patch into this patch.
      - Fix deadlock between readdir() and memory fault, which is reported by
        Itaru Kitayama.
      
      Changelog V3 -> V4:
      - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache
        inode in time.
      
      Changelog V2 -> V3:
      - Fix the race between the delayed worker and the task which does delayed items
        balance, which is reported by Tsutomu Itoh.
      - Modify the patch address David Sterba's comment.
      - Fix the bug of the cpu recursion spinlock, reported by Chris Mason
      
      Changelog V1 -> V2:
      - break up the global rb-tree, use a list to manage the delayed nodes,
        which is created for every directory and file, and used to manage the
        delayed directory name index items and the delayed inode item.
      - introduce a worker to deal with the delayed nodes.
      
      Compare with Ext3/4, the performance of file creation and deletion on btrfs
      is very poor. the reason is that btrfs must do a lot of b+ tree insertions,
      such as inode item, directory name item, directory name index and so on.
      
      If we can do some delayed b+ tree insertion or deletion, we can improve the
      performance, so we made this patch which implemented delayed directory name
      index insertion/deletion and delayed inode update.
      
      Implementation:
      - introduce a delayed root object into the filesystem, that use two lists to
        manage the delayed nodes which are created for every file/directory.
        One is used to manage all the delayed nodes that have delayed items. And the
        other is used to manage the delayed nodes which is waiting to be dealt with
        by the work thread.
      - Every delayed node has two rb-tree, one is used to manage the directory name
        index which is going to be inserted into b+ tree, and the other is used to
        manage the directory name index which is going to be deleted from b+ tree.
      - introduce a worker to deal with the delayed operation. This worker is used
        to deal with the works of the delayed directory name index items insertion
        and deletion and the delayed inode update.
        When the delayed items is beyond the lower limit, we create works for some
        delayed nodes and insert them into the work queue of the worker, and then
        go back.
        When the delayed items is beyond the upper bound, we create works for all
        the delayed nodes that haven't been dealt with, and insert them into the work
        queue of the worker, and then wait for that the untreated items is below some
        threshold value.
      - When we want to insert a directory name index into b+ tree, we just add the
        information into the delayed inserting rb-tree.
        And then we check the number of the delayed items and do delayed items
        balance. (The balance policy is above.)
      - When we want to delete a directory name index from the b+ tree, we search it
        in the inserting rb-tree at first. If we look it up, just drop it. If not,
        add the key of it into the delayed deleting rb-tree.
        Similar to the delayed inserting rb-tree, we also check the number of the
        delayed items and do delayed items balance.
        (The same to inserting manipulation)
      - When we want to update the metadata of some inode, we cached the data of the
        inode into the delayed node. the worker will flush it into the b+ tree after
        dealing with the delayed insertion and deletion.
      - We will move the delayed node to the tail of the list after we access the
        delayed node, By this way, we can cache more delayed items and merge more
        inode updates.
      - If we want to commit transaction, we will deal with all the delayed node.
      - the delayed node will be freed when we free the btrfs inode.
      - Before we log the inode items, we commit all the directory name index items
        and the delayed inode update.
      
      I did a quick test by the benchmark tool[1] and found we can improve the
      performance of file creation by ~15%, and file deletion by ~20%.
      
      Before applying this patch:
      Create files:
              Total files: 50000
              Total time: 1.096108
              Average time: 0.000022
      Delete files:
              Total files: 50000
              Total time: 1.510403
              Average time: 0.000030
      
      After applying this patch:
      Create files:
              Total files: 50000
              Total time: 0.932899
              Average time: 0.000019
      Delete files:
              Total files: 50000
              Total time: 1.215732
              Average time: 0.000024
      
      [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3
      
      Many thanks for Kitayama-san's help!
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dave@jikos.cz>
      Tested-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com>
      Tested-by: NItaru Kitayama <kitayama@cl.bb4u.ne.jp>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      16cdcec7
  4. 13 5月, 2011 1 次提交
  5. 12 5月, 2011 3 次提交
    • A
      btrfs: add readonly flag · 8628764e
      Arne Jansen 提交于
      setting the readonly flag prevents writes in case an error is detected
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      8628764e
    • J
      btrfs: new ioctls for scrub · 475f6387
      Jan Schmidt 提交于
      adds ioctls necessary to start and cancel scrubs, to get current
      progress and to get info about devices to be scrubbed.
      Note that the scrub is done per-device and that the ioctl only
      returns after the scrub for this devices is finished or has been
      canceled.
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      475f6387
    • A
      btrfs: scrub · a2de733c
      Arne Jansen 提交于
      This adds an initial implementation for scrub. It works quite
      straightforward. The usermode issues an ioctl for each device in the
      fs. For each device, it enumerates the allocated device chunks. For
      each chunk, the contained extents are enumerated and the data checksums
      fetched. The extents are read sequentially and the checksums verified.
      If an error occurs (checksum or EIO), a good copy is searched for. If
      one is found, the bad copy will be rewritten.
      All enumerations happen from the commit roots. During a transaction
      commit, the scrubs get paused and afterwards continue from the new
      roots.
      
      This commit is based on the series originally posted to linux-btrfs
      with some improvements that resulted from comments from David Sterba,
      Ilya Dryomov and Jan Schmidt.
      Signed-off-by: NArne Jansen <sensille@gmx.net>
      a2de733c
  6. 06 5月, 2011 1 次提交
  7. 04 5月, 2011 1 次提交
  8. 02 5月, 2011 2 次提交
  9. 27 4月, 2011 1 次提交
  10. 25 4月, 2011 3 次提交
    • L
      Btrfs: Support reading/writing on disk free ino cache · 82d5902d
      Li Zefan 提交于
      This is similar to block group caching.
      
      We dedicate a special inode in fs tree to save free ino cache.
      
      At the very first time we create/delete a file after mount, the free ino
      cache will be loaded from disk into memory. When the fs tree is commited,
      the cache will be written back to disk.
      
      To keep compatibility, we check the root generation against the generation
      of the special inode when loading the cache, so the loading will fail
      if the btrfs filesystem was mounted in an older kernel before.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      82d5902d
    • L
      Btrfs: Cache free inode numbers in memory · 581bb050
      Li Zefan 提交于
      Currently btrfs stores the highest objectid of the fs tree, and it always
      returns (highest+1) inode number when we create a file, so inode numbers
      won't be reclaimed when we delete files, so we'll run out of inode numbers
      as we keep create/delete files in 32bits machines.
      
      This fixes it, and it works similarly to how we cache free space in block
      cgroups.
      
      We start a kernel thread to read the file tree. By scanning inode items,
      we know which chunks of inode numbers are free, and we cache them in
      an rb-tree.
      
      Because we are searching the commit root, we have to carefully handle the
      cross-transaction case.
      
      The rb-tree is a hybrid extent+bitmap tree, so if we have too many small
      chunks of inode numbers, we'll use bitmaps. Initially we allow 16K ram
      of extents, and a bitmap will be used if we exceed this threshold. The
      extents threshold is adjusted in runtime.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      581bb050
    • L
      Btrfs: Make free space cache code generic · 34d52cb6
      Li Zefan 提交于
      So we can re-use the code to cache free inode numbers.
      
      The change is quite straightforward. Two new structures are introduced.
      
      - struct btrfs_free_space_ctl
      
        We move those variables that are used for caching free space from
        struct btrfs_block_group_cache to this new struct.
      
      - struct btrfs_free_space_op
      
        We do block group specific work (e.g. calculation of extents threshold)
        through functions registered in this struct.
      
      And then we can remove references to struct btrfs_block_group_cache.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      34d52cb6
  11. 16 4月, 2011 1 次提交
  12. 09 4月, 2011 1 次提交
    • J
      Btrfs: deal with the case that we run out of space in the cache · be1a12a0
      Josef Bacik 提交于
      Currently we don't handle running out of space in the cache, so to fix this we
      keep track of how far in the cache we are.  Then we only dirty the pages if we
      successfully modify all of them, otherwise if we have an error or run out of
      space we can just drop them and not worry about the vm writing them out.
      Thanks,
      
      Tested-by Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      be1a12a0
  13. 05 4月, 2011 1 次提交
  14. 28 3月, 2011 6 次提交
    • L
      Btrfs: fix OOPS of empty filesystem after balance · c59021f8
      liubo 提交于
      btrfs will remove unused block groups after balance.
      When a empty filesystem is balanced, the block group with tag "DATA" may be
      dropped, and after umount and mount again, it will not find "DATA" space_info
      and lead to OOPS.
      So we initial the necessary space_infos(DATA, SYSTEM, METADATA) to avoid OOPS.
      Reported-by: NDaniel J Blueman <daniel.blueman@gmail.com>
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c59021f8
    • L
      Btrfs: add btrfs_trim_fs() to handle FITRIM · f7039b1d
      Li Dongyang 提交于
      We take an free extent out from allocator, trim it, then put it back,
      but before we trim the block group, we should make sure the block group is
      cached, so plus a little change to make cache_block_group() run without a
      transaction.
      Signed-off-by: NLi Dongyang <lidongyang@novell.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      f7039b1d
    • L
      Btrfs: adjust btrfs_discard_extent() return errors and trimmed bytes · 5378e607
      Li Dongyang 提交于
      Callers of btrfs_discard_extent() should check if we are mounted with -o discard,
      as we want to make fitrim to work even the fs is not mounted with -o discard.
      Also we should use REQ_DISCARD to map the free extent to get a full mapping,
      last we only return errors if
      1. the error is not a EOPNOTSUPP
      2. no device supports discard
      Signed-off-by: NLi Dongyang <lidongyang@novell.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      5378e607
    • L
      Btrfs: make update_reserved_bytes() public · b4d00d56
      Li Dongyang 提交于
      Make the function public as we should update the reserved extents calculations
      after taking out an extent for trimming.
      Signed-off-by: NLi Dongyang <lidongyang@novell.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      b4d00d56
    • L
      Btrfs: Per file/directory controls for COW and compression · 75e7cb7f
      Liu Bo 提交于
      Data compression and data cow are controlled across the entire FS by mount
      options right now.  ioctls are needed to set this on a per file or per
      directory basis.  This has been proposed previously, but VFS developers
      wanted us to use generic ioctls rather than btrfs-specific ones.
      
      According to Chris's comment, there should be just one true compression
      method(probably LZO) stored in the super.  However, before this, we would
      wait for that one method is stable enough to be adopted into the super.
      So I list it as a long term goal, and just store it in ram today.
      
      After applying this patch, we can use the generic "FS_IOC_SETFLAGS" ioctl to
      control file and directory's datacow and compression attribute.
      
      NOTE:
       - The compression type is selected by such rules:
         If we mount btrfs with compress options, ie, zlib/lzo, the type is it.
         Otherwise, we'll use the default compress type (zlib today).
      
      v1->v2:
      - rebase to the latest btrfs.
      v2->v3:
      - fix a problem, i.e. when a file is set NOCOW via mount option, then this NOCOW
        will be screwed by inheritance from parent directory.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      75e7cb7f
    • L
      Btrfs: add initial tracepoint support for btrfs · 1abe9b8a
      liubo 提交于
      Tracepoints can provide insight into why btrfs hits bugs and be greatly
      helpful for debugging, e.g
                    dd-7822  [000]  2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
                    dd-7822  [000]  2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
       btrfs-transacti-7804  [001]  2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
       btrfs-transacti-7804  [001]  2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
       btrfs-transacti-7804  [001]  2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
         flush-btrfs-2-7821  [001]  2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
         flush-btrfs-2-7821  [001]  2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
         flush-btrfs-2-7821  [001]  2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
         flush-btrfs-2-7821  [000]  2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
       btrfs-endio-wri-7800  [001]  2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
       btrfs-endio-wri-7800  [001]  2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
      
      Here is what I have added:
      
      1) ordere_extent:
              btrfs_ordered_extent_add
              btrfs_ordered_extent_remove
              btrfs_ordered_extent_start
              btrfs_ordered_extent_put
      
      These provide critical information to understand how ordered_extents are
      updated.
      
      2) extent_map:
              btrfs_get_extent
      
      extent_map is used in both read and write cases, and it is useful for tracking
      how btrfs specific IO is running.
      
      3) writepage:
              __extent_writepage
              btrfs_writepage_end_io_hook
      
      Pages are cirtical resourses and produce a lot of corner cases during writeback,
      so it is valuable to know how page is written to disk.
      
      4) inode:
              btrfs_inode_new
              btrfs_inode_request
              btrfs_inode_evict
      
      These can show where and when a inode is created, when a inode is evicted.
      
      5) sync:
              btrfs_sync_file
              btrfs_sync_fs
      
      These show sync arguments.
      
      6) transaction:
              btrfs_transaction_commit
      
      In transaction based filesystem, it will be useful to know the generation and
      who does commit.
      
      7) back reference and cow:
      	btrfs_delayed_tree_ref
      	btrfs_delayed_data_ref
      	btrfs_delayed_ref_head
      	btrfs_cow_block
      
      Btrfs natively supports back references, these tracepoints are helpful on
      understanding btrfs's COW mechanism.
      
      8) chunk:
      	btrfs_chunk_alloc
      	btrfs_chunk_free
      
      Chunk is a link between physical offset and logical offset, and stands for space
      infomation in btrfs, and these are helpful on tracing space things.
      
      9) reserved_extent:
      	btrfs_reserved_extent_alloc
      	btrfs_reserved_extent_free
      
      These can show how btrfs uses its space.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      1abe9b8a
  15. 26 3月, 2011 1 次提交
    • J
      Btrfs: cleanup how we setup free space clusters · 4e69b598
      Josef Bacik 提交于
      This patch makes the free space cluster refilling code a little easier to
      understand, and fixes some things with the bitmap part of it.  Currently we
      either want to refill a cluster with
      
      1) All normal extent entries (those without bitmaps)
      2) A bitmap entry with enough space
      
      The current code has this ugly jump around logic that will first try and fill up
      the cluster with extent entries and then if it can't do that it will try and
      find a bitmap to use.  So instead split this out into two functions, one that
      tries to find only normal entries, and one that tries to find bitmaps.
      
      This also fixes a suboptimal thing we would do with bitmaps.  If we used a
      bitmap we would just tell the cluster that we were pointing at a bitmap and it
      would do the tree search in the block group for that entry every time we tried
      to make an allocation.  Instead of doing that now we just add it to the clusters
      group.
      
      I tested this with my ENOSPC tests and xfstests and it survived.
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      4e69b598
  16. 18 3月, 2011 4 次提交
  17. 12 3月, 2011 1 次提交
    • C
      Btrfs: break out of shrink_delalloc earlier · 36e39c40
      Chris Mason 提交于
      Josef had changed shrink_delalloc to exit after three shrink
      attempts, which wasn't quite enough because new writers could
      race in and steal free space.
      
      But it also fixed deadlocks and stalls as we tried to recover
      delalloc reservations.  The code was tweaked to loop 1024
      times, and would reset the counter any time a small amount
      of progress was made.  This was too drastic, and with a
      lot of writers we can end up stuck in shrink_delalloc forever.
      
      The shrink_delalloc loop is fairly complex because the caller is looping
      too, and the caller will go ahead and force a transaction commit to make
      sure we reclaim space.
      
      This reworks things to exit shrink_delalloc when we've forced some
      writeback and the delalloc reservations have gone down.  This means
      the writeback has not just started but has also finished at
      least some of the metadata changes required to reclaim delalloc
      space.
      
      If we've got this wrong, we're returning ENOSPC too early, which
      is a big improvement over the current behavior of hanging the machine.
      
      Test 224 in xfstests hammers on this nicely, and with 1000 writers
      trying to fill a 1GB drive we get our first ENOSPC at 93% full.  The
      other writers are able to continue until we get 100%.
      
      This is a worst case test for btrfs because the 1000 writers are doing
      small IO, and the small FS size means we don't have a lot of room
      for metadata chunks.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      36e39c40
  18. 17 2月, 2011 2 次提交
    • C
      Btrfs: allow balance to explicitly allocate chunks as it relocates · c87f08ca
      Chris Mason 提交于
      Btrfs device shrinking and balancing ends up reallocating all the blocks
      in order to allow COW to move them to new destinations.  It is somewhat
      awkward in terms of ENOSPC because most of the enospc code is built
      around the idea that some operation on a reference counted tree triggers
      allocations in the non-reference counted trees.
      
      This commit changes the balancing code to deal with enospc by trying to
      allocate a new chunk.  If that allocation succeeds, we go ahead and
      retry whatever failed due to enospc.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      c87f08ca
    • C
      Btrfs: put ENOSPC debugging under a mount option · 91435650
      Chris Mason 提交于
      ENOSPC in btrfs is getting to the point where the extra debugging isn't
      required.  I've put it under mount -o enospc_debug just in case someone
      is having difficult problems.
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      91435650
  19. 18 1月, 2011 1 次提交
    • L
      Btrfs: forced readonly mounts on errors · acce952b
      liubo 提交于
      This patch comes from "Forced readonly mounts on errors" ideas.
      
      As we know, this is the first step in being more fault tolerant of disk
      corruptions instead of just using BUG() statements.
      
      The major content:
      - add a framework for generating errors that should result in filesystems
        going readonly.
      - keep FS state in disk super block.
      - make sure that all of resource will be freed and released at umount time.
      - make sure that fter FS is forced readonly on error, there will be no more
        disk change before FS is corrected. For this, we should stop write operation.
      
      After this patch is applied, the conversion from BUG() to such a framework can
      happen incrementally.
      Signed-off-by: NLiu Bo <liubo2009@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      acce952b
  20. 17 1月, 2011 3 次提交
    • S
      fs/btrfs: Fix build of ctree · f8b18087
      Stefan Schmidt 提交于
      Fix the build failure in some configurations:
      
           CC [M]  fs/btrfs/ctree.o
        In file included from fs/btrfs/ctree.c:21:0:
        fs/btrfs/ctree.h:1003:17: error: field 'super_kobj' has incomplete type
        fs/btrfs/ctree.h:1074:17: error: field 'root_kobj' has incomplete type
        make[2]: *** [fs/btrfs/ctree.o] Error 1
        make[1]: *** [fs/btrfs] Error 2
        make: *** [fs] Error 2
      
      caused by commit 57cc7215 ("headers: kobject.h redux")
      
      We need to include kobject.h here.
      Reported-by: NJeff Garzik <jeff@garzik.org>
      Fix-suggested-by: NLi Zefan <lizf@cn.fujitsu.com>
      Signed-off-by: NStefan Schmidt <stefan@datenfreihafen.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f8b18087
    • M
      btrfs: fix wrong free space information of btrfs · 6d07bcec
      Miao Xie 提交于
      When we store data by raid profile in btrfs with two or more different size
      disks, df command shows there is some free space in the filesystem, but the
      user can not write any data in fact, df command shows the wrong free space
      information of btrfs.
      
       # mkfs.btrfs -d raid1 /dev/sda9 /dev/sda10
       # btrfs-show
       Label: none  uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
       	Total devices 2 FS bytes used 28.00KB
       	devid    1 size 5.01GB used 2.03GB path /dev/sda9
       	devid    2 size 10.00GB used 2.01GB path /dev/sda10
       # btrfs device scan /dev/sda9 /dev/sda10
       # mount /dev/sda9 /mnt
       # dd if=/dev/zero of=tmpfile0 bs=4K count=9999999999
         (fill the filesystem)
       # sync
       # df -TH
       Filesystem	Type	Size	Used	Avail	Use%	Mounted on
       /dev/sda9	btrfs	17G	8.6G	5.4G	62%	/mnt
       # btrfs-show
       Label: none  uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
       	Total devices 2 FS bytes used 3.99GB
       	devid    1 size 5.01GB used 5.01GB path /dev/sda9
       	devid    2 size 10.00GB used 4.99GB path /dev/sda10
      
      It is because btrfs cannot allocate chunks when one of the pairing disks has
      no space, the free space on the other disks can not be used for ever, and should
      be subtracted from the total space, but btrfs doesn't subtract this space from
      the total. It is strange to the user.
      
      This patch fixes it by calcing the free space that can be used to allocate
      chunks.
      
      Implementation:
      1. get all the devices free space, and align them by stripe length.
      2. sort the devices by the free space.
      3. check the free space of the devices,
         3.1. if it is not zero, and then check the number of the devices that has
              more free space than this device,
              if the number of the devices is beyond the min stripe number, the free
              space can be used, and add into total free space.
              if the number of the devices is below the min stripe number, we can not
              use the free space, the check ends.
         3.2. if the free space is zero, check the next devices, goto 3.1
      
      This implementation is just likely fake chunk allocation.
      
      After appling this patch, df can show correct space information:
       # df -TH
       Filesystem	Type	Size	Used	Avail	Use%	Mounted on
       /dev/sda9	btrfs	17G	8.6G	0	100%	/mnt
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      6d07bcec
    • S
      fs/btrfs: Fix build of ctree · f580eb09
      Stefan Schmidt 提交于
      CC [M]  fs/btrfs/ctree.o
      In file included from fs/btrfs/ctree.c:21:0:
      fs/btrfs/ctree.h:1003:17: error: field <91>super_kobj<92> has incomplete type
      fs/btrfs/ctree.h:1074:17: error: field <91>root_kobj<92> has incomplete type
      make[2]: *** [fs/btrfs/ctree.o] Error 1
      make[1]: *** [fs/btrfs] Error 2
      make: *** [fs] Error 2
      
      We need to include kobject.h here.
      Reported-by: NJeff Garzik <jeff@garzik.org>
      Fix-suggested-by: NLi Zefan <lizf@cn.fujitsu.com>
      Signed-off-by: NStefan Schmidt <stefan@datenfreihafen.org>
      Signed-off-by: NChris Mason <chris.mason@oracle.com>
      f580eb09
  21. 07 1月, 2011 1 次提交