- 10 5月, 2018 3 次提交
-
-
由 Brian Foster 提交于
Freed extents are unconditionally discarded when online discard is enabled. Define XFS_BMAPI_NODISCARD to allow callers to bypass discards when unnecessary. For example, this will be useful for eofblocks trimming. This patch does not change behavior. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The AGFL fixup code executes before every block allocation/free and rectifies the AGFL based on the current, dynamic allocation requirements of the fs. The AGFL must hold a minimum number of blocks to satisfy a worst case split of the free space btrees caused by the impending allocation operation. The AGFL is also updated to maintain the implicit requirement for a minimum number of free slots to satisfy a worst case join of the free space btrees. Since the AGFL caches individual blocks, AGFL reduction typically involves multiple, single block frees. We've had reports of transaction overrun problems during certain workloads that boil down to AGFL reduction freeing multiple blocks and consuming more space in the log than was reserved for the transaction. Since the objective of freeing AGFL blocks is to ensure free AGFL free slots are available for the upcoming allocation, one way to address this problem is to release surplus blocks from the AGFL immediately but defer the free of those blocks (similar to how file-mapped blocks are unmapped from the file in one transaction and freed via a deferred operation) until the transaction is rolled. This turns AGFL reduction into an operation with predictable log reservation consumption. Add the capability to defer AGFL block frees when a deferred ops list is available to the AGFL fixup code. Add a dfops pointer to the transaction to carry dfops through various contexts to the allocator context. Deferring AGFL frees is conditional behavior based on whether the transaction pointer is populated. The long term objective is to reuse the transaction pointer to clean up all unrelated callchains that pass dfops on the stack along with a transaction and in doing so, consistently defer AGFL blocks from the allocator. A bit of customization is required to handle deferred completion processing because AGFL blocks are accounted against a per-ag reservation pool and AGFL blocks are not inserted into the extent busy list when freed (they are inserted when used and released back to the AGFL). Reuse the majority of the existing deferred extent free infrastructure and customize it appropriately to handle AGFL blocks. Note that this patch only adds infrastructure. It does not change behavior because no callers have been updated to pass ->t_agfl_dfops into the allocation code. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Refactor the AGFL block free code into a new helper such that it can be invoked from deferred context. No functional changes. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 4月, 2018 1 次提交
-
-
由 Eric Sandeen 提交于
Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 24 3月, 2018 1 次提交
-
-
由 Brian Foster 提交于
The struct xfs_agfl v5 header was originally introduced with unexpected padding that caused the AGFL to operate with one less slot than intended. The header has since been packed, but the fix left an incompatibility for users who upgrade from an old kernel with the unpacked header to a newer kernel with the packed header while the AGFL happens to wrap around the end. The newer kernel recognizes one extra slot at the physical end of the AGFL that the previous kernel did not. The new kernel will eventually attempt to allocate a block from that slot, which contains invalid data, and cause a crash. This condition can be detected by comparing the active range of the AGFL to the count. While this detects a padding mismatch, it can also trigger false positives for unrelated flcount corruption. Since we cannot distinguish a size mismatch due to padding from unrelated corruption, we can't trust the AGFL enough to simply repopulate the empty slot. Instead, avoid unnecessarily complex detection logic and and use a solution that can handle any form of flcount corruption that slips through read verifiers: distrust the entire AGFL and reset it to an empty state. Any valid blocks within the AGFL are intentionally leaked. This requires xfs_repair to rectify (which was already necessary based on the state the AGFL was found in). The reset mitigates the side effect of the padding mismatch problem from a filesystem crash to a free space accounting inconsistency. The generic approach also means that this patch can be safely backported to kernels with or without a packed struct xfs_agfl. Check the AGF for an invalid freelist count on initial read from disk. If detected, set a flag on the xfs_perag to indicate that a reset is required before the AGFL can be used. In the first transaction that attempts to use a flagged AGFL, reset it to empty, warn the user about the inconsistency and allow the freelist fixup code to repopulate the AGFL with new blocks. The xfs_perag flag is cleared to eliminate the need for repeated checks on each block allocation operation. This allows kernels that include the packing fix commit 96f859d5 ("libxfs: pack the agfl header structure so XFS_AGFL_SIZE is correct") to handle older unpacked AGFL formats without a filesystem crash. Suggested-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by Dave Chiluk <chiluk+linuxxfs@indeed.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 12 3月, 2018 3 次提交
-
-
由 Brian Foster 提交于
The rmapbt perag metadata reservation reserves blocks for the reverse mapping btree (rmapbt). Since the rmapbt uses blocks from the agfl and perag accounting is updated as blocks are allocated from the allocation btrees, the reservation actually accounts blocks as they are allocated to (or freed from) the agfl rather than the rmapbt itself. While this works for blocks that are eventually used for the rmapbt, not all agfl blocks are destined for the rmapbt. Blocks that are allocated to the agfl (and thus "reserved" for the rmapbt) but then used by another structure leads to a growing inconsistency over time between the runtime tracking of rmapbt usage vs. actual rmapbt usage. Since the runtime tracking thinks all agfl blocks are rmapbt blocks, it essentially believes that less future reservation is required to satisfy the rmapbt than what is actually necessary. The inconsistency is rectified across mount cycles because the perag reservation is initialized based on the actual rmapbt usage at mount time. The problem, however, is that the excessive drain of the reservation at runtime opens a window to allocate blocks for other purposes that might be required for the rmapbt on a subsequent mount. This problem can be demonstrated by a simple test that runs an allocation workload to consume agfl blocks over time and then observe the difference in the agfl reservation requirement across an unmount/mount cycle: mount ...: xfs_ag_resv_init: ... resv 3193 ask 3194 len 3194 ... ... : xfs_ag_resv_alloc_extent: ... resv 2957 ask 3194 len 1 umount...: xfs_ag_resv_free: ... resv 2956 ask 3194 len 0 mount ...: xfs_ag_resv_init: ... resv 3052 ask 3194 len 3194 As the above tracepoints show, the reservation requirement reduces from 3194 blocks to 2956 blocks as the workload runs. Without any other changes in the filesystem, the same reservation requirement jumps from 2956 to 3052 blocks over a umount/mount cycle. To address this divergence, update the RMAPBT reservation to account blocks used for the rmapbt only rather than all blocks filled into the agfl. This patch makes several high-level changes toward that end: 1.) Reintroduce an AGFL reservation type to serve as an accounting no-op for blocks allocated to (or freed from) the AGFL. 2.) Invoke RMAPBT usage accounting from the actual rmapbt block allocation path rather than the AGFL allocation path. The first change is required because agfl blocks are considered free blocks throughout their lifetime. The perag reservation subsystem is invoked unconditionally by the allocation subsystem, so we need a way to tell the perag subsystem (via the allocation subsystem) to not make any accounting changes for blocks filled into the AGFL. The second change causes the in-core RMAPBT reservation usage accounting to remain consistent with the on-disk state at all times and eliminates the risk of leaving the rmapbt reservation underfilled. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The AGFL perag reservation type accounts all allocations that feed into (or are released from) the allocation group free list (agfl). The purpose of the reservation is to support worst case conditions for the reverse mapping btree (rmapbt). As such, the agfl reservation usage accounting only considers rmapbt usage when the in-core counters are initialized at mount time. This implementation inconsistency leads to divergence of the in-core and on-disk usage accounting over time. In preparation to resolve this inconsistency and adjust the AGFL reservation into an rmapbt specific reservation, rename the AGFL reservation type and associated accounting fields to something more rmapbt-specific. Also fix up a couple tracepoints that incorrectly use the AGFL reservation type to pass the agfl state of the associated extent where the raw reservation type is expected. Note that this patch does not change perag reservation behavior. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
The AGFL size calculation is about to get more complex, so lets turn the macro into a function first and remove the macro. Signed-off-by: NDave Chinner <dchinner@redhat.com> [darrick: forward port to newer kernel, simplify the helper] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 29 1月, 2018 1 次提交
-
-
由 Carlos Maiolino 提交于
By splitting the b_fspriv field into two different fields (b_log_item and b_li_list). It's possible to get rid of an old ABI workaround, by using the new b_log_item field to store xfs_buf_log_item separated from the log items attached to the buffer, which will be linked in the new b_li_list field. This way, there is no more need to reorder the log items list to place the buf_log_item at the beginning of the list, simplifying a bit the logic to handle buffer IO. This also opens the possibility to change buffer's log items list into a proper list_head. b_log_item field is still defined as a void *, because it is still used by the log buffers to store xlog_in_core structures, and there is no need to add an extra field on xfs_buf just for xlog_in_core. Signed-off-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> [darrick: minor style changes] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 18 1月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
Add a couple of functions to the free space btrees that will be used to cross-reference metadata against the bnobt/cntbt, and a generic btree function that provides the real implementation. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 09 1月, 2018 4 次提交
-
-
由 Darrick J. Wong 提交于
Expose all metadata structure buffer verifier functions via buf_ops. These will be used by the online scrub mechanism to look for problems with buffers that are already sitting around in memory. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Refactor the callers of verifiers to print the instruction address of a failing check. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Modify each function that checks the contents of a metadata buffer to return the instruction address of the failing test so that we can report more precise failure errors to the log. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Since all verification errors also mark the buffer as having an error, we can combine these two calls. Later we'll add a xfs_failaddr_t parameter to promote the idea of reporting corruption errors and the address of the failing check to enable better debugging reports. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 22 12月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Calling xfs_rmap_free with an unknown owner is supposed to remove any rmaps covering that range regardless of owner. This is used by the EFI recovery code to say "we're freeing this, it mustn't be owned by anything anymore", but for whatever reason xfs_free_ag_extent filters them out. Therefore, remove the filter and make xfs_rmap_unmap actually treat it as a wildcard owner -- free anything that's already there, and if there's no owner at all then that's fine too. There are two existing callers of bmap_add_free that take care the rmap deferred ops themselves and use OWN_UNKNOWN to skip the EFI-based rmap cleanup; convert these to use OWN_NULL (via helpers), and now we really require that an RUI (if any) gets added to the defer ops before any EFI. Lastly, now that xfs_free_extent filters out OWN_NULL rmap free requests, growfs will have to consult directly with the rmap to ensure that there aren't any rmaps in the grown region. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 02 11月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Move the error injection tag names into a libxfs header so that we can share it between kernel and userspace. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 27 10月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Create some helper functions to check that a block pointer points within the filesystem (or AG) and doesn't point at static metadata. We will use this for scrub. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 12 10月, 2017 1 次提交
-
-
由 Eric Sandeen 提交于
Jason reported that a corrupted filesystem failed to replay the log with a metadata block out of bounds warning: XFS (dm-2): _xfs_buf_find: Block out of range: block 0x80270fff8, EOFS 0x9c40000 _xfs_buf_find() and xfs_btree_get_bufs() return NULL if that happens, and then when xfs_alloc_fix_freelist() calls xfs_trans_binval() on that NULL bp, we oops with: BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8 We don't handle _xfs_buf_find errors very well, every caller higher up the stack gets to guess at why it failed. But we should at least handle it somehow, so return EFSCORRUPTED here. Reported-by: NJason L Tibbitts III <tibbs@math.uh.edu> Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 28 6月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Since we moved the injected error frequency controls to the mountpoint, we can get rid of the last argument to XFS_TEST_ERROR. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com>
-
- 20 6月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Export various internal functions so that the online scrubber can use them to check the state of metadata. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 04 4月, 2017 2 次提交
-
-
由 Darrick J. Wong 提交于
Create a helper function that will query all records in a btree. This will be used by the online repair functions to examine every record in a btree to rebuild a second btree. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
Implement a query_range function for the bnobt and cntbt. This will be used for getfsmap fallback if there is no rmapbt and by the online scrub and repair code. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 18 2月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
XFS_ALLOCTYPE_ANY_AG was only used for the RT allocator and is unused now, and XFS_ALLOCTYPE_START_AG has been unused for a while. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 2月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Currently we force the log and simply try again if we hit a busy extent, but especially with online discard enabled it might take a while after the log force for the busy extents to disappear, and we might have already completed our second pass. So instead we add a new waitqueue and a generation counter to the pag structure so that we can do wakeups once we've removed busy extents, and we replace the single retry with an unconditional one - after all we hold the AGF buffer lock, so no other allocations or frees can be racing with us in this AG. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 1月, 2017 4 次提交
-
-
由 Christoph Hellwig 提交于
->total is a bit of an odd parameter passed down to the low-level allocator all the way from the high-level callers. It's supposed to contain the maximum number of blocks to be allocated for the whole transaction [1]. But in xfs_iomap_write_allocate we only convert existing delayed allocations and thus only have a minimal block reservation for the current transaction, so xfs_alloc_space_available can't use it for the allocation decisions. Use the maximum of args->total and the calculated block requirement to make a decision. We probably should get rid of args->total eventually and instead apply ->minleft more broadly, but that will require some extensive changes all over. [1] which creates lots of confusion as most callers don't decrement it once doing a first allocation. But that's for a separate series. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We must decide in xfs_alloc_fix_freelist if we can perform an allocation from a given AG is possible or not based on the available space, and should not fail the allocation past that point on a healthy file system. But currently we have two additional places that second-guess xfs_alloc_fix_freelist: xfs_alloc_ag_vextent tries to adjust the maxlen parameter to remove the reservation before doing the allocation (but ignores the various minium freespace requirements), and xfs_alloc_fix_minleft tries to fix up the allocated length after we've found an extent, but ignores the reservations and also doesn't take the AGFL into account (and thus fails allocations for not matching minlen in some cases). Remove all these later fixups and just correct the maxlen argument inside xfs_alloc_fix_freelist once we have the AGF buffer locked. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We can't just set minleft to 0 when we're low on space - that's exactly what we need minleft for: to protect space in the AG for btree block allocations when we are low on free space. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Setting aside 4 blocks globally for bmbt splits isn't all that useful, as different threads can allocate space in parallel. Bump it to 4 blocks per AG to allow each thread that is currently doing an allocation to dip into it separately. Without that we may no have enough reserved blocks if there are enough parallel transactions in an almost out space file system that all run into bmap btree splits. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 05 12月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
There is no such thing as a zero-level AG btree since even a single-node zero-records btree has one level. Btree cursor constructors read cur_nlevels straight from disk and then access things like cur_bufs[cur_nlevels - 1] which is /really/ bad if cur_nlevels is zero! Therefore, strengthen the verifiers to prevent this possibility. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 04 10月, 2016 4 次提交
-
-
由 Darrick J. Wong 提交于
Reduce the max AG usable space size so that we always have space for the refcount btree root. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Implement the generic btree operations required to manipulate refcount btree blocks. The implementation is similar to the bmapbt, though it will only allocate and free blocks from the AG. Since the refcount root and level fields are separate from the existing roots and levels array, they need a separate logging flag. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> [hch: fix logging of AGF refcount btree fields] Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Since XFS reserves a small amount of space in each AG as the minimum free space needed for an operation, save some more space in case we touch the refcount btree. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Add new per-AG refcount btree definitions to the per-AG structures. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 26 9月, 2016 1 次提交
-
-
由 Dave Chinner 提交于
When adding a new remote attribute, we write the attribute to the new extent before the allocation transaction is committed. This means we cannot reuse busy extents as that violates crash consistency semantics. Hence we currently treat remote attribute extent allocation like userdata because it has the same overwrite ordering constraints as userdata. Unfortunately, this also allows the allocator to incorrectly apply extent size hints to the remote attribute extent allocation. This results in interesting failures, such as transaction block reservation overruns and in-memory inode attribute fork corruption. To fix this, we need to separate the busy extent reuse configuration from the userdata configuration. This changes the definition of XFS_BMAPI_METADATA slightly - it now means that allocation is metadata and reuse of busy extents is acceptible due to the metadata ordering semantics of the journal. If this flag is not set, it means the allocation is that has unordered data writeback, and hence busy extent reuse is not allowed. It no longer implies the allocation is for user data, just that the data write will not be strictly ordered. This matches the semantics for both user data and remote attribute block allocation. As such, This patch changes the "userdata" field to a "datatype" field, and adds a "no busy reuse" flag to the field. When we detect an unordered data extent allocation, we immediately set the no reuse flag. We then set the "user data" flags based on the inode fork we are allocating the extent to. Hence we only set userdata flags on data fork allocations now and consider attribute fork remote extents to be an unordered metadata extent. The result is that remote attribute extents now have the expected allocation semantics, and the data fork allocation behaviour is completely unchanged. It should be noted that there may be other ways to fix this (e.g. use ordered metadata buffers for the remote attribute extent data write) but they are more invasive and difficult to validate both from a design and implementation POV. Hence this patch takes the simple, obvious route to fixing the problem... Reported-and-tested-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 19 9月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 26 8月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
When we're logging the last non-spare field in the AGF, we don't need to log the spare fields, so plumb in a new AGF logging flag to help us avoid that. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 17 8月, 2016 2 次提交
-
-
由 Darrick J. Wong 提交于
When we're really tight on space, xfs_alloc_ag_vextent_small() can allocate a block from the AGFL and give it to the caller. Since the caller is never the AGFL-fixing method, we must remove the OWN_AG reverse mapping because it will clash with whatever rmap the caller wants to set up. This bug was discovered by running generic/299 repeatedly. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Track the number of blocks used for the rmapbt in the AGF. When we get to the AG reservation code we need this counter to quickly make our reservation during mount. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 03 8月, 2016 2 次提交
-
-
由 Darrick J. Wong 提交于
Rename the deferred bmap-free to extent_free and make them only trigger when we're really running deferred ops. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Allow a caller of xfs_alloc_fix_freelist to disable rmapbt updates when fixing the AG freelist. xfs_repair needs this during phase 5 to be able to adjust the freelist while it's reconstructing the rmap btree; the missing entries will be added back at the very end of phase 5 once the AGFL contents settle down. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-