- 10 5月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
Currently, the notifiers are called once for each CPU of the policy->cpus cpumask. It would be more optimal if the notifier can be called only once and all the relevant information be provided to it. Out of the 23 drivers that register for the transition notifiers today, only 4 of them do per-cpu updates and the callback for the rest can be called only once for the policy without any impact. This would also avoid multiple function calls to the notifier callbacks and reduce multiple iterations of notifier core's code (which does locking as well). This patch adds pointer to the cpufreq policy to the struct cpufreq_freqs, so the notifier callback has all the information available to it with a single call. The five drivers which perform per-cpu updates are updated to use the cpufreq policy. The freqs->cpu field is redundant now and is removed. Acked-by: David S. Miller <davem@davemloft.net> (sparc) Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 4月, 2019 1 次提交
-
-
由 Rafael J. Wysocki 提交于
While the cpuinfo.max_freq value doesn't really matter for intel_pstate in the active mode, in the passive mode it is used by governors as the maximum physical frequency of the CPU and the results of governor computations generally depend on it. Also it is made available to user space via sysfs and it should match the current HW configuration. For this reason, make intel_pstate update cpuinfo.max_freq for all CPUs if it detects a global change of turbo frequency settings from "disable" to "enable" or the other way associated with a _PPC change notification from the platform firmware. Note that policy_is_inactive(), cpufreq_cpu_acquire(), cpufreq_cpu_release(), and cpufreq_set_policy() need to be made available to it for this purpose. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200759Reported-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Tested-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 02 4月, 2019 1 次提交
-
-
由 Rafael J. Wysocki 提交于
In some cases, the platform firmware disables or enables turbo frequencies for all CPUs globally before triggering a _PPC change notification for one of them. Obviously, that global change affects all CPUs, not just the notified one, and it needs to be acted upon by cpufreq. The intel_pstate driver is able to detect such global changes of the settings, but it also needs to update policy limits for all CPUs if that happens, in particular if turbo frequencies are enabled globally - to allow them to be used. For this reason, introduce a new cpufreq driver callback to be invoked on _PPC notifications, if present, instead of simply calling cpufreq_update_policy() for the notified CPU and make intel_pstate use it to trigger policy updates for all CPUs in the system if global settings change. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200759Reported-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Tested-by: NGabriele Mazzotta <gabriele.mzt@gmail.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 13 2月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
The cpufreq core doesn't remove the cpufreq policy anymore on CPU offline operation, rather that happens when the CPU device gets unregistered from the kernel. This allows faster recovery when the CPU comes back online. This is also very useful during system wide suspend/resume where we offline all non-boot CPUs during suspend and then bring them back on resume. This commit takes the same idea a step ahead to allow drivers to do light weight tear-down and bring-up during CPU offline and online operations. A new set of callbacks is introduced, online/offline(). online() gets called when the first CPU of an inactive policy is brought up and offline() gets called when all the CPUs of a policy are offlined. The existing init/exit() callback get called on policy creation/destruction. They also get called instead of online/offline() callbacks if the online/offline() callbacks aren't provided. This also moves around some code to get executed only for the new-policy case going forward. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 31 1月, 2019 1 次提交
-
-
由 Amit Kucheria 提交于
All cpufreq drivers do similar things to register as a cooling device. Provide a cpufreq driver flag so drivers can just ask the cpufreq core to register the cooling device on their behalf. This allows us to get rid of duplicated code in the drivers. In order to allow this, we add a struct thermal_cooling_device pointer to struct cpufreq_policy so that drivers don't need to store it in a private data structure. Suggested-by: NStephen Boyd <swboyd@chromium.org> Suggested-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NAmit Kucheria <amit.kucheria@linaro.org> Reviewed-by: NMatthias Kaehlcke <mka@chromium.org> Tested-by: NMatthias Kaehlcke <mka@chromium.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 29 1月, 2019 1 次提交
-
-
由 Viresh Kumar 提交于
The cpufreq_global_kobject is created using kobject_create_and_add() helper, which assigns the kobj_type as dynamic_kobj_ktype and show/store routines are set to kobj_attr_show() and kobj_attr_store(). These routines pass struct kobj_attribute as an argument to the show/store callbacks. But all the cpufreq files created using the cpufreq_global_kobject expect the argument to be of type struct attribute. Things work fine currently as no one accesses the "attr" argument. We may not see issues even if the argument is used, as struct kobj_attribute has struct attribute as its first element and so they will both get same address. But this is logically incorrect and we should rather use struct kobj_attribute instead of struct global_attr in the cpufreq core and drivers and the show/store callbacks should take struct kobj_attribute as argument instead. This bug is caught using CFI CLANG builds in android kernel which catches mismatch in function prototypes for such callbacks. Reported-by: NDonghee Han <dh.han@samsung.com> Reported-by: NSangkyu Kim <skwith.kim@samsung.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 1月, 2019 1 次提交
-
-
由 Amit Kucheria 提交于
Minor clean-up to use BIT() and keep checkpatch happy. Clean up the comment formatting while we're at it to make it easier to read. Signed-off-by: NAmit Kucheria <amit.kucheria@linaro.org> Reviewed-by: NStephen Boyd <swboyd@chromium.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 11 12月, 2018 1 次提交
-
-
由 Quentin Perret 提交于
Energy Aware Scheduling (EAS) is designed with the assumption that frequencies of CPUs follow their utilization value. When using a CPUFreq governor other than schedutil, the chances of this assumption being true are small, if any. When schedutil is being used, EAS' predictions are at least consistent with the frequency requests. Although those requests have no guarantees to be honored by the hardware, they should at least guide DVFS in the right direction and provide some hope in regards to the EAS model being accurate. To make sure EAS is only used in a sane configuration, create a strong dependency on schedutil being used. Since having sugov compiled-in does not provide that guarantee, make CPUFreq call a scheduler function on governor changes hence letting it rebuild the scheduling domains, check the governors of the online CPUs, and enable/disable EAS accordingly. Signed-off-by: NQuentin Perret <quentin.perret@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-9-quentin.perret@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 5月, 2018 1 次提交
-
-
由 Viresh Kumar 提交于
This routine checks if the CPU running this code belongs to the policy of the target CPU or if not, can it do remote DVFS for it remotely. But the current name of it implies as if it is only about doing remote updates. Rename it to make it more relevant. Suggested-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 10 4月, 2018 1 次提交
-
-
由 Viresh Kumar 提交于
This isn't used anymore. Remove the helper and update documentation accordingly. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 2月, 2018 1 次提交
-
-
由 Viresh Kumar 提交于
By design, cpufreq drivers are responsible for calling cpufreq_frequency_table_cpuinfo() from their ->init() callbacks to validate the frequency table. However, if a cpufreq driver is buggy and fails to do so properly, it lead to unexpected behavior of the driver or the cpufreq core at a later point in time. It would be better if the core could validate the frequency table during driver initialization. To that end, introduce cpufreq_table_validate_and_sort() and make the cpufreq core call it right after invoking the ->init() callback of the driver and destroy the cpufreq policy if the table is invalid. For the time being the validation of the table happens twice, once from the driver and then from the core. The individual drivers will be updated separately to drop table validation if they don't need it for other reasons. The frequency table is marked "sorted" or "unsorted" by the new helper now instead of in cpufreq_table_validate_and_show(), as it should only be done after validating the table (which the drivers won't do going forward). Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> [ rjw: Subject/changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 2月, 2018 1 次提交
-
-
由 Dominik Brodowski 提交于
Pointer subtraction is slow and tedious. Therefore, replace all instances where cpufreq_for_each_{valid_,}entry loops contained such substractions with an iteration macro providing an index to the frequency_table entry. Suggested-by: NAl Viro <viro@ZenIV.linux.org.uk> Link: http://lkml.kernel.org/r/20180120020237.GM13338@ZenIV.linux.org.ukAcked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 16 11月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
After commit 890da9cf (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"") the "cpu MHz" number in /proc/cpuinfo on x86 can be either the nominal CPU frequency (which is constant) or the frequency most recently requested by a scaling governor in cpufreq, depending on the cpufreq configuration. That is somewhat inconsistent and is different from what it was before 4.13, so in order to restore the previous behavior, make it report the current CPU frequency like the scaling_cur_freq sysfs file in cpufreq. To that end, modify the /proc/cpuinfo implementation on x86 to use aperfmperf_snapshot_khz() to snapshot the APERF and MPERF feedback registers, if available, and use their values to compute the CPU frequency to be reported as "cpu MHz". However, do that carefully enough to avoid accumulating delays that lead to unacceptable access times for /proc/cpuinfo on systems with many CPUs. Run aperfmperf_snapshot_khz() once on all CPUs asynchronously at the /proc/cpuinfo open time, add a single delay upfront (if necessary) at that point and simply compute the current frequency while running show_cpuinfo() for each individual CPU. Also, to avoid slowing down /proc/cpuinfo accesses too much, reduce the default delay between consecutive APERF and MPERF reads to 10 ms, which should be sufficient to get large enough numbers for the frequency computation in all cases. Fixes: 890da9cf (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"") Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NIngo Molnar <mingo@kernel.org>
-
- 03 10月, 2017 1 次提交
-
-
由 Dietmar Eggemann 提交于
Frequency-invariant accounting support based on the ratio of current frequency and maximum supported frequency is an optional feature an arch can implement. Since there are cpufreq drivers (e.g. cpufreq-dt) which can be build for different arch's a default implementation of the frequency-invariance setter function arch_set_freq_scale() is needed. This default implementation is an empty weak function which will be overwritten by a strong function in case the arch provides one. The setter function passes the cpumask of related (to the frequency change) cpus (online and offline cpus), the (new) current frequency and the maximum supported frequency. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 8月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The if () in cpufreq_can_do_remote_dvfs() is superfluous, so drop it and simply return the value of the expression under it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 8月, 2017 2 次提交
-
-
由 Viresh Kumar 提交于
On many platforms, CPUs can do DVFS across cpufreq policies. i.e CPU from policy-A can change frequency of CPUs belonging to policy-B. This is quite common in case of ARM platforms where we don't configure any per-cpu register. Add a flag to identify such platforms and update cpufreq_can_do_remote_dvfs() to allow remote callbacks if this flag is set. Also enable the flag for cpufreq-dt driver which is used only on ARM platforms currently. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
With Android UI and benchmarks the latency of cpufreq response to certain scheduling events can become very critical. Currently, callbacks into cpufreq governors are only made from the scheduler if the target CPU of the event is the same as the current CPU. This means there are certain situations where a target CPU may not run the cpufreq governor for some time. One testcase to show this behavior is where a task starts running on CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the system is configured such that the new tasks should receive maximum demand initially, this should result in CPU0 increasing frequency immediately. But because of the above mentioned limitation though, this does not occur. This patch updates the scheduler core to call the cpufreq callbacks for remote CPUs as well. The schedutil, ondemand and conservative governors are updated to process cpufreq utilization update hooks called for remote CPUs where the remote CPU is managed by the cpufreq policy of the local CPU. The intel_pstate driver is updated to always reject remote callbacks. This is tested with couple of usecases (Android: hackbench, recentfling, galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit octa-core, single policy). Only galleryfling showed minor improvements, while others didn't had much deviation. The reason being that this patch only targets a corner case, where following are required to be true to improve performance and that doesn't happen too often with these tests: - Task is migrated to another CPU. - The task has high demand, and should take the target CPU to higher OPPs. - And the target CPU doesn't call into the cpufreq governor until the next tick. Based on initial work from Steve Muckle. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSaravana Kannan <skannan@codeaurora.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 26 7月, 2017 2 次提交
-
-
由 Viresh Kumar 提交于
The policy->transition_latency field is used for multiple purposes today and its not straight forward at all. This is how it is used: A. Set the correct transition_latency value. B. Set it to CPUFREQ_ETERNAL because: 1. We don't want automatic dynamic switching (with ondemand/conservative) to happen at all. 2. We don't know the transition latency. This patch handles the B.1. case in a more readable way. A new flag for the cpufreq drivers is added to disallow use of cpufreq governors which have dynamic_switching flag set. All the current cpufreq drivers which are setting transition_latency unconditionally to CPUFREQ_ETERNAL are updated to use it. They don't need to set transition_latency anymore. There shouldn't be any functional change after this patch. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NDominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
There is no limitation in the ondemand or conservative governors which disallow the transition_latency to be greater than 10 ms. The max_transition_latency field is rather used to disallow automatic dynamic frequency switching for platforms which didn't wanted these governors to run. Replace max_transition_latency with a boolean (dynamic_switching) and check for transition_latency == CPUFREQ_ETERNAL along with that. This makes it pretty straight forward to read/understand now. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 22 7月, 2017 2 次提交
-
-
由 Viresh Kumar 提交于
The policy->transition_delay_us field is used only by the schedutil governor currently, and this field describes how fast the driver wants the cpufreq governor to change CPUs frequency. It should rather be a common thing across all governors, as it doesn't have any schedutil dependency here. Create a new helper cpufreq_policy_transition_delay_us() to get the transition delay across all governors. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The cpufreq core and governors aren't supposed to set a limit on how fast we want to try changing the frequency. This is currently done for the legacy governors with help of min_sampling_rate. At worst, we may end up setting the sampling rate to a value lower than the rate at which frequency can be changed and then one of the CPUs in the policy will be only changing frequency for ever. But that is something for the user to decide and there is no need to have special handling for such cases in the core. Leave it for the user to figure out. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 27 6月, 2017 1 次提交
-
-
由 Len Brown 提交于
The goal of this change is to give users a uniform and meaningful result when they read /sys/...cpufreq/scaling_cur_freq on modern x86 hardware, as compared to what they get today. Modern x86 processors include the hardware needed to accurately calculate frequency over an interval -- APERF, MPERF, and the TSC. Here we provide an x86 routine to make this calculation on supported hardware, and use it in preference to any driver driver-specific cpufreq_driver.get() routine. MHz is computed like so: MHz = base_MHz * delta_APERF / delta_MPERF MHz is the average frequency of the busy processor over a measurement interval. The interval is defined to be the time between successive invocations of aperfmperf_khz_on_cpu(), which are expected to to happen on-demand when users read sysfs attribute cpufreq/scaling_cur_freq. As with previous methods of calculating MHz, idle time is excluded. base_MHz above is from TSC calibration global "cpu_khz". This x86 native method to calculate MHz returns a meaningful result no matter if P-states are controlled by hardware or firmware and/or if the Linux cpufreq sub-system is or is-not installed. When this routine is invoked more frequently, the measurement interval becomes shorter. However, the code limits re-computation to 10ms intervals so that average frequency remains meaningful. Discerning users are encouraged to take advantage of the turbostat(8) utility, which can gracefully handle concurrent measurement intervals of arbitrary length. Signed-off-by: NLen Brown <len.brown@intel.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 5月, 2017 1 次提交
-
-
由 Viresh Kumar 提交于
We need such a routine at two places already, lets create one. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NLukasz Luba <lukasz.luba@arm.com> Tested-by: NLukasz Luba <lukasz.luba@arm.com> Signed-off-by: NEduardo Valentin <edubezval@gmail.com>
-
- 18 4月, 2017 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Make the schedutil governor take the initial (default) value of the rate_limit_us sysfs attribute from the (new) transition_delay_us policy parameter (to be set by the scaling driver). That will allow scaling drivers to make schedutil use smaller default values of rate_limit_us and reduce the default average time interval between consecutive frequency changes. Make intel_pstate set transition_delay_us to 500. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 04 2月, 2017 3 次提交
-
-
由 Viresh Kumar 提交于
- s/freqnency/frequency/ - s/accomodating/accommodating/ Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Its not used anymore, remove it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Those were added by: commit fcd7af91 ("cpufreq: stats: handle cpufreq_unregister_driver() and suspend/resume properly") but aren't used anymore since: commit 1aefc75b ("cpufreq: stats: Make the stats code non-modular"). Remove them. Also remove the redundant parameter to the respective routines. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 11月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
The return value of cpufreq_update_policy() is never used, so make it void. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
- 11 11月, 2016 1 次提交
-
-
由 Markus Mayer 提交于
Allow CPUfreq statistics to be cleared by writing anything to /sys/.../cpufreq/stats/reset. Signed-off-by: NMarkus Mayer <mmayer@broadcom.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 20 10月, 2016 1 次提交
-
-
由 Sergey Senozhatsky 提交于
'best' is always less or equals to 'pos', so `best - pos' returns a negative value which is then getting casted to `unsigned int' and passed to __cpufreq_driver_target()->acpi_cpufreq_target() for policy->freq_table selection. This results in BUG: unable to handle kernel paging request at ffff881019b469f8 IP: [<ffffffffa00356c1>] acpi_cpufreq_target+0x4f/0x190 [acpi_cpufreq] PGD 267f067 PUD 0 Oops: 0000 [#1] PREEMPT SMP CPU: 6 PID: 70 Comm: kworker/6:1 Not tainted 4.9.0-rc1-next-20161017-dbg-dirty Workqueue: events dbs_work_handler task: ffff88041b808000 task.stack: ffff88041b810000 RIP: 0010:[<ffffffffa00356c1>] [<ffffffffa00356c1>] acpi_cpufreq_target+0x4f/0x190 [acpi_cpufreq] RSP: 0018:ffff88041b813c60 EFLAGS: 00010282 RAX: ffff880419b46a00 RBX: ffff88041b848400 RCX: ffff880419b20f80 RDX: 00000000001dff38 RSI: 00000000ffffffff RDI: ffff88041b848400 RBP: ffff88041b813cb0 R08: 0000000000000006 R09: 0000000000000040 R10: ffffffff8207f9e0 R11: ffffffff8173595b R12: 0000000000000000 R13: ffff88041f1dff38 R14: 0000000000262900 R15: 0000000bfffffff4 FS: 0000000000000000(0000) GS:ffff88041f000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff881019b469f8 CR3: 000000041a2d3000 CR4: 00000000001406e0 Stack: ffff88041b813cb0 ffffffff813347f9 ffff88041b813ca0 ffffffff81334663 ffff88041f1d4bc0 ffff88041b848400 0000000000000000 0000000000000000 0000000000262900 0000000000000000 ffff88041b813d00 ffffffff813355dc Call Trace: [<ffffffff813347f9>] ? cpufreq_freq_transition_begin+0xf1/0xfc [<ffffffff81334663>] ? get_cpu_idle_time+0x97/0xa6 [<ffffffff813355dc>] __cpufreq_driver_target+0x3b6/0x44e [<ffffffff81336ca3>] cs_dbs_timer+0x11a/0x135 [<ffffffff81336fda>] dbs_work_handler+0x39/0x62 [<ffffffff81057823>] process_one_work+0x280/0x4a5 [<ffffffff81058719>] worker_thread+0x24f/0x397 [<ffffffff810584ca>] ? rescuer_thread+0x30b/0x30b [<ffffffff81418380>] ? nl80211_get_key+0x29/0x36a [<ffffffff8105d2b7>] kthread+0xfc/0x104 [<ffffffff8107ceea>] ? put_lock_stats.isra.9+0xe/0x20 [<ffffffff8105d1bb>] ? kthread_create_on_node+0x3f/0x3f [<ffffffff814b2092>] ret_from_fork+0x22/0x30 Code: 56 4d 6b ff 0c 41 55 41 54 53 48 83 ec 28 48 8b 15 ad 1e 00 00 44 8b 41 08 48 8b 87 c8 00 00 00 49 89 d5 4e 03 2c c5 80 b2 78 81 <46> 8b 74 38 04 45 3b 75 00 75 11 31 c0 83 39 00 0f 84 1c 01 00 RIP [<ffffffffa00356c1>] acpi_cpufreq_target+0x4f/0x190 [acpi_cpufreq] RSP <ffff88041b813c60> CR2: ffff881019b469f8 ---[ end trace 16d9fc7a17897d37 ]--- [ rjw: In some cases this bug may also cause incorrect frequencies to be selected by cpufreq governors. ] Fixes: 899bb664 (cpufreq: skip invalid entries when searching the frequency) Link: http://marc.info/?l=linux-kernel&m=147672030714331&w=2Reported-and-tested-by: NSedat Dilek <sedat.dilek@gmail.com> Reported-and-tested-by: NJörg Otte <jrg.otte@gmail.com> Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: 4.8+ <stable@vger.kernel.org> # 4.8+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 13 10月, 2016 1 次提交
-
-
由 Aaro Koskinen 提交于
Skip invalid entries when searching the frequency. This fixes cpufreq at least on loongson2 MIPS board. Fixes: da0c6dc0 (cpufreq: Handle sorted frequency tables more efficiently) Signed-off-by: NAaro Koskinen <aaro.koskinen@iki.fi> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Cc: 4.8+ <stable@vger.kernel.org> # 4.8+ Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 7月, 2016 1 次提交
-
-
由 Steve Muckle 提交于
Cpufreq governors may need to know what a particular target frequency maps to in the driver without necessarily wanting to set the frequency. Support this operation via a new cpufreq API, cpufreq_driver_resolve_freq(). This API returns the lowest driver frequency equal or greater than the target frequency (CPUFREQ_RELATION_L), subject to any policy (min/max) or driver limitations. The mapping is also cached in the policy so that a subsequent fast_switch operation can avoid repeating the same lookup. The API will call a new cpufreq driver callback, resolve_freq(), if it has been registered by the driver. Otherwise the frequency is resolved via cpufreq_frequency_table_target(). Rather than require ->target() style drivers to provide a resolve_freq() callback it is left to the caller to ensure that the driver implements this callback if necessary to use cpufreq_driver_resolve_freq(). Suggested-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NSteve Muckle <smuckle@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 07 7月, 2016 1 次提交
-
-
由 Viresh Kumar 提交于
cpufreq drivers aren't required to provide a sorted frequency table today, and even the ones which provide a sorted table aren't handled efficiently by cpufreq core. This patch adds infrastructure to verify if the freq-table provided by the drivers is sorted or not, and use efficient helpers if they are sorted. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 6月, 2016 3 次提交
-
-
由 Viresh Kumar 提交于
This routine can't fail unless the frequency table is invalid and doesn't contain any valid entries. Make it return the index and WARN() in case it is used for an invalid table. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The policy already has this pointer set, use it instead. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Most of the callers of cpufreq_frequency_get_table() already have the pointer to a valid 'policy' structure and they don't really need to go through the per-cpu variable first and then a check to validate the frequency, in order to find the freq-table for the policy. Directly use the policy->freq_table field instead for them. Only one user of that API is left after above changes, cpu_cooling.c and it accesses the freq_table in a racy way as the policy can get freed in between. Fix it by using cpufreq_cpu_get() properly. Since there are no more users of cpufreq_frequency_get_table() left, get rid of it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: Javi Merino <javi.merino@arm.com> (cpu_cooling.c) Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 03 6月, 2016 4 次提交
-
-
由 Rafael J. Wysocki 提交于
The modularity of cpufreq_stats is quite problematic. First off, the usage of policy notifiers for the initialization and cleanup in the cpufreq_stats module is inherently racy with respect to CPU offline/online and the initialization and cleanup of the cpufreq driver. Second, fast frequency switching (used by the schedutil governor) cannot be enabled if any transition notifiers are registered, so if the cpufreq_stats module (that registers a transition notifier for updating transition statistics) is loaded, the schedutil governor cannot use fast frequency switching. On the other hand, allowing cpufreq_stats to be built as a module doesn't really add much value. Arguably, there's not much reason for that code to be modular at all. For the above reasons, make the cpufreq stats code non-modular, modify the core to invoke functions provided by that code directly and drop the notifiers from it. Make the stats sysfs attributes appear empty if fast frequency switching is enabled as the statistics will not be updated in that case anyway (and returning -EBUSY from those attributes breaks powertop). While at it, clean up Kconfig help for the CPU_FREQ_STAT and CPU_FREQ_STAT_DETAILS options. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The 'initialized' field in struct cpufreq_governor is only used by the conservative governor (as a usage counter) and the way that happens is far from straightforward and arguably incorrect. Namely, the value of 'initialized' is checked by cpufreq_dbs_governor_init() and cpufreq_dbs_governor_exit() and the results of those checks are passed (as the second argument) to the ->init() and ->exit() callbacks in struct dbs_governor. Those callbacks are only implemented by the ondemand and conservative governors and ondemand doesn't use their second argument at all. In turn, the conservative governor uses it to decide whether or not to either register or unregister a transition notifier. That whole mechanism is not only unnecessarily convoluted, but also racy, because the 'initialized' field of struct cpufreq_governor is updated in cpufreq_init_governor() and cpufreq_exit_governor() under policy->rwsem which doesn't help if one of these functions is run twice in parallel for different policies (which isn't impossible in principle), for example. Instead of it, add a proper usage counter to the conservative governor and update it from cs_init() and cs_exit() which is guaranteed to be non-racy, as those functions are only called under gov_dbs_data_mutex which is global. With that in place, drop the 'initialized' field from struct cpufreq_governor as it is not used any more. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Viresh Kumar 提交于
Create a new helper to avoid code duplication across governors. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The design of the cpufreq governor API is not very straightforward, as struct cpufreq_governor provides only one callback to be invoked from different code paths for different purposes. The purpose it is invoked for is determined by its second "event" argument, causing it to act as a "callback multiplexer" of sorts. Unfortunately, that leads to extra complexity in governors, some of which implement the ->governor() callback as a switch statement that simply checks the event argument and invokes a separate function to handle that specific event. That extra complexity can be eliminated by replacing the all-purpose ->governor() callback with a family of callbacks to carry out specific governor operations: initialization and exit, start and stop and policy limits updates. That also turns out to reduce the code size too, so do it. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-