- 27 5月, 2020 2 次提交
-
-
由 Christoph Hellwig 提交于
Remove these now unused functions. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Add two new helpers to simplify I/O accounting for bio based drivers. Currently these drivers use the generic_start_io_acct and generic_end_io_acct helpers which have very cumbersome calling conventions, don't actually return the time they started accounting, and try to deal with accounting for partitions, which can't happen for bio based drivers. The new helpers will be used to subsequently replace uses of the old helpers. The main API is the bio based wrappes in blkdev.h, but for zram which wants to account rw_page based I/O lower level routines are provided as well. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 22 5月, 2020 2 次提交
-
-
由 Christoph Hellwig 提交于
Both of these never can be NULL for a live block device. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
The argument isn't used by any caller, and drivers don't fill out bi_sector for flush requests either. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 19 5月, 2020 10 次提交
-
-
由 Baolin Wang 提交于
The flush_queue_delayed was introdued to hold queue if flush is running for non-queueable flush drive by commit 3ac0cc45 ("hold queue if flush is running for non-queueable flush drive"), but the non mq parts of the flush code had been removed by commit 7e992f84 ("block: remove non mq parts from the flush code"), as well as removing the usage of the flush_queue_delayed flag. Thus remove the unused flush_queue_delayed flag. Signed-off-by: NBaolin Wang <baolin.wang7@gmail.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Bart Van Assche 提交于
This patch fixes the following sparse warnings: block/ioctl.c:209:16: warning: incorrect type in argument 1 (different address spaces) block/ioctl.c:209:16: expected void const volatile [noderef] <asn:1> * block/ioctl.c:209:16: got signed int [usertype] *argp block/ioctl.c:214:16: warning: incorrect type in argument 1 (different address spaces) block/ioctl.c:214:16: expected void const volatile [noderef] <asn:1> * block/ioctl.c:214:16: got unsigned int [usertype] *argp block/ioctl.c:666:40: warning: incorrect type in argument 1 (different address spaces) block/ioctl.c:666:40: expected signed int [usertype] *argp block/ioctl.c:666:40: got void [noderef] <asn:1> *argp block/ioctl.c:672:41: warning: incorrect type in argument 1 (different address spaces) block/ioctl.c:672:41: expected unsigned int [usertype] *argp block/ioctl.c:672:41: got void [noderef] <asn:1> *argp Fixes: 9b81648c ("compat_ioctl: simplify up block/ioctl.c") Signed-off-by: NBart Van Assche <bvanassche@acm.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Acked-by: NArnd Bergmann <arnd@arndb.de> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
part_inc_in_flight and part_dec_in_flight only have one caller each, and those callers are purely for bio based drivers. Merge each function into the only caller, and remove the superflous blk-mq checks. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
part_inc_in_flight and part_dec_in_flight are no-ops for blk-mq queues, so remove the calls in purely blk-mq callers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Don't bother to call part_in_flight / part_in_flight_rw on blk-mq devices, just call the blk-mq versions directly. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
blk_mq_make_request currently needs to grab an q_usage_counter reference when allocating a request. This is because the block layer grabs one before calling blk_mq_make_request, but also releases it as soon as blk_mq_make_request returns. Remove the blk_queue_exit call after blk_mq_make_request returns, and instead let it consume the reference. This works perfectly fine for the block layer caller, just device mapper needs an extra reference as the old problem still persists there. Open code blk_queue_enter_live in device mapper, as there should be no other callers and this allows better documenting why we do a non-try get. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
No need for two queue references. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
No need for two queue references. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Move the blk_queue_enter_live calls into the callers, where they can successively be cleaned up. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 14 5月, 2020 6 次提交
-
-
由 Satya Tangirala 提交于
Blk-crypto delegates crypto operations to inline encryption hardware when available. The separately configurable blk-crypto-fallback contains a software fallback to the kernel crypto API - when enabled, blk-crypto will use this fallback for en/decryption when inline encryption hardware is not available. This lets upper layers not have to worry about whether or not the underlying device has support for inline encryption before deciding to specify an encryption context for a bio. It also allows for testing without actual inline encryption hardware - in particular, it makes it possible to test the inline encryption code in ext4 and f2fs simply by running xfstests with the inlinecrypt mount option, which in turn allows for things like the regular upstream regression testing of ext4 to cover the inline encryption code paths. For more details, refer to Documentation/block/inline-encryption.rst. Signed-off-by: NSatya Tangirala <satyat@google.com> Reviewed-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Satya Tangirala 提交于
Whenever a device supports blk-integrity, make the kernel pretend that the device doesn't support inline encryption (essentially by setting the keyslot manager in the request queue to NULL). There's no hardware currently that supports both integrity and inline encryption. However, it seems possible that there will be such hardware in the near future (like the NVMe key per I/O support that might support both inline encryption and PI). But properly integrating both features is not trivial, and without real hardware that implements both, it is difficult to tell if it will be done correctly by the majority of hardware that support both. So it seems best not to support both features together right now, and to decide what to do at probe time. Signed-off-by: NSatya Tangirala <satyat@google.com> Reviewed-by: NEric Biggers <ebiggers@google.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Satya Tangirala 提交于
We must have some way of letting a storage device driver know what encryption context it should use for en/decrypting a request. However, it's the upper layers (like the filesystem/fscrypt) that know about and manages encryption contexts. As such, when the upper layer submits a bio to the block layer, and this bio eventually reaches a device driver with support for inline encryption, the device driver will need to have been told the encryption context for that bio. We want to communicate the encryption context from the upper layer to the storage device along with the bio, when the bio is submitted to the block layer. To do this, we add a struct bio_crypt_ctx to struct bio, which can represent an encryption context (note that we can't use the bi_private field in struct bio to do this because that field does not function to pass information across layers in the storage stack). We also introduce various functions to manipulate the bio_crypt_ctx and make the bio/request merging logic aware of the bio_crypt_ctx. We also make changes to blk-mq to make it handle bios with encryption contexts. blk-mq can merge many bios into the same request. These bios need to have contiguous data unit numbers (the necessary changes to blk-merge are also made to ensure this) - as such, it suffices to keep the data unit number of just the first bio, since that's all a storage driver needs to infer the data unit number to use for each data block in each bio in a request. blk-mq keeps track of the encryption context to be used for all the bios in a request with the request's rq_crypt_ctx. When the first bio is added to an empty request, blk-mq will program the encryption context of that bio into the request_queue's keyslot manager, and store the returned keyslot in the request's rq_crypt_ctx. All the functions to operate on encryption contexts are in blk-crypto.c. Upper layers only need to call bio_crypt_set_ctx with the encryption key, algorithm and data_unit_num; they don't have to worry about getting a keyslot for each encryption context, as blk-mq/blk-crypto handles that. Blk-crypto also makes it possible for request-based layered devices like dm-rq to make use of inline encryption hardware by cloning the rq_crypt_ctx and programming a keyslot in the new request_queue when necessary. Note that any user of the block layer can submit bios with an encryption context, such as filesystems, device-mapper targets, etc. Signed-off-by: NSatya Tangirala <satyat@google.com> Reviewed-by: NEric Biggers <ebiggers@google.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Satya Tangirala 提交于
Inline Encryption hardware allows software to specify an encryption context (an encryption key, crypto algorithm, data unit num, data unit size) along with a data transfer request to a storage device, and the inline encryption hardware will use that context to en/decrypt the data. The inline encryption hardware is part of the storage device, and it conceptually sits on the data path between system memory and the storage device. Inline Encryption hardware implementations often function around the concept of "keyslots". These implementations often have a limited number of "keyslots", each of which can hold a key (we say that a key can be "programmed" into a keyslot). Requests made to the storage device may have a keyslot and a data unit number associated with them, and the inline encryption hardware will en/decrypt the data in the requests using the key programmed into that associated keyslot and the data unit number specified with the request. As keyslots are limited, and programming keys may be expensive in many implementations, and multiple requests may use exactly the same encryption contexts, we introduce a Keyslot Manager to efficiently manage keyslots. We also introduce a blk_crypto_key, which will represent the key that's programmed into keyslots managed by keyslot managers. The keyslot manager also functions as the interface that upper layers will use to program keys into inline encryption hardware. For more information on the Keyslot Manager, refer to documentation found in block/keyslot-manager.c and linux/keyslot-manager.h. Co-developed-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NEric Biggers <ebiggers@google.com> Signed-off-by: NSatya Tangirala <satyat@google.com> Reviewed-by: NEric Biggers <ebiggers@google.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Tejun Heo 提交于
When the QoS targets are met and nothing is being throttled, there's no way to tell how saturated the underlying device is - it could be almost entirely idle, at the cusp of saturation or anywhere inbetween. Given that there's no information, it's best to keep vrate as-is in this state. Before 7cd806a9 ("iocost: improve nr_lagging handling"), this was the case - if the device isn't missing QoS targets and nothing is being throttled, busy_level was reset to zero. While fixing nr_lagging handling, 7cd806a9 ("iocost: improve nr_lagging handling") broke this. Now, while the device is hitting QoS targets and nothing is being throttled, vrate keeps getting adjusted according to the existing busy_level. This led to vrate keeping climing till it hits max when there's an IO issuer with limited request concurrency if the vrate started low. vrate starts getting adjusted upwards until the issuer can issue IOs w/o being throttled. From then on, QoS targets keeps getting met and nothing on the system needs throttling and vrate keeps getting increased due to the existing busy_level. This patch makes the following changes to the busy_level logic. * Reset busy_level if nr_shortages is zero to avoid the above scenario. * Make non-zero nr_lagging block lowering nr_level but still clear positive busy_level if there's clear non-saturation signal - QoS targets are met and nr_shortages is non-zero. nr_lagging's role is preventing adjusting vrate upwards while there are long-running commands and it shouldn't keep busy_level positive while there's clear non-saturation signal. * Restructure code for clarity and add comments. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NAndy Newell <newella@fb.com> Fixes: 7cd806a9 ("iocost: improve nr_lagging handling") Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
blk_io_schedule() isn't called from performance sensitive code path, and it is easier to maintain by exporting it as symbol. Also blk_io_schedule() is only called by CONFIG_BLOCK code, so it is safe to do this way. Meantime fixes build failure when CONFIG_BLOCK is off. Cc: Christoph Hellwig <hch@infradead.org> Fixes: e6249cdd ("block: add blk_io_schedule() for avoiding task hung in sync dio") Reported-by: NSatya Tangirala <satyat@google.com> Tested-by: NSatya Tangirala <satyat@google.com> Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 13 5月, 2020 9 次提交
-
-
由 Johannes Thumshirn 提交于
Export bio_release_pages and bio_iov_iter_get_pages, so they can be used from modular code. Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Damien Le Moal 提交于
Modify the interface of blk_revalidate_disk_zones() to add an optional driver callback function that a driver can use to extend processing done during zone revalidation. The callback, if defined, is executed with the device request queue frozen, after all zones have been inspected. Signed-off-by: NDamien Le Moal <damien.lemoal@wdc.com> Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Johannes Thumshirn 提交于
Introduce blk_req_zone_write_trylock(), which either grabs the write-lock for a sequential zone or returns false, if the zone is already locked. Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Keith Busch 提交于
Define REQ_OP_ZONE_APPEND to append-write sectors to a zone of a zoned block device. This is a no-merge write operation. A zone append write BIO must: * Target a zoned block device * Have a sector position indicating the start sector of the target zone * The target zone must be a sequential write zone * The BIO must not cross a zone boundary * The BIO size must not be split to ensure that a single range of LBAs is written with a single command. Implement these checks in generic_make_request_checks() using the helper function blk_check_zone_append(). To avoid write append BIO splitting, introduce the new max_zone_append_sectors queue limit attribute and ensure that a BIO size is always lower than this limit. Export this new limit through sysfs and check these limits in bio_full(). Also when a LLDD can't dispatch a request to a specific zone, it will return BLK_STS_ZONE_RESOURCE indicating this request needs to be delayed, e.g. because the zone it will be dispatched to is still write-locked. If this happens set the request aside in a local list to continue trying dispatching requests such as READ requests or a WRITE/ZONE_APPEND requests targetting other zones. This way we can still keep a high queue depth without starving other requests even if one request can't be served due to zone write-locking. Finally, make sure that the bio sector position indicates the actual write position as indicated by the device on completion. Signed-off-by: NKeith Busch <kbusch@kernel.org> [ jth: added zone-append specific add_page and merge_page helpers ] Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Rename __bio_add_pc_page() to bio_add_hw_page() and explicitly pass in a max_sectors argument. This max_sectors argument can be used to specify constraints from the hardware. Signed-off-by: NChristoph Hellwig <hch@lst.de> [ jth: rebased and made public for blk-map.c ] Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NDaniel Wagner <dwagner@suse.de> Reviewed-by: NMartin K. Petersen <martin.petersen@oracle.com> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
gendisk can't be gone when there is IO activity, so not hold part0's refcount in IO path. Signed-off-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@infradead.org> Cc: Yufen Yu <yuyufen@huawei.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hou Tao <houtao1@huawei.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
The seqcount of 'nr_sects_seq' is only needed in case of 32bit SMP, so define it just for 32bit SMP. Signed-off-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@infradead.org> Cc: Yufen Yu <yuyufen@huawei.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hou Tao <houtao1@huawei.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
delete_partition() clears the cached last_lookup partition. However the .last_lookup cache may be overwritten by one IO path after it is cleared from delete_partition(). Then another IO path may use the cached deleting partition after hd_struct_free() is called, then use-after-free is triggered on the cached partition. Fixes the issue by the following approach: 1) always get the partition's refcount via hd_struct_try_get() before setting .last_lookup 2) move clearing .last_lookup from delete_partition() to hd_struct_free() which is the release handle of the partition's percpu-refcount, so that no IO path can cache deleteing partition via .last_lookup. It is one candidate approach of Yufen's patch[1] which adds overhead in fast path by indirect lookup which may introduce one extra cacheline in IO path. Also this patch relies on percpu-refcount's protection, and it is easier to understand and verify. [1] https://lore.kernel.org/linux-block/20200109013551.GB9655@ming.t460p/T/#tReported-by: NYufen Yu <yuyufen@huawei.com> Signed-off-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@infradead.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hou Tao <houtao1@huawei.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Weiping Zhang 提交于
When we increase hardware queue count, blk_mq_update_queue_map will reset the mapping between cpu and hardware queue base on the hardware queue count(set->nr_hw_queues). The mapping cannot be reset if it encounters error in blk_mq_realloc_hw_ctxs, but the fallback flow will continue using it, then blk_mq_map_swqueue will touch a invalid memory, because the mapping points to a wrong hctx. blktest block/030: null_blk: module loaded Increasing nr_hw_queues to 8 fails, fallback to 1 ================================================================== BUG: KASAN: null-ptr-deref in blk_mq_map_swqueue+0x2f2/0x830 Read of size 8 at addr 0000000000000128 by task nproc/8541 CPU: 5 PID: 8541 Comm: nproc Not tainted 5.7.0-rc4-dbg+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack+0xa5/0xe6 __kasan_report.cold+0x65/0xbb kasan_report+0x45/0x60 check_memory_region+0x15e/0x1c0 __kasan_check_read+0x15/0x20 blk_mq_map_swqueue+0x2f2/0x830 __blk_mq_update_nr_hw_queues+0x3df/0x690 blk_mq_update_nr_hw_queues+0x32/0x50 nullb_device_submit_queues_store+0xde/0x160 [null_blk] configfs_write_file+0x1c4/0x250 [configfs] __vfs_write+0x4c/0x90 vfs_write+0x14b/0x2d0 ksys_write+0xdd/0x180 __x64_sys_write+0x47/0x50 do_syscall_64+0x6f/0x310 entry_SYSCALL_64_after_hwframe+0x49/0xb3 Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Tested-by: NBart van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 10 5月, 2020 9 次提交
-
-
由 Christoph Hellwig 提交于
The name is only printed for a not registered bdi in writeback. Use the device name there as is more useful anyway for the unlike case that the warning triggers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Merge the _node vs normal version and drop the superflous gfp_t argument. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Christoph Hellwig 提交于
Split out a new bdi_set_owner helper to set the owner, and move the policy for creating the bdi name back into genhd.c, where it belongs. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Weiping Zhang 提交于
rename blk_mq_alloc_rq_maps to blk_mq_alloc_map_and_requests, this function allocs both map and request, make function name align with funtion. Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Weiping Zhang 提交于
rename __blk_mq_alloc_rq_map to __blk_mq_alloc_map_and_request, actually it alloc both map and request, make function name align with function. Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Ming Lei 提交于
Alloc new map and request for new hardware queue when increse hardware queue count. Before this patch, it will show a warning for each new hardware queue, but it's not enough, these hctx have no maps and reqeust, when a bio was mapped to these hardware queue, it will trigger kernel panic when get request from these hctx. Test environment: * A NVMe disk supports 128 io queues * 96 cpus in system A corner case can always trigger this panic, there are 96 io queues allocated for HCTX_TYPE_DEFAULT type, the corresponding kernel log: nvme nvme0: 96/0/0 default/read/poll queues. Now we set nvme write queues to 96, then nvme will alloc others(32) queues for read, but blk_mq_update_nr_hw_queues does not alloc map and request for these new added io queues. So when process read nvme disk, it will trigger kernel panic when get request from these hardware context. Reproduce script: nr=$(expr `cat /sys/block/nvme0n1/device/queue_count` - 1) echo $nr > /sys/module/nvme/parameters/write_queues echo 1 > /sys/block/nvme0n1/device/reset_controller dd if=/dev/nvme0n1 of=/dev/null bs=4K count=1 [ 8040.805626] ------------[ cut here ]------------ [ 8040.805627] WARNING: CPU: 82 PID: 12921 at block/blk-mq.c:2578 blk_mq_map_swqueue+0x2b6/0x2c0 [ 8040.805627] Modules linked in: nvme nvme_core nf_conntrack_netlink xt_addrtype br_netfilter overlay xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nft_counter nf_nat_tftp nf_conntrack_tftp nft_masq nf_tables_set nft_fib_inet nft_f ib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack tun bridge nf_defrag_ipv6 nf_defrag_ipv4 stp llc ip6_tables ip_tables nft_compat rfkill ip_set nf_tables nfne tlink sunrpc intel_rapl_msr intel_rapl_common skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass ipmi_ssif crct10dif_pclmul crc32_pclmul iTCO_wdt iTCO_vendor_support ghash_clmulni_intel intel_ cstate intel_uncore raid0 joydev intel_rapl_perf ipmi_si pcspkr mei_me ioatdma sg ipmi_devintf mei i2c_i801 dca lpc_ich ipmi_msghandler acpi_power_meter acpi_pad xfs libcrc32c sd_mod ast i2c_algo_bit drm_vram_helper drm_ttm_helper ttm d rm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops [ 8040.805637] ahci drm i40e libahci crc32c_intel libata t10_pi wmi dm_mirror dm_region_hash dm_log dm_mod [last unloaded: nvme_core] [ 8040.805640] CPU: 82 PID: 12921 Comm: kworker/u194:2 Kdump: loaded Tainted: G W 5.6.0-rc5.78317c+ #2 [ 8040.805640] Hardware name: Inspur SA5212M5/YZMB-00882-104, BIOS 4.0.9 08/27/2019 [ 8040.805641] Workqueue: nvme-reset-wq nvme_reset_work [nvme] [ 8040.805642] RIP: 0010:blk_mq_map_swqueue+0x2b6/0x2c0 [ 8040.805643] Code: 00 00 00 00 00 41 83 c5 01 44 39 6d 50 77 b8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 8b bb 98 00 00 00 89 d6 e8 8c 81 03 00 eb 83 <0f> 0b e9 52 ff ff ff 0f 1f 00 0f 1f 44 00 00 41 57 48 89 f1 41 56 [ 8040.805643] RSP: 0018:ffffba590d2e7d48 EFLAGS: 00010246 [ 8040.805643] RAX: 0000000000000000 RBX: ffff9f013e1ba800 RCX: 000000000000003d [ 8040.805644] RDX: ffff9f00ffff6000 RSI: 0000000000000003 RDI: ffff9ed200246d90 [ 8040.805644] RBP: ffff9f00f6a79860 R08: 0000000000000000 R09: 000000000000003d [ 8040.805645] R10: 0000000000000001 R11: ffff9f0138c3d000 R12: ffff9f00fb3a9008 [ 8040.805645] R13: 000000000000007f R14: ffffffff96822660 R15: 000000000000005f [ 8040.805645] FS: 0000000000000000(0000) GS:ffff9f013fa80000(0000) knlGS:0000000000000000 [ 8040.805646] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8040.805646] CR2: 00007f7f397fa6f8 CR3: 0000003d8240a002 CR4: 00000000007606e0 [ 8040.805647] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 8040.805647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 8040.805647] PKRU: 55555554 [ 8040.805647] Call Trace: [ 8040.805649] blk_mq_update_nr_hw_queues+0x31b/0x390 [ 8040.805650] nvme_reset_work+0xb4b/0xeab [nvme] [ 8040.805651] process_one_work+0x1a7/0x370 [ 8040.805652] worker_thread+0x1c9/0x380 [ 8040.805653] ? max_active_store+0x80/0x80 [ 8040.805655] kthread+0x112/0x130 [ 8040.805656] ? __kthread_parkme+0x70/0x70 [ 8040.805657] ret_from_fork+0x35/0x40 [ 8040.805658] ---[ end trace b5f13b1e73ccb5d3 ]--- [ 8229.365135] BUG: kernel NULL pointer dereference, address: 0000000000000004 [ 8229.365165] #PF: supervisor read access in kernel mode [ 8229.365178] #PF: error_code(0x0000) - not-present page [ 8229.365191] PGD 0 P4D 0 [ 8229.365201] Oops: 0000 [#1] SMP PTI [ 8229.365212] CPU: 77 PID: 13024 Comm: dd Kdump: loaded Tainted: G W 5.6.0-rc5.78317c+ #2 [ 8229.365232] Hardware name: Inspur SA5212M5/YZMB-00882-104, BIOS 4.0.9 08/27/2019 [ 8229.365253] RIP: 0010:blk_mq_get_tag+0x227/0x250 [ 8229.365265] Code: 44 24 04 44 01 e0 48 8b 74 24 38 65 48 33 34 25 28 00 00 00 75 33 48 83 c4 40 5b 5d 41 5c 41 5d 41 5e c3 48 8d 68 10 4c 89 ef <44> 8b 60 04 48 89 ee e8 dd f9 ff ff 83 f8 ff 75 c8 e9 67 fe ff ff [ 8229.365304] RSP: 0018:ffffba590e977970 EFLAGS: 00010246 [ 8229.365317] RAX: 0000000000000000 RBX: ffff9f00f6a79860 RCX: ffffba590e977998 [ 8229.365333] RDX: 0000000000000000 RSI: ffff9f012039b140 RDI: ffffba590e977a38 [ 8229.365349] RBP: 0000000000000010 R08: ffffda58ff94e190 R09: ffffda58ff94e198 [ 8229.365365] R10: 0000000000000011 R11: ffff9f00f6a79860 R12: 0000000000000000 [ 8229.365381] R13: ffffba590e977a38 R14: ffff9f012039b140 R15: 0000000000000001 [ 8229.365397] FS: 00007f481c230580(0000) GS:ffff9f013f940000(0000) knlGS:0000000000000000 [ 8229.365415] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8229.365428] CR2: 0000000000000004 CR3: 0000005f35e26004 CR4: 00000000007606e0 [ 8229.365444] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 8229.365460] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 8229.365476] PKRU: 55555554 [ 8229.365484] Call Trace: [ 8229.365498] ? finish_wait+0x80/0x80 [ 8229.365512] blk_mq_get_request+0xcb/0x3f0 [ 8229.365525] blk_mq_make_request+0x143/0x5d0 [ 8229.365538] generic_make_request+0xcf/0x310 [ 8229.365553] ? scan_shadow_nodes+0x30/0x30 [ 8229.365564] submit_bio+0x3c/0x150 [ 8229.365576] mpage_readpages+0x163/0x1a0 [ 8229.365588] ? blkdev_direct_IO+0x490/0x490 [ 8229.365601] read_pages+0x6b/0x190 [ 8229.365612] __do_page_cache_readahead+0x1c1/0x1e0 [ 8229.365626] ondemand_readahead+0x182/0x2f0 [ 8229.365639] generic_file_buffered_read+0x590/0xab0 [ 8229.365655] new_sync_read+0x12a/0x1c0 [ 8229.365666] vfs_read+0x8a/0x140 [ 8229.365676] ksys_read+0x59/0xd0 [ 8229.365688] do_syscall_64+0x55/0x1d0 [ 8229.365700] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Tested-by: NWeiping Zhang <zhangweiping@didiglobal.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Weiping Zhang 提交于
blk_mq_realloc_tag_set_tags will update set->nr_hw_queues, so save old set->nr_hw_queues before call this function. Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Weiping Zhang 提交于
Allocation: __blk_mq_alloc_rq_map blk_mq_alloc_rq_map blk_mq_alloc_rq_map tags = blk_mq_init_tags : kzalloc_node: tags->rqs = kcalloc_node tags->static_rqs = kcalloc_node blk_mq_alloc_rqs p = alloc_pages_node tags->static_rqs[i] = p + offset; Free: blk_mq_free_rq_map kfree(tags->rqs); kfree(tags->static_rqs); blk_mq_free_tags kfree(tags); The page allocated in blk_mq_alloc_rqs cannot be released, so we should use blk_mq_free_map_and_requests here. blk_mq_free_map_and_requests blk_mq_free_rqs __free_pages : cleanup for blk_mq_alloc_rqs blk_mq_free_rq_map : cleanup for blk_mq_alloc_rq_map Signed-off-by: NWeiping Zhang <zhangweiping@didiglobal.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NHannes Reinecke <hare@suse.de> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
由 Yufen Yu 提交于
Use the common interface bdi_dev_name() to get device name. Signed-off-by: NYufen Yu <yuyufen@huawei.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NBart Van Assche <bvanassche@acm.org> Add missing <linux/backing-dev.h> include BFQ Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 05 5月, 2020 1 次提交
-
-
由 Tejun Heo 提交于
abs_vdebt is an atomic_64 which tracks how much over budget a given cgroup is and controls the activation of use_delay mechanism. Once a cgroup goes over budget from forced IOs, it has to pay it back with its future budget. The progress guarantee on debt paying comes from the iocg being active - active iocgs are processed by the periodic timer, which ensures that as time passes the debts dissipate and the iocg returns to normal operation. However, both iocg activation and vdebt handling are asynchronous and a sequence like the following may happen. 1. The iocg is in the process of being deactivated by the periodic timer. 2. A bio enters ioc_rqos_throttle(), calls iocg_activate() which returns without anything because it still sees that the iocg is already active. 3. The iocg is deactivated. 4. The bio from #2 is over budget but needs to be forced. It increases abs_vdebt and goes over the threshold and enables use_delay. 5. IO control is enabled for the iocg's subtree and now IOs are attributed to the descendant cgroups and the iocg itself no longer issues IOs. This leaves the iocg with stuck abs_vdebt - it has debt but inactive and no further IOs which can activate it. This can end up unduly punishing all the descendants cgroups. The usual throttling path has the same issue - the iocg must be active while throttled to ensure that future event will wake it up - and solves the problem by synchronizing the throttling path with a spinlock. abs_vdebt handling is another form of overage handling and shares a lot of characteristics including the fact that it isn't in the hottest path. This patch fixes the above and other possible races by strictly synchronizing abs_vdebt and use_delay handling with iocg->waitq.lock. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NVlad Dmitriev <vvd@fb.com> Cc: stable@vger.kernel.org # v5.4+ Fixes: e1518f63 ("blk-iocost: Don't let merges push vtime into the future") Signed-off-by: NJens Axboe <axboe@kernel.dk>
-
- 01 5月, 2020 1 次提交
-
-
由 Tejun Heo 提交于
On each IO completion, iocost decides whether the IO met or missed its latency target. Currently, the targets are fixed numbers per IO type. While this can be good enough for loose latency targets way higher than typical completion latencies, the effect of IO size makes it difficult to tighten the latency target - a target adequate for 4k IOs might be too tight for 512k IOs and vice-versa. iocost already has all the necessary information to account for different IO sizes when testing whether the latency target is met as iocost can calculate the size vtime cost of a given IO. This patch updates the completion path to calculate the size vtime cost of the IO, deduct the nsec equivalent from the observed latency and use the adjusted value to decide whether the target is met. This makes latency targets independent from IO size and enables determining adequate latency targets with fixed size fio runs. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Andy Newell <newella@fb.com> Signed-off-by: NJens Axboe <axboe@kernel.dk>
-