- 17 1月, 2022 1 次提交
-
-
由 NeilBrown 提交于
Prior to Linux v5.4 devtmpfs used mount_single() which treats the given mount options as "remount" options, so it updates the configuration of the single super_block on each mount. Since that was changed, the mount options used for devtmpfs are ignored. This is a regression which affect systemd - which mounts devtmpfs with "-o mode=755,size=4m,nr_inodes=1m". This patch restores the "remount" effect by calling reconfigure_single() Fixes: d401727e ("devtmpfs: don't mix {ramfs,shmem}_fill_super() with mount_single()") Acked-by: NChristian Brauner <christian.brauner@ubuntu.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NNeilBrown <neilb@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 1月, 2022 38 次提交
-
-
由 Guoqing Jiang 提交于
Usually, inline function is declared static since it should sit between storage and type. And implement it in a header file if used by multiple files. And this change also fixes compile issue when backport damon to 5.10. mm/damon/vaddr.c: In function `damon_va_evenly_split_region': ./include/linux/damon.h:425:13: error: inlining failed in call to `always_inline' `damon_insert_region': function body not available 425 | inline void damon_insert_region(struct damon_region *r, | ^~~~~~~~~~~~~~~~~~~ mm/damon/vaddr.c:86:3: note: called from here 86 | damon_insert_region(n, r, next, t); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Link: https://lkml.kernel.org/r/20211223085703.6142-1-guoqing.jiang@linux.devSigned-off-by: NGuoqing Jiang <guoqing.jiang@linux.dev> Reviewed-by: NSeongJae Park <sj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 SeongJae Park 提交于
If the time/space quotas of a given DAMON-based operation scheme is too small, the scheme could show unexpectedly slow progress. However, there is no good way to notice the case in runtime. This commit extends the DAMOS stat to provide how many times the quota limits exceeded so that the users can easily notice the case and tune the scheme. Link: https://lkml.kernel.org/r/20211210150016.35349-3-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 SeongJae Park 提交于
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning". To help online access pattern analysis and tuning of DAMON-based Operation Schemes (DAMOS), DAMOS provides simple statistics for each scheme. Introduction of DAMOS time/space quota further made the tuning easier by making the risk management easier. However, that also made understanding of the working schemes a little bit more difficult. For an example, progress of a given scheme can now be throttled by not only the aggressiveness of the target access pattern, but also the time/space quotas. So, when a scheme is showing unexpectedly slow progress, it's difficult to know by what the progress of the scheme is throttled, with currently provided statistics. This patchset extends the statistics to contain some metrics that can be helpful for such online schemes analysis and tuning (patches 1-2), exports those to users (patches 3 and 5), and add documents (patches 4 and 6). This patch (of 6): DAMON-based operation schemes (DAMOS) stats provide only the number and the amount of regions that the action of the scheme has tried to be applied. Because the action could be failed for some reasons, the currently provided information is sometimes not useful or convenient enough for schemes profiling and tuning. To improve this situation, this commit extends the DAMOS stats to provide the number and the amount of regions that the action has successfully applied. Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 SeongJae Park 提交于
Due to a mistake in patches reordering, a comment for a future feature called 'arbitrary monitoring target support'[1], which is still under development, has added. Because it only introduces confusion and we don't have a plan to post the patches soon, this commit removes the mistakenly added part. [1] https://lore.kernel.org/linux-mm/20201215115448.25633-3-sjpark@amazon.com/ Link: https://lkml.kernel.org/r/20211209131806.19317-7-sj@kernel.org Fixes: 1f366e42 ("mm/damon/core: implement DAMON-based Operation Schemes (DAMOS)") Signed-off-by: NSeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 SeongJae Park 提交于
Patch series "mm/damon: Misc cleanups". This patchset contains miscellaneous cleanups for DAMON's macro functions and documentation. This patch (of 6): This commit converts macro functions in DAMON to static inline functions, for better type checking, code documentation, etc[1]. [1] https://lore.kernel.org/linux-mm/20211202151213.6ec830863342220da4141bc5@linux-foundation.org/ Link: https://lkml.kernel.org/r/20211209131806.19317-1-sj@kernel.org Link: https://lkml.kernel.org/r/20211209131806.19317-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xin Hao 提交于
damon_rand() cannot be implemented as a macro. Example: damon_rand(a++, b); The value of 'a' will be incremented twice, This is obviously unreasonable, So there fix it. Link: https://lkml.kernel.org/r/110ffcd4e420c86c42b41ce2bc9f0fe6a4f32cd3.1638795127.git.xhao@linux.alibaba.com Fixes: b9a6ac4e ("mm/damon: adaptively adjust regions") Signed-off-by: NXin Hao <xhao@linux.alibaba.com> Reported-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NSeongJae Park <sj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xin Hao 提交于
damon_rand() is called in three files:damon/core.c, damon/ paddr.c, damon/vaddr.c, i think there is no need to redefine this twice, So move it to damon.h will be a good choice. Link: https://lkml.kernel.org/r/20211202075859.51341-1-xhao@linux.alibaba.comSigned-off-by: NXin Hao <xhao@linux.alibaba.com> Reviewed-by: NSeongJae Park <sj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xin Hao 提交于
In damon.h some func definitions about VA & PA can only be used in its own file, so there no need to define in the header file, and the header file will look cleaner. If other files later need these functions, the prototypes can be added to damon.h at that time. [sj@kernel.org: remove unnecessary function prototype position changes] Link: https://lkml.kernel.org/r/20211118114827.20052-1-sj@kernel.org Link: https://lkml.kernel.org/r/45fd5b3ef6cce8e28dbc1c92f9dc845ccfc949d7.1636989871.git.xhao@linux.alibaba.comSigned-off-by: NXin Hao <xhao@linux.alibaba.com> Signed-off-by: NSeongJae Park <sj@kernel.org> Reviewed-by: NSeongJae Park <sj@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ting Liu 提交于
"page_idle_ops" as a global var, but its scope of use within this document. So it should be static. "page_ext_ops" is a var used in the kernel initial phase. And other functions are aslo used in the kernel initial phase. So they should be __init or __initdata to reclaim memory. Link: https://lkml.kernel.org/r/20211217095023.67293-1-liuting.0x7c00@bytedance.comSigned-off-by: NTing Liu <liuting.0x7c00@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Huang Ying 提交于
In theory, the following race is possible for batched TLB flushing. CPU0 CPU1 ---- ---- shrink_page_list() unmap zap_pte_range() flush_tlb_batched_pending() flush_tlb_mm() try_to_unmap() set_tlb_ubc_flush_pending() mm->tlb_flush_batched = true mm->tlb_flush_batched = false After the TLB is flushed on CPU1 via flush_tlb_mm() and before mm->tlb_flush_batched is set to false, some PTE is unmapped on CPU0 and the TLB flushing is pended. Then the pended TLB flushing will be lost. Although both set_tlb_ubc_flush_pending() and flush_tlb_batched_pending() are called with PTL locked, different PTL instances may be used. Because the race window is really small, and the lost TLB flushing will cause problem only if a TLB entry is inserted before the unmapping in the race window, the race is only theoretical. But the fix is simple and cheap too. Syzbot has reported this too as follows: ================================================================== BUG: KCSAN: data-race in flush_tlb_batched_pending / try_to_unmap_one write to 0xffff8881072cfbbc of 1 bytes by task 17406 on cpu 1: flush_tlb_batched_pending+0x5f/0x80 mm/rmap.c:691 madvise_free_pte_range+0xee/0x7d0 mm/madvise.c:594 walk_pmd_range mm/pagewalk.c:128 [inline] walk_pud_range mm/pagewalk.c:205 [inline] walk_p4d_range mm/pagewalk.c:240 [inline] walk_pgd_range mm/pagewalk.c:277 [inline] __walk_page_range+0x981/0x1160 mm/pagewalk.c:379 walk_page_range+0x131/0x300 mm/pagewalk.c:475 madvise_free_single_vma mm/madvise.c:734 [inline] madvise_dontneed_free mm/madvise.c:822 [inline] madvise_vma mm/madvise.c:996 [inline] do_madvise+0xe4a/0x1140 mm/madvise.c:1202 __do_sys_madvise mm/madvise.c:1228 [inline] __se_sys_madvise mm/madvise.c:1226 [inline] __x64_sys_madvise+0x5d/0x70 mm/madvise.c:1226 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae write to 0xffff8881072cfbbc of 1 bytes by task 71 on cpu 0: set_tlb_ubc_flush_pending mm/rmap.c:636 [inline] try_to_unmap_one+0x60e/0x1220 mm/rmap.c:1515 rmap_walk_anon+0x2fb/0x470 mm/rmap.c:2301 try_to_unmap+0xec/0x110 shrink_page_list+0xe91/0x2620 mm/vmscan.c:1719 shrink_inactive_list+0x3fb/0x730 mm/vmscan.c:2394 shrink_list mm/vmscan.c:2621 [inline] shrink_lruvec+0x3c9/0x710 mm/vmscan.c:2940 shrink_node_memcgs+0x23e/0x410 mm/vmscan.c:3129 shrink_node+0x8f6/0x1190 mm/vmscan.c:3252 kswapd_shrink_node mm/vmscan.c:4022 [inline] balance_pgdat+0x702/0xd30 mm/vmscan.c:4213 kswapd+0x200/0x340 mm/vmscan.c:4473 kthread+0x2c7/0x2e0 kernel/kthread.c:327 ret_from_fork+0x1f/0x30 value changed: 0x01 -> 0x00 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 71 Comm: kswapd0 Not tainted 5.16.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 ================================================================== [akpm@linux-foundation.org: tweak comments] Link: https://lkml.kernel.org/r/20211201021104.126469-1-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Reported-by: syzbot+aa5bebed695edaccf0df@syzkaller.appspotmail.com Cc: Nadav Amit <namit@vmware.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Marco Elver <elver@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
After recent soft-offline rework, error pages can be taken off from buddy allocator, but the existing unpoison_memory() does not properly undo the operation. Moreover, due to the recent change on __get_hwpoison_page(), get_page_unless_zero() is hardly called for hwpoisoned pages. So __get_hwpoison_page() highly likely returns -EBUSY (meaning to fail to grab page refcount) and unpoison just clears PG_hwpoison without releasing a refcount. That does not lead to a critical issue like kernel panic, but unpoisoned pages never get back to buddy (leaked permanently), which is not good. To (partially) fix this, we need to identify "taken off" pages from other types of hwpoisoned pages. We can't use refcount or page flags for this purpose, so a pseudo flag is defined by hacking ->private field. Someone might think that put_page() is enough to cancel taken-off pages, but the normal free path contains some operations not suitable for the current purpose, and can fire VM_BUG_ON(). Note that unpoison_memory() is now supposed to be cancel hwpoison events injected only by madvise() or /sys/devices/system/memory/{hard,soft}_offline_page, not by MCE injection, so please don't try to use unpoison when testing with MCE injection. [lkp@intel.com: report build failure for ARCH=i386] Link: https://lkml.kernel.org/r/20211115084006.3728254-4-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Ding Hui <dinghui@sangfor.com.cn> Cc: Tony Luck <tony.luck@intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
These action_page_types are no longer used, so remove them. Link: https://lkml.kernel.org/r/20211115084006.3728254-3-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Acked-by: NYang Shi <shy828301@gmail.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ding Hui <dinghui@sangfor.com.cn> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Link: https://lkml.kernel.org/r/20211202123810.267175-4-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Ben Widawsky <ben.widawsky@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
This syscall can be used to set a home node for the MPOL_BIND and MPOL_PREFERRED_MANY memory policy. Users should use this syscall after setting up a memory policy for the specified range as shown below. mbind(p, nr_pages * page_size, MPOL_BIND, new_nodes->maskp, new_nodes->size + 1, 0); sys_set_mempolicy_home_node((unsigned long)p, nr_pages * page_size, home_node, 0); The syscall allows specifying a home node/preferred node from which kernel will fulfill memory allocation requests first. For address range with MPOL_BIND memory policy, if nodemask specifies more than one node, page allocations will come from the node in the nodemask with sufficient free memory that is closest to the home node/preferred node. For MPOL_PREFERRED_MANY if the nodemask specifies more than one node, page allocation will come from the node in the nodemask with sufficient free memory that is closest to the home node/preferred node. If there is not enough memory in all the nodes specified in the nodemask, the allocation will be attempted from the closest numa node to the home node in the system. This helps applications to hint at a memory allocation preference node and fallback to _only_ a set of nodes if the memory is not available on the preferred node. Fallback allocation is attempted from the node which is nearest to the preferred node. This helps applications to have control on memory allocation numa nodes and avoids default fallback to slow memory NUMA nodes. For example a system with NUMA nodes 1,2 and 3 with DRAM memory and 10, 11 and 12 of slow memory new_nodes = numa_bitmask_alloc(nr_nodes); numa_bitmask_setbit(new_nodes, 1); numa_bitmask_setbit(new_nodes, 2); numa_bitmask_setbit(new_nodes, 3); p = mmap(NULL, nr_pages * page_size, protflag, mapflag, -1, 0); mbind(p, nr_pages * page_size, MPOL_BIND, new_nodes->maskp, new_nodes->size + 1, 0); sys_set_mempolicy_home_node(p, nr_pages * page_size, 2, 0); This will allocate from nodes closer to node 2 and will make sure the kernel will only allocate from nodes 1, 2, and 3. Memory will not be allocated from slow memory nodes 10, 11, and 12. This differs from default MPOL_BIND behavior in that with default MPOL_BIND the allocation will be attempted from node closer to the local node. One of the reasons to specify a home node is to allow allocations from cpu less NUMA node and its nearby NUMA nodes. With MPOL_PREFERRED_MANY on the other hand will first try to allocate from the closest node to node 2 from the node list 1, 2 and 3. If those nodes don't have enough memory, kernel will allocate from slow memory node 10, 11 and 12 which ever is closer to node 2. Link: https://lkml.kernel.org/r/20211202123810.267175-3-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Ben Widawsky <ben.widawsky@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gang Li 提交于
drop_slab_node is only used in drop_slab. So remove it's declaration from header file and add keyword static for it's definition. Link: https://lkml.kernel.org/r/20211111062445.5236-1-ligang.bdlg@bytedance.comSigned-off-by: NGang Li <ligang.bdlg@bytedance.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NMuchun Song <songmuchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Yang 提交于
There are interfaces to adjust max_ptes_none, max_ptes_swap, max_ptes_shared values, see /sys/kernel/mm/transparent_hugepage/khugepaged/. But system administrator may not know which value is the best. So Add those events to support adjusting max_ptes_* to suitable values. For example, if default max_ptes_swap value causes too much failures, and system uses zram whose IO is fast, administrator could increase max_ptes_swap until THP_SCAN_EXCEED_SWAP_PTE not increase anymore. Link: https://lkml.kernel.org/r/20211225094036.574157-1-yang.yang29@zte.com.cnSigned-off-by: NYang Yang <yang.yang29@zte.com.cn> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Saravanan D <saravanand@fb.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mina Almasry 提交于
For hugetlb backed jobs/VMs it's critical to understand the numa information for the memory backing these jobs to deliver optimal performance. Currently this technically can be queried from /proc/self/numa_maps, but there are significant issues with that. Namely: 1. Memory can be mapped or unmapped. 2. numa_maps are per process and need to be aggregated across all processes in the cgroup. For shared memory this is more involved as the userspace needs to make sure it doesn't double count shared mappings. 3. I believe querying numa_maps needs to hold the mmap_lock which adds to the contention on this lock. For these reasons I propose simply adding hugetlb.*.numa_stat file, which shows the numa information of the cgroup similarly to memory.numa_stat. On cgroup-v2: cat /sys/fs/cgroup/unified/test/hugetlb.2MB.numa_stat total=2097152 N0=2097152 N1=0 On cgroup-v1: cat /sys/fs/cgroup/hugetlb/test/hugetlb.2MB.numa_stat total=2097152 N0=2097152 N1=0 hierarichal_total=2097152 N0=2097152 N1=0 This patch was tested manually by allocating hugetlb memory and querying the hugetlb.*.numa_stat file of the cgroup and its parents. [colin.i.king@googlemail.com: fix spelling mistake "hierarichal" -> "hierarchical"] Link: https://lkml.kernel.org/r/20211125090635.23508-1-colin.i.king@gmail.com [keescook@chromium.org: fix copy/paste array assignment] Link: https://lkml.kernel.org/r/20211203065647.2819707-1-keescook@chromium.org Link: https://lkml.kernel.org/r/20211123001020.4083653-1-almasrymina@google.comSigned-off-by: NMina Almasry <almasrymina@google.com> Signed-off-by: NColin Ian King <colin.i.king@gmail.com> Signed-off-by: NKees Cook <keescook@chromium.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Jue Wang <juew@google.com> Cc: Yang Yao <ygyao@google.com> Cc: Joanna Li <joannali@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Baoquan He 提交于
Patch series "Handle warning of allocation failure on DMA zone w/o managed pages", v4. **Problem observed: On x86_64, when crash is triggered and entering into kdump kernel, page allocation failure can always be seen. --------------------------------- DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0 CPU: 0 PID: 1 Comm: swapper/0 Call Trace: dump_stack+0x7f/0xa1 warn_alloc.cold+0x72/0xd6 ...... __alloc_pages+0x24d/0x2c0 ...... dma_atomic_pool_init+0xdb/0x176 do_one_initcall+0x67/0x320 ? rcu_read_lock_sched_held+0x3f/0x80 kernel_init_freeable+0x290/0x2dc ? rest_init+0x24f/0x24f kernel_init+0xa/0x111 ret_from_fork+0x22/0x30 Mem-Info: ------------------------------------ ***Root cause: In the current kernel, it assumes that DMA zone must have managed pages and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not always true. E.g in kdump kernel of x86_64, only low 1M is presented and locked down at very early stage of boot, so that this low 1M won't be added into buddy allocator to become managed pages of DMA zone. This exception will always cause page allocation failure if page is requested from DMA zone. ***Investigation: This failure happens since below commit merged into linus's tree. 1a6a9044 x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options 23721c8e x86/crash: Remove crash_reserve_low_1M() f1d4d47c x86/setup: Always reserve the first 1M of RAM 7c321eb2 x86/kdump: Remove the backup region handling 6f599d84 x86/kdump: Always reserve the low 1M when the crashkernel option is specified Before them, on x86_64, the low 640K area will be reused by kdump kernel. So in kdump kernel, the content of low 640K area is copied into a backup region for dumping before jumping into kdump. Then except of those firmware reserved region in [0, 640K], the left area will be added into buddy allocator to become available managed pages of DMA zone. However, after above commits applied, in kdump kernel of x86_64, the low 1M is reserved by memblock, but not released to buddy allocator. So any later page allocation requested from DMA zone will fail. At the beginning, if crashkernel is reserved, the low 1M need be locked down because AMD SME encrypts memory making the old backup region mechanims impossible when switching into kdump kernel. Later, it was also observed that there are BIOSes corrupting memory under 1M. To solve this, in commit f1d4d47c, the entire region of low 1M is always reserved after the real mode trampoline is allocated. Besides, recently, Intel engineer mentioned their TDX (Trusted domain extensions) which is under development in kernel also needs to lock down the low 1M. So we can't simply revert above commits to fix the page allocation failure from DMA zone as someone suggested. ***Solution: Currently, only DMA atomic pool and dma-kmalloc will initialize and request page allocation with GFP_DMA during bootup. So only initializ DMA atomic pool when DMA zone has available managed pages, otherwise just skip the initialization. For dma-kmalloc(), for the time being, let's mute the warning of allocation failure if requesting pages from DMA zone while no manged pages. Meanwhile, change code to use dma_alloc_xx/dma_map_xx API to replace kmalloc(GFP_DMA), or do not use GFP_DMA when calling kmalloc() if not necessary. Christoph is posting patches to fix those under drivers/scsi/. Finally, we can remove the need of dma-kmalloc() as people suggested. This patch (of 3): In some places of the current kernel, it assumes that dma zone must have managed pages if CONFIG_ZONE_DMA is enabled. While this is not always true. E.g in kdump kernel of x86_64, only low 1M is presented and locked down at very early stage of boot, so that there's no managed pages at all in DMA zone. This exception will always cause page allocation failure if page is requested from DMA zone. Here add function has_managed_dma() and the relevant helper functions to check if there's DMA zone with managed pages. It will be used in later patches. Link: https://lkml.kernel.org/r/20211223094435.248523-1-bhe@redhat.com Link: https://lkml.kernel.org/r/20211223094435.248523-2-bhe@redhat.com Fixes: 6f599d84 ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified") Signed-off-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJohn Donnelly <john.p.donnelly@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Laight <David.Laight@ACULAB.COM> Cc: Borislav Petkov <bp@alien8.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miles Chen 提交于
kmalloc(..., GFP_DMA32) does not return DMA32 memory because the DMA32 kmalloc cache array is not implemented. (Reason: there is no such user in kernel). Put a short comment about this so people can understand this by reading the comment. [1] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html Link: https://lkml.kernel.org/r/20211207093610.6406-1-miles.chen@mediatek.comSigned-off-by: NMiles Chen <miles.chen@mediatek.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
alloc_pages_vma is meant to allocate a page with a vma specific memory policy. The initial node parameter is always a local node so it is pointless to waste a function argument for this. Drop the parameter. Link: https://lkml.kernel.org/r/YaSnlv4QpryEpesG@dhcp22.suse.czSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Ben Widawsky <ben.widawsky@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Changcheng Deng 提交于
Return statements in functions returning bool should use true/false instead of 1/0. Link: https://lkml.kernel.org/r/20211126073327.74815-1-deng.changcheng@zte.com.cnSigned-off-by: NChangcheng Deng <deng.changcheng@zte.com.cn> Reported-by: NZeal Robot <zealci@zte.com.cn> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 NeilBrown 提交于
Various places in the kernel - largely in filesystems - respond to a memory allocation failure by looping around and re-trying. Some of these cannot conveniently use __GFP_NOFAIL, for reasons such as: - a GFP_ATOMIC allocation, which __GFP_NOFAIL doesn't work on - a need to check for the process being signalled between failures - the possibility that other recovery actions could be performed - the allocation is quite deep in support code, and passing down an extra flag to say if __GFP_NOFAIL is wanted would be clumsy. Many of these currently use congestion_wait() which (in almost all cases) simply waits the given timeout - congestion isn't tracked for most devices. It isn't clear what the best delay is for loops, but it is clear that the various filesystems shouldn't be responsible for choosing a timeout. This patch introduces memalloc_retry_wait() with takes on that responsibility. Code that wants to retry a memory allocation can call this function passing the GFP flags that were used. It will wait however is appropriate. For now, it only considers __GFP_NORETRY and whatever gfpflags_allow_blocking() tests. If blocking is allowed without __GFP_NORETRY, then alloc_page either made some reclaim progress, or waited for a while, before failing. So there is no need for much further waiting. memalloc_retry_wait() will wait until the current jiffie ends. If this condition is not met, then alloc_page() won't have waited much if at all. In that case memalloc_retry_wait() waits about 200ms. This is the delay that most current loops uses. linux/sched/mm.h needs to be included in some files now, but linux/backing-dev.h does not. Link: https://lkml.kernel.org/r/163754371968.13692.1277530886009912421@noble.neil.brown.nameSigned-off-by: NNeilBrown <neilb@suse.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Michal Hocko <mhocko@suse.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Support for GFP_NO{FS,IO} and __GFP_NOFAIL has been implemented by previous patches so we can allow the support for kvmalloc. This will allow some external users to simplify or completely remove their helpers. GFP_NOWAIT semantic hasn't been supported so far but it hasn't been explicitly documented so let's add a note about that. ceph_kvmalloc is the first helper to be dropped and changed to kvmalloc. Link: https://lkml.kernel.org/r/20211122153233.9924-5-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NUladzislau Rezki (Sony) <urezki@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <david@fromorbit.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
All callers pass NULL, so we can stop calculating the value we would store in it. Link: https://lkml.kernel.org/r/20211220205943.456187-3-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
None of the callers care about the total_map_swapcount() any more. Link: https://lkml.kernel.org/r/20211220205943.456187-1-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Pasha Tatashin 提交于
Check user page table entries at the time they are added and removed. Allows to synchronously catch memory corruption issues related to double mapping. When a pte for an anonymous page is added into page table, we verify that this pte does not already point to a file backed page, and vice versa if this is a file backed page that is being added we verify that this page does not have an anonymous mapping We also enforce that read-only sharing for anonymous pages is allowed (i.e. cow after fork). All other sharing must be for file pages. Page table check allows to protect and debug cases where "struct page" metadata became corrupted for some reason. For example, when refcnt or mapcount become invalid. Link: https://lkml.kernel.org/r/20211221154650.1047963-4-pasha.tatashin@soleen.comSigned-off-by: NPasha Tatashin <pasha.tatashin@soleen.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Xu <weixugc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Pasha Tatashin 提交于
We have ptep_get_and_clear() and ptep_get_and_clear_full() helpers to clear PTE from user page tables, but there is no variant for simple clear of a present PTE from user page tables without using a low level pte_clear() which can be either native or para-virtualised. Add a new ptep_clear() that can be used in common code to clear PTEs from page table. We will need this call later in order to add a hook for page table check. Link: https://lkml.kernel.org/r/20211221154650.1047963-3-pasha.tatashin@soleen.comSigned-off-by: NPasha Tatashin <pasha.tatashin@soleen.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kees Cook <keescook@chromium.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Xu <weixugc@google.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Suren Baghdasaryan 提交于
Add comments for vm_operations_struct::close documenting locking requirements for this callback and its callers. Link: https://lkml.kernel.org/r/20211209191325.3069345-2-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <christian@brauner.io> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jan Engelhardt <jengelh@inai.de> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Arnd Bergmann 提交于
linux/mm_types.h should only define structure definitions, to make it cheap to include elsewhere. The atomic_t helper function definitions are particularly large, so it's better to move the helpers using those into the existing linux/mm_inline.h and only include that where needed. As a follow-up, we may want to go through all the indirect includes in mm_types.h and reduce them as much as possible. Link: https://lkml.kernel.org/r/20211207125710.2503446-2-arnd@kernel.orgSigned-off-by: NArnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Colin Cross <ccross@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Arnd Bergmann 提交于
The patch to add anonymous vma names causes a build failure in some configurations: include/linux/mm_types.h: In function 'is_same_vma_anon_name': include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration] 924 | return name && vma_name && !strcmp(name, vma_name); | ^~~~~~ include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'? This should not really be part of linux/mm_types.h in the first place, as that header is meant to only contain structure defintions and need a minimum set of indirect includes itself. While the header clearly includes more than it should at this point, let's not make it worse by including string.h as well, which would pull in the expensive (compile-speed wise) fortify-string logic. Move the new functions into a separate header that only needs to be included in a couple of locations. Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org Fixes: "mm: add a field to store names for private anonymous memory" Signed-off-by: NArnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Colin Cross <ccross@google.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Suren Baghdasaryan 提交于
While forking a process with high number (64K) of named anonymous vmas the overhead caused by strdup() is noticeable. Experiments with ARM64 Android device show up to 40% performance regression when forking a process with 64k unpopulated anonymous vmas using the max name lengths vs the same process with the same number of anonymous vmas having no name. Introduce anon_vma_name refcounted structure to avoid the overhead of copying vma names during fork() and when splitting named anonymous vmas. When a vma is duplicated, instead of copying the name we increment the refcount of this structure. Multiple vmas can point to the same anon_vma_name as long as they increment the refcount. The name member of anon_vma_name structure is assigned at structure allocation time and is never changed. If vma name changes then the refcount of the original structure is dropped, a new anon_vma_name structure is allocated to hold the new name and the vma pointer is updated to point to the new structure. With this approach the fork() performance regressions is reduced 3-4x times and with usecases using more reasonable number of VMAs (a few thousand) the regressions is not measurable. Link: https://lkml.kernel.org/r/20211019215511.3771969-3-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Reviewed-by: NKees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Colin Cross <ccross@google.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Glauber <jan.glauber@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rob Landley <rob@landley.net> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Shaohua Li <shli@fusionio.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Colin Cross 提交于
In many userspace applications, and especially in VM based applications like Android uses heavily, there are multiple different allocators in use. At a minimum there is libc malloc and the stack, and in many cases there are libc malloc, the stack, direct syscalls to mmap anonymous memory, and multiple VM heaps (one for small objects, one for big objects, etc.). Each of these layers usually has its own tools to inspect its usage; malloc by compiling a debug version, the VM through heap inspection tools, and for direct syscalls there is usually no way to track them. On Android we heavily use a set of tools that use an extended version of the logic covered in Documentation/vm/pagemap.txt to walk all pages mapped in userspace and slice their usage by process, shared (COW) vs. unique mappings, backing, etc. This can account for real physical memory usage even in cases like fork without exec (which Android uses heavily to share as many private COW pages as possible between processes), Kernel SamePage Merging, and clean zero pages. It produces a measurement of the pages that only exist in that process (USS, for unique), and a measurement of the physical memory usage of that process with the cost of shared pages being evenly split between processes that share them (PSS). If all anonymous memory is indistinguishable then figuring out the real physical memory usage (PSS) of each heap requires either a pagemap walking tool that can understand the heap debugging of every layer, or for every layer's heap debugging tools to implement the pagemap walking logic, in which case it is hard to get a consistent view of memory across the whole system. Tracking the information in userspace leads to all sorts of problems. It either needs to be stored inside the process, which means every process has to have an API to export its current heap information upon request, or it has to be stored externally in a filesystem that somebody needs to clean up on crashes. It needs to be readable while the process is still running, so it has to have some sort of synchronization with every layer of userspace. Efficiently tracking the ranges requires reimplementing something like the kernel vma trees, and linking to it from every layer of userspace. It requires more memory, more syscalls, more runtime cost, and more complexity to separately track regions that the kernel is already tracking. This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a userspace-provided name for anonymous vmas. The names of named anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as [anon:<name>]. Userspace can set the name for a region of memory by calling prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name) Setting the name to NULL clears it. The name length limit is 80 bytes including NUL-terminator and is checked to contain only printable ascii characters (including space), except '[',']','\','$' and '`'. Ascii strings are being used to have a descriptive identifiers for vmas, which can be understood by the users reading /proc/pid/maps or /proc/pid/smaps. Names can be standardized for a given system and they can include some variable parts such as the name of the allocator or a library, tid of the thread using it, etc. The name is stored in a pointer in the shared union in vm_area_struct that points to a null terminated string. Anonymous vmas with the same name (equivalent strings) and are otherwise mergeable will be merged. The name pointers are not shared between vmas even if they contain the same name. The name pointer is stored in a union with fields that are only used on file-backed mappings, so it does not increase memory usage. CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this feature. It keeps the feature disabled by default to prevent any additional memory overhead and to avoid confusing procfs parsers on systems which are not ready to support named anonymous vmas. The patch is based on the original patch developed by Colin Cross, more specifically on its latest version [1] posted upstream by Sumit Semwal. It used a userspace pointer to store vma names. In that design, name pointers could be shared between vmas. However during the last upstreaming attempt, Kees Cook raised concerns [2] about this approach and suggested to copy the name into kernel memory space, perform validity checks [3] and store as a string referenced from vm_area_struct. One big concern is about fork() performance which would need to strdup anonymous vma names. Dave Hansen suggested experimenting with worst-case scenario of forking a process with 64k vmas having longest possible names [4]. I ran this experiment on an ARM64 Android device and recorded a worst-case regression of almost 40% when forking such a process. This regression is addressed in the followup patch which replaces the pointer to a name with a refcounted structure that allows sharing the name pointer between vmas of the same name. Instead of duplicating the string during fork() or when splitting a vma it increments the refcount. [1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/ [2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/ [3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/ [4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/ Changes for prctl(2) manual page (in the options section): PR_SET_VMA Sets an attribute specified in arg2 for virtual memory areas starting from the address specified in arg3 and spanning the size specified in arg4. arg5 specifies the value of the attribute to be set. Note that assigning an attribute to a virtual memory area might prevent it from being merged with adjacent virtual memory areas due to the difference in that attribute's value. Currently, arg2 must be one of: PR_SET_VMA_ANON_NAME Set a name for anonymous virtual memory areas. arg5 should be a pointer to a null-terminated string containing the name. The name length including null byte cannot exceed 80 bytes. If arg5 is NULL, the name of the appropriate anonymous virtual memory areas will be reset. The name can contain only printable ascii characters (including space), except '[',']','\','$' and '`'. This feature is available only if the kernel is built with the CONFIG_ANON_VMA_NAME option enabled. [surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table] Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com [surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy, added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the work here was done by Colin Cross, therefore, with his permission, keeping him as the author] Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.comSigned-off-by: NColin Cross <ccross@google.com> Signed-off-by: NSuren Baghdasaryan <surenb@google.com> Reviewed-by: NKees Cook <keescook@chromium.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Glauber <jan.glauber@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rob Landley <rob@landley.net> Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com> Cc: Shaohua Li <shli@fusionio.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
The kvmalloc* allocation functions can fallback to vmalloc allocations and more often on long running machines. In addition the kernel does have __GFP_ACCOUNT kvmalloc* calls. So, often on long running machines, the memory.stat does not tell the complete picture which type of memory is charged to the memcg. So add a per-memcg vmalloc stat. [shakeelb@google.com: page_memcg() within rcu lock, per Muchun] Link: https://lkml.kernel.org/r/20211222052457.1960701-1-shakeelb@google.com [akpm@linux-foundation.org: remove cast, per Muchun] [shakeelb@google.com: remove area->page[0] checks and move to page by page accounting per Michal] Link: https://lkml.kernel.org/r/20220104222341.3972772-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20211221215336.1922823-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Schatzberg 提交于
Our container agent wants to know when a container exits if it was OOM killed or not to report to the user. We use memory.oom.group = 1 to ensure that OOM kills within the container's cgroup kill everything. Existing memory.events are insufficient for knowing if this triggered: 1) Our current approach reads memory.events oom_kill and reports the container was killed if the value is non-zero. This is erroneous in some cases where containers create their children cgroups with memory.oom.group=1 as such OOM kills will get counted against the container cgroup's oom_kill counter despite not actually OOM killing the entire container. 2) Reading memory.events.local will fail to identify OOM kills in leaf cgroups (that don't set memory.oom.group) within the container cgroup. This patch adds a new oom_group_kill event when memory.oom.group triggers to allow userspace to cleanly identify when an entire cgroup is oom killed. [schatzberg.dan@gmail.com: changes from Johannes and Chris] Link: https://lkml.kernel.org/r/20211213162511.2492267-1-schatzberg.dan@gmail.com Link: https://lkml.kernel.org/r/20211203162426.3375036-1-schatzberg.dan@gmail.comSigned-off-by: NDan Schatzberg <schatzberg.dan@gmail.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NChris Down <chris@chrisdown.name> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Alex Shi <alexs@kernel.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
dump_mapping() is a big chunk of dump_page(), and it'd be handy to be able to call it when we don't have a struct page. Split it out and move it to fs/inode.c. Take the opportunity to simplify some of the debug messages a little. Link: https://lkml.kernel.org/r/20211121121056.2870061-1-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NWilliam Kucharski <william.kucharski@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Joao Martins 提交于
Add a new @vmemmap_shift property for struct dev_pagemap which specifies that a devmap is composed of a set of compound pages of order @vmemmap_shift, instead of base pages. When a compound page devmap is requested, all but the first page are initialised as tail pages instead of order-0 pages. For certain ZONE_DEVICE users like device-dax which have a fixed page size, this creates an opportunity to optimize GUP and GUP-fast walkers, treating it the same way as THP or hugetlb pages. Additionally, commit 7118fc29 ("hugetlb: address ref count racing in prep_compound_gigantic_page") removed set_page_count() because the setting of page ref count to zero was redundant. devmap pages don't come from page allocator though and only head page refcount is used for compound pages, hence initialize tail page count to zero. Link: https://lkml.kernel.org/r/20211202204422.26777-5-joao.m.martins@oracle.comSigned-off-by: NJoao Martins <joao.m.martins@oracle.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
Yongqiang reports a kmemleak panic when module insmod/rmmod with KASAN enabled(without KASAN_VMALLOC) on x86[1]. When the module area allocates memory, it's kmemleak_object is created successfully, but the KASAN shadow memory of module allocation is not ready, so when kmemleak scan the module's pointer, it will panic due to no shadow memory with KASAN check. module_alloc __vmalloc_node_range kmemleak_vmalloc kmemleak_scan update_checksum kasan_module_alloc kmemleak_ignore Note, there is no problem if KASAN_VMALLOC enabled, the modules area entire shadow memory is preallocated. Thus, the bug only exits on ARCH which supports dynamic allocation of module area per module load, for now, only x86/arm64/s390 are involved. Add a VM_DEFER_KMEMLEAK flags, defer vmalloc'ed object register of kmemleak in module_alloc() to fix this issue. [1] https://lore.kernel.org/all/6d41e2b9-4692-5ec4-b1cd-cbe29ae89739@huawei.com/ [wangkefeng.wang@huawei.com: fix build] Link: https://lkml.kernel.org/r/20211125080307.27225-1-wangkefeng.wang@huawei.com [akpm@linux-foundation.org: simplify ifdefs, per Andrey] Link: https://lkml.kernel.org/r/CA+fCnZcnwJHUQq34VuRxpdoY6_XbJCDJ-jopksS5Eia4PijPzw@mail.gmail.com Link: https://lkml.kernel.org/r/20211124142034.192078-1-wangkefeng.wang@huawei.com Fixes: 793213a8 ("s390/kasan: dynamic shadow mem allocation for modules") Fixes: 39d114dd ("arm64: add KASAN support") Fixes: bebf56a1 ("kasan: enable instrumentation of global variables") Signed-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Reported-by: NYongqiang Liu <liuyongqiang13@huawei.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Cai Huoqing 提交于
Add a new helper function kthread_run_on_cpu(), which includes kthread_create_on_cpu/wake_up_process(). In some cases, use kthread_run_on_cpu() directly instead of kthread_create_on_node/kthread_bind/wake_up_process() or kthread_create_on_cpu/wake_up_process() or kthreadd_create/kthread_bind/wake_up_process() to simplify the code. [akpm@linux-foundation.org: export kthread_create_on_cpu to modules] Link: https://lkml.kernel.org/r/20211022025711.3673-2-caihuoqing@baidu.comSigned-off-by: NCai Huoqing <caihuoqing@baidu.com> Cc: Bernard Metzler <bmt@zurich.ibm.com> Cc: Cai Huoqing <caihuoqing@baidu.com> Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Doug Ledford <dledford@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 1月, 2022 1 次提交
-
-
Disabling only bottom halves via local_bh_disable() disables also preemption but this remains invisible to tracing. On a CONFIG_PREEMPT kernel one might wonder why there is no scheduling happening despite the N flag in the trace. The reason might be the a rcu_read_lock_bh() section. Add a 'b' to the tracing output if in task context with disabled bottom halves. Link: https://lkml.kernel.org/r/YbcbtdtC/bjCKo57@linutronix.deSigned-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-