1. 08 4月, 2021 2 次提交
  2. 26 3月, 2021 1 次提交
    • D
      xfs: initialise attr fork on inode create · e6a688c3
      Dave Chinner 提交于
      When we allocate a new inode, we often need to add an attribute to
      the inode as part of the create. This can happen as a result of
      needing to add default ACLs or security labels before the inode is
      made visible to userspace.
      
      This is highly inefficient right now. We do the create transaction
      to allocate the inode, then we do an "add attr fork" transaction to
      modify the just created empty inode to set the inode fork offset to
      allow attributes to be stored, then we go and do the attribute
      creation.
      
      This means 3 transactions instead of 1 to allocate an inode, and
      this greatly increases the load on the CIL commit code, resulting in
      excessive contention on the CIL spin locks and performance
      degradation:
      
       18.99%  [kernel]                [k] __pv_queued_spin_lock_slowpath
        3.57%  [kernel]                [k] do_raw_spin_lock
        2.51%  [kernel]                [k] __raw_callee_save___pv_queued_spin_unlock
        2.48%  [kernel]                [k] memcpy
        2.34%  [kernel]                [k] xfs_log_commit_cil
      
      The typical profile resulting from running fsmark on a selinux enabled
      filesytem is adds this overhead to the create path:
      
        - 15.30% xfs_init_security
           - 15.23% security_inode_init_security
      	- 13.05% xfs_initxattrs
      	   - 12.94% xfs_attr_set
      	      - 6.75% xfs_bmap_add_attrfork
      		 - 5.51% xfs_trans_commit
      		    - 5.48% __xfs_trans_commit
      		       - 5.35% xfs_log_commit_cil
      			  - 3.86% _raw_spin_lock
      			     - do_raw_spin_lock
      				  __pv_queued_spin_lock_slowpath
      		 - 0.70% xfs_trans_alloc
      		      0.52% xfs_trans_reserve
      	      - 5.41% xfs_attr_set_args
      		 - 5.39% xfs_attr_set_shortform.constprop.0
      		    - 4.46% xfs_trans_commit
      		       - 4.46% __xfs_trans_commit
      			  - 4.33% xfs_log_commit_cil
      			     - 2.74% _raw_spin_lock
      				- do_raw_spin_lock
      				     __pv_queued_spin_lock_slowpath
      			       0.60% xfs_inode_item_format
      		      0.90% xfs_attr_try_sf_addname
      	- 1.99% selinux_inode_init_security
      	   - 1.02% security_sid_to_context_force
      	      - 1.00% security_sid_to_context_core
      		 - 0.92% sidtab_entry_to_string
      		    - 0.90% sidtab_sid2str_get
      			 0.59% sidtab_sid2str_put.part.0
      	   - 0.82% selinux_determine_inode_label
      	      - 0.77% security_transition_sid
      		   0.70% security_compute_sid.part.0
      
      And fsmark creation rate performance drops by ~25%. The key point to
      note here is that half the additional overhead comes from adding the
      attribute fork to the newly created inode. That's crazy, considering
      we can do this same thing at inode create time with a couple of
      lines of code and no extra overhead.
      
      So, if we know we are going to add an attribute immediately after
      creating the inode, let's just initialise the attribute fork inside
      the create transaction and chop that whole chunk of code out of
      the create fast path. This completely removes the performance
      drop caused by enabling SELinux, and the profile looks like:
      
           - 8.99% xfs_init_security
               - 9.00% security_inode_init_security
                  - 6.43% xfs_initxattrs
                     - 6.37% xfs_attr_set
                        - 5.45% xfs_attr_set_args
                           - 5.42% xfs_attr_set_shortform.constprop.0
                              - 4.51% xfs_trans_commit
                                 - 4.54% __xfs_trans_commit
                                    - 4.59% xfs_log_commit_cil
                                       - 2.67% _raw_spin_lock
                                          - 3.28% do_raw_spin_lock
                                               3.08% __pv_queued_spin_lock_slowpath
                                         0.66% xfs_inode_item_format
                              - 0.90% xfs_attr_try_sf_addname
                        - 0.60% xfs_trans_alloc
                  - 2.35% selinux_inode_init_security
                     - 1.25% security_sid_to_context_force
                        - 1.21% security_sid_to_context_core
                           - 1.19% sidtab_entry_to_string
                              - 1.20% sidtab_sid2str_get
                                 - 0.86% sidtab_sid2str_put.part.0
                                    - 0.62% _raw_spin_lock_irqsave
                                       - 0.77% do_raw_spin_lock
                                            __pv_queued_spin_lock_slowpath
                     - 0.84% selinux_determine_inode_label
                        - 0.83% security_transition_sid
                             0.86% security_compute_sid.part.0
      
      Which indicates the XFS overhead of creating the selinux xattr has
      been halved. This doesn't fix the CIL lock contention problem, just
      means it's not a limiting factor for this workload. Lock contention
      in the security subsystems is going to be an issue soon, though...
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      [djwong: fix compilation error when CONFIG_SECURITY=n]
      Reviewed-by: NDarrick J. Wong <djwong@kernel.org>
      Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
      Reviewed-by: NGao Xiang <hsiangkao@redhat.com>
      e6a688c3
  3. 10 3月, 2021 1 次提交
  4. 04 2月, 2021 2 次提交
  5. 24 1月, 2021 1 次提交
  6. 23 1月, 2021 2 次提交
  7. 17 12月, 2020 1 次提交
  8. 20 5月, 2020 2 次提交
  9. 05 5月, 2020 1 次提交
  10. 31 3月, 2020 1 次提交
  11. 19 3月, 2020 1 次提交
  12. 03 3月, 2020 1 次提交
  13. 27 1月, 2020 3 次提交
  14. 08 11月, 2019 1 次提交
  15. 29 6月, 2019 1 次提交
  16. 13 12月, 2018 1 次提交
    • D
      xfs: zero length symlinks are not valid · 43feeea8
      Dave Chinner 提交于
      A log recovery failure has been reproduced where a symlink inode has
      a zero length in extent form. It was caused by a shutdown during a
      combined fstress+fsmark workload.
      
      The underlying problem is the issue in xfs_inactive_symlink(): the
      inode is unlocked between the symlink inactivation/truncation and
      the inode being freed. This opens a window for the inode to be
      written to disk before it xfs_ifree() removes it from the unlinked
      list, marks it free in the inobt and zeros the mode.
      
      For shortform inodes, the fix is simple. xfs_ifree() clears the data
      fork state, so there's no need to do it in xfs_inactive_symlink().
      This means the shortform fork verifier will not see a zero length
      data fork as it mirrors the inode size through to xfs_ifree()), and
      hence if the inode gets written back and the fork verifiers are run
      they will still see a fork that matches the on-disk inode size.
      
      For extent form (remote) symlinks, it is a little more tricky. Here
      we explicitly set the inode size to zero, so the above race can lead
      to zero length symlinks on disk. Because the inode is unlinked at
      this point (i.e. on the unlinked list) and unreferenced, it can
      never be seen again by a user. Hence when we set the inode size to
      zeor, also change the type to S_IFREG. xfs_ifree() expects S_IFREG
      inodes to be of zero length, and so this avoids all the problems of
      zero length symlinks ever hitting the disk. It also avoids the
      problem of needing to handle zero length symlink inodes in log
      recovery to replay the extent free intents and the remaining
      deferops to free the extents the symlink used.
      
      Also add a couple of asserts to warn us if zero length symlinks end
      up in either the symlink create or inactivation paths.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      43feeea8
  17. 03 8月, 2018 1 次提交
  18. 27 7月, 2018 2 次提交
  19. 12 7月, 2018 13 次提交
  20. 07 6月, 2018 1 次提交
    • D
      xfs: convert to SPDX license tags · 0b61f8a4
      Dave Chinner 提交于
      Remove the verbose license text from XFS files and replace them
      with SPDX tags. This does not change the license of any of the code,
      merely refers to the common, up-to-date license files in LICENSES/
      
      This change was mostly scripted. fs/xfs/Makefile and
      fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
      and modified by the following command:
      
      for f in `git grep -l "GNU General" fs/xfs/` ; do
      	echo $f
      	cat $f | awk -f hdr.awk > $f.new
      	mv -f $f.new $f
      done
      
      And the hdr.awk script that did the modification (including
      detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
      is as follows:
      
      $ cat hdr.awk
      BEGIN {
      	hdr = 1.0
      	tag = "GPL-2.0"
      	str = ""
      }
      
      /^ \* This program is free software/ {
      	hdr = 2.0;
      	next
      }
      
      /any later version./ {
      	tag = "GPL-2.0+"
      	next
      }
      
      /^ \*\// {
      	if (hdr > 0.0) {
      		print "// SPDX-License-Identifier: " tag
      		print str
      		print $0
      		str=""
      		hdr = 0.0
      		next
      	}
      	print $0
      	next
      }
      
      /^ \* / {
      	if (hdr > 1.0)
      		next
      	if (hdr > 0.0) {
      		if (str != "")
      			str = str "\n"
      		str = str $0
      		next
      	}
      	print $0
      	next
      }
      
      /^ \*/ {
      	if (hdr > 0.0)
      		next
      	print $0
      	next
      }
      
      // {
      	if (hdr > 0.0) {
      		if (str != "")
      			str = str "\n"
      		str = str $0
      		next
      	}
      	print $0
      }
      
      END { }
      $
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      0b61f8a4
  21. 10 5月, 2018 1 次提交