1. 21 4月, 2019 5 次提交
  2. 20 4月, 2019 23 次提交
  3. 10 4月, 2019 1 次提交
  4. 08 4月, 2019 2 次提交
  5. 01 4月, 2019 1 次提交
  6. 29 3月, 2019 8 次提交
    • M
      x86/realmode: Make set_real_mode_mem() static inline · f560bd19
      Matteo Croce 提交于
      Remove the unused @size argument and move it into a header file, so it
      can be inlined.
      
       [ bp: Massage. ]
      Signed-off-by: NMatteo Croce <mcroce@redhat.com>
      Signed-off-by: NBorislav Petkov <bp@suse.de>
      Reviewed-by: NMukesh Ojha <mojha@codeaurora.org>
      Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: linux-efi <linux-efi@vger.kernel.org>
      Cc: platform-driver-x86@vger.kernel.org
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: x86-ml <x86@kernel.org>
      Link: https://lkml.kernel.org/r/20190328114233.27835-1-mcroce@redhat.com
      f560bd19
    • M
      powerpc/pseries/mce: Fix misleading print for TLB mutlihit · 6f845ebe
      Mahesh Salgaonkar 提交于
      On pseries, TLB multihit are reported as D-Cache Multihit. This is because
      the wrongly populated mc_err_types[] array. Per PAPR, TLB error type is 0x04
      and mc_err_types[4] points to "D-Cache" instead of "TLB" string. Fixup the
      mc_err_types[] array.
      
      Machine check error type per PAPR:
        0x00 = Uncorrectable Memory Error (UE)
        0x01 = SLB error
        0x02 = ERAT Error
        0x04 = TLB error
        0x05 = D-Cache error
        0x07 = I-Cache error
      
      Fixes: 8f0b8056 ("powerpc/pseries: Display machine check error details.")
      Cc: stable@vger.kernel.org # v4.20+
      Reported-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
      Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      6f845ebe
    • S
      KVM: x86: update %rip after emulating IO · 45def77e
      Sean Christopherson 提交于
      Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
      OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
      vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
      that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.
      
      To avoid corruping %rip after such a reset, commit 0967b7bf ("KVM:
      Skip pio instruction when it is emulated, not executed") changed the
      behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
      instruction prior to exiting to userspace.  Full emulation doesn't need
      such tricks becase re-emulating the instruction will naturally handle
      %rip being changed to point at the reset vector.
      
      Updating %rip prior to executing to userspace has several drawbacks:
      
        - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
          fails it will likely yell about the wrong address.
        - Single step exits to userspace for are effectively dropped as
          KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
        - Behavior of PIO emulation is different depending on whether it
          goes down the fast path or the slow path.
      
      Rather than skip the PIO instruction before exiting to userspace,
      snapshot the linear %rip and cancel PIO completion if the current
      value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
      common scenario, the snapshot and comparison has negligible overhead
      as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
      VMREAD in this case.
      
      All other alternatives to snapshotting the linear %rip that don't
      rely on an explicit reset announcenment suffer from one corner case
      or another.  For example, canceling PIO completion on any write to
      %rip fails if userspace does a save/restore of %rip, and attempting to
      avoid that issue by canceling PIO only if %rip changed then fails if PIO
      collides with the reset %rip.  Attempting to zero in on the exact reset
      vector won't work for APs, which means adding more hooks such as the
      vCPU's MP_STATE, and so on and so forth.
      
      Checking for a linear %rip match technically suffers from corner cases,
      e.g. userspace could theoretically rewrite the underlying code page and
      expect a different instruction to execute, or the guest hardcodes a PIO
      reset at 0xfffffff0, but those are far, far outside of what can be
      considered normal operation.
      
      Fixes: 432baf60 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
      Cc: <stable@vger.kernel.org>
      Reported-by: NJim Mattson <jmattson@google.com>
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      45def77e
    • V
      x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init · 013cc6eb
      Vitaly Kuznetsov 提交于
      When userspace initializes guest vCPUs it may want to zero all supported
      MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
      HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5 ("kvm/x86: Update SynIC
      timers on guest entry only") we began doing stimer_mark_pending()
      unconditionally on every config change.
      
      The issue I'm observing manifests itself as following:
      - Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
        pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
      - kvm_hv_has_stimer_pending() starts returning true;
      - kvm_vcpu_has_events() starts returning true;
      - kvm_arch_vcpu_runnable() starts returning true;
      - when kvm_arch_vcpu_ioctl_run() gets into
        (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
        - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
          immediately, avoiding normal wait path;
        - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
          userspace to retry.
      
      So instead of normal wait path we get a busy loop on all secondary vCPUs
      before they get INIT signal. This seems to be undesirable, especially given
      that this happens even when Hyper-V extensions are not used.
      
      Generally, it seems to be pointless to mark an stimer as pending in
      stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
      kvm_hv_process_stimers() will do is clear the corresponding bit. We may
      just not mark disabled timers as pending instead.
      
      Fixes: f3b138c5 ("kvm/x86: Update SynIC timers on guest entry only")
      Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      013cc6eb
    • X
      kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs · 2bdb76c0
      Xiaoyao Li 提交于
      Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
      host doesn't suppot it. We should move it to array emulated_msrs from
      arry msrs_to_save, to report to userspace that guest support this msr.
      Signed-off-by: NXiaoyao Li <xiaoyao.li@linux.intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      2bdb76c0
    • S
      KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts · 0cf9135b
      Sean Christopherson 提交于
      The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
      userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
      regardless of hardware support under the pretense that KVM fully
      emulates MSR_IA32_ARCH_CAPABILITIES.  Unfortunately, only VMX hosts
      handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
      also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).
      
      Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
      that it's emulated on AMD hosts.
      
      Fixes: 1eaafe91 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
      Cc: stable@vger.kernel.org
      Reported-by: NXiaoyao Li <xiaoyao.li@linux.intel.com>
      Cc: Jim Mattson <jmattson@google.com>
      Signed-off-by: NSean Christopherson <sean.j.christopherson@intel.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      0cf9135b
    • B
      kvm: mmu: Used range based flushing in slot_handle_level_range · f285c633
      Ben Gardon 提交于
      Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
      in slot_handle_level_range. When range based flushes are not enabled
      kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.
      
      This changes the behavior of many functions that indirectly use
      slot_handle_level_range, iff the range based flushes are enabled. The
      only potential problem I see with this is that kvm->tlbs_dirty will be
      cleared less often, however the only caller of slot_handle_level_range that
      checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
      checks it and does a kvm_flush_remote_tlbs after calling
      kvm_unmap_hva_range anyway.
      
      Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
      	without this patch. The patch introduced no new failures.
      Signed-off-by: NBen Gardon <bgardon@google.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      f285c633
    • M
      KVM: export <linux/kvm_para.h> and <asm/kvm_para.h> iif KVM is supported · 3d9683cf
      Masahiro Yamada 提交于
      I do not see any consistency about headers_install of <linux/kvm_para.h>
      and <asm/kvm_para.h>.
      
      According to my analysis of Linux 5.1-rc1, there are 3 groups:
      
       [1] Both <linux/kvm_para.h> and <asm/kvm_para.h> are exported
      
          alpha, arm, hexagon, mips, powerpc, s390, sparc, x86
      
       [2] <asm/kvm_para.h> is exported, but <linux/kvm_para.h> is not
      
          arc, arm64, c6x, h8300, ia64, m68k, microblaze, nios2, openrisc,
          parisc, sh, unicore32, xtensa
      
       [3] Neither <linux/kvm_para.h> nor <asm/kvm_para.h> is exported
      
          csky, nds32, riscv
      
      This does not match to the actual KVM support. At least, [2] is
      half-baked.
      
      Nor do arch maintainers look like they care about this. For example,
      commit 0add5371 ("microblaze: Add missing kvm_para.h to Kbuild")
      exported <asm/kvm_para.h> to user-space in order to fix an in-kernel
      build error.
      
      We have two ways to make this consistent:
      
       [A] export both <linux/kvm_para.h> and <asm/kvm_para.h> for all
           architectures, irrespective of the KVM support
      
       [B] Match the header export of <linux/kvm_para.h> and <asm/kvm_para.h>
           to the KVM support
      
      My first attempt was [A] because the code looks cleaner, but Paolo
      suggested [B].
      
      So, this commit goes with [B].
      
      For most architectures, <asm/kvm_para.h> was moved to the kernel-space.
      I changed include/uapi/linux/Kbuild so that it checks generated
      asm/kvm_para.h as well as check-in ones.
      
      After this commit, there will be two groups:
      
       [1] Both <linux/kvm_para.h> and <asm/kvm_para.h> are exported
      
          arm, arm64, mips, powerpc, s390, x86
      
       [2] Neither <linux/kvm_para.h> nor <asm/kvm_para.h> is exported
      
          alpha, arc, c6x, csky, h8300, hexagon, ia64, m68k, microblaze,
          nds32, nios2, openrisc, parisc, riscv, sh, sparc, unicore32, xtensa
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Acked-by: NCornelia Huck <cohuck@redhat.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      3d9683cf