1. 23 4月, 2010 1 次提交
  2. 20 4月, 2010 1 次提交
  3. 05 2月, 2010 1 次提交
  4. 04 2月, 2010 2 次提交
  5. 24 11月, 2009 1 次提交
    • S
      remove CONFIG_SECURITY_FILE_CAPABILITIES compile option · b3a222e5
      Serge E. Hallyn 提交于
      As far as I know, all distros currently ship kernels with default
      CONFIG_SECURITY_FILE_CAPABILITIES=y.  Since having the option on
      leaves a 'no_file_caps' option to boot without file capabilities,
      the main reason to keep the option is that turning it off saves
      you (on my s390x partition) 5k.  In particular, vmlinux sizes
      came to:
      
      without patch fscaps=n:		 	53598392
      without patch fscaps=y:		 	53603406
      with this patch applied:		53603342
      
      with the security-next tree.
      
      Against this we must weigh the fact that there is no simple way for
      userspace to figure out whether file capabilities are supported,
      while things like per-process securebits, capability bounding
      sets, and adding bits to pI if CAP_SETPCAP is in pE are not supported
      with SECURITY_FILE_CAPABILITIES=n, leaving a bit of a problem for
      applications wanting to know whether they can use them and/or why
      something failed.
      
      It also adds another subtly different set of semantics which we must
      maintain at the risk of severe security regressions.
      
      So this patch removes the SECURITY_FILE_CAPABILITIES compile
      option.  It drops the kernel size by about 50k over the stock
      SECURITY_FILE_CAPABILITIES=y kernel, by removing the
      cap_limit_ptraced_target() function.
      
      Changelog:
      	Nov 20: remove cap_limit_ptraced_target() as it's logic
      		was ifndef'ed.
      Signed-off-by: NSerge E. Hallyn <serue@us.ibm.com>
      Acked-by: NAndrew G. Morgan" <morgan@kernel.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      b3a222e5
  6. 20 10月, 2009 1 次提交
  7. 17 8月, 2009 2 次提交
    • E
      Security/SELinux: seperate lsm specific mmap_min_addr · 788084ab
      Eric Paris 提交于
      Currently SELinux enforcement of controls on the ability to map low memory
      is determined by the mmap_min_addr tunable.  This patch causes SELinux to
      ignore the tunable and instead use a seperate Kconfig option specific to how
      much space the LSM should protect.
      
      The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
      permissions will always protect the amount of low memory designated by
      CONFIG_LSM_MMAP_MIN_ADDR.
      
      This allows users who need to disable the mmap_min_addr controls (usual reason
      being they run WINE as a non-root user) to do so and still have SELinux
      controls preventing confined domains (like a web server) from being able to
      map some area of low memory.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      788084ab
    • E
      Capabilities: move cap_file_mmap to commoncap.c · 9c0d9010
      Eric Paris 提交于
      Currently we duplicate the mmap_min_addr test in cap_file_mmap and in
      security_file_mmap if !CONFIG_SECURITY.  This patch moves cap_file_mmap
      into commoncap.c and then calls that function directly from
      security_file_mmap ifndef CONFIG_SECURITY like all of the other capability
      checks are done.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      9c0d9010
  8. 06 8月, 2009 2 次提交
    • E
      Security/SELinux: seperate lsm specific mmap_min_addr · a2551df7
      Eric Paris 提交于
      Currently SELinux enforcement of controls on the ability to map low memory
      is determined by the mmap_min_addr tunable.  This patch causes SELinux to
      ignore the tunable and instead use a seperate Kconfig option specific to how
      much space the LSM should protect.
      
      The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
      permissions will always protect the amount of low memory designated by
      CONFIG_LSM_MMAP_MIN_ADDR.
      
      This allows users who need to disable the mmap_min_addr controls (usual reason
      being they run WINE as a non-root user) to do so and still have SELinux
      controls preventing confined domains (like a web server) from being able to
      map some area of low memory.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      a2551df7
    • E
      Capabilities: move cap_file_mmap to commoncap.c · 7c73875e
      Eric Paris 提交于
      Currently we duplicate the mmap_min_addr test in cap_file_mmap and in
      security_file_mmap if !CONFIG_SECURITY.  This patch moves cap_file_mmap
      into commoncap.c and then calls that function directly from
      security_file_mmap ifndef CONFIG_SECURITY like all of the other capability
      checks are done.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      7c73875e
  9. 24 6月, 2009 1 次提交
  10. 09 4月, 2009 1 次提交
  11. 03 4月, 2009 1 次提交
    • S
      don't raise all privs on setuid-root file with fE set (v2) · b5f22a59
      Serge E. Hallyn 提交于
      Distributions face a backward compatibility problem with starting to use
      file capabilities.  For instance, removing setuid root from ping and
      doing setcap cap_net_raw=pe means that booting with an older kernel
      or one compiled without file capabilities means ping won't work for
      non-root users.
      
      In order to replace the setuid root bit on a capability-unaware
      program, one has to set the effective, or legacy, file capability,
      which makes the capability effective immediately.  This patch
      uses the legacy bit as a queue to not automatically add full
      privilege to a setuid-root program.
      
      So, with this patch, an ordinary setuid-root program will run with
      privilege.  But if /bin/ping has both setuid-root and cap_net_raw in
      fP and fE, then ping (when run by non-root user) will not run
      with only cap_net_raw.
      
      Changelog:
      	Apr 2 2009: Print a message once when such a binary is loaded,
      		as per James Morris' suggestion.
      	Apr 2 2009: Fix the condition to only catch uid!=0 && euid==0.
      Signed-off-by: NSerge E. Hallyn <serue@us.ibm.com>
      Acked-by: NCasey Schaufler <casey@schaufler-ca.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      b5f22a59
  12. 07 1月, 2009 2 次提交
    • D
      CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #3] · 3699c53c
      David Howells 提交于
      Fix a regression in cap_capable() due to:
      
      	commit 3b11a1de
      	Author: David Howells <dhowells@redhat.com>
      	Date:   Fri Nov 14 10:39:26 2008 +1100
      
      	    CRED: Differentiate objective and effective subjective credentials on a task
      
      The problem is that the above patch allows a process to have two sets of
      credentials, and for the most part uses the subjective credentials when
      accessing current's creds.
      
      There is, however, one exception: cap_capable(), and thus capable(), uses the
      real/objective credentials of the target task, whether or not it is the current
      task.
      
      Ordinarily this doesn't matter, since usually the two cred pointers in current
      point to the same set of creds.  However, sys_faccessat() makes use of this
      facility to override the credentials of the calling process to make its test,
      without affecting the creds as seen from other processes.
      
      One of the things sys_faccessat() does is to make an adjustment to the
      effective capabilities mask, which cap_capable(), as it stands, then ignores.
      
      The affected capability check is in generic_permission():
      
      	if (!(mask & MAY_EXEC) || execute_ok(inode))
      		if (capable(CAP_DAC_OVERRIDE))
      			return 0;
      
      This change passes the set of credentials to be tested down into the commoncap
      and SELinux code.  The security functions called by capable() and
      has_capability() select the appropriate set of credentials from the process
      being checked.
      
      This can be tested by compiling the following program from the XFS testsuite:
      
      /*
       *  t_access_root.c - trivial test program to show permission bug.
       *
       *  Written by Michael Kerrisk - copyright ownership not pursued.
       *  Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
       */
      #include <limits.h>
      #include <unistd.h>
      #include <stdio.h>
      #include <stdlib.h>
      #include <fcntl.h>
      #include <sys/stat.h>
      
      #define UID 500
      #define GID 100
      #define PERM 0
      #define TESTPATH "/tmp/t_access"
      
      static void
      errExit(char *msg)
      {
          perror(msg);
          exit(EXIT_FAILURE);
      } /* errExit */
      
      static void
      accessTest(char *file, int mask, char *mstr)
      {
          printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
      } /* accessTest */
      
      int
      main(int argc, char *argv[])
      {
          int fd, perm, uid, gid;
          char *testpath;
          char cmd[PATH_MAX + 20];
      
          testpath = (argc > 1) ? argv[1] : TESTPATH;
          perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
          uid = (argc > 3) ? atoi(argv[3]) : UID;
          gid = (argc > 4) ? atoi(argv[4]) : GID;
      
          unlink(testpath);
      
          fd = open(testpath, O_RDWR | O_CREAT, 0);
          if (fd == -1) errExit("open");
      
          if (fchown(fd, uid, gid) == -1) errExit("fchown");
          if (fchmod(fd, perm) == -1) errExit("fchmod");
          close(fd);
      
          snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
          system(cmd);
      
          if (seteuid(uid) == -1) errExit("seteuid");
      
          accessTest(testpath, 0, "0");
          accessTest(testpath, R_OK, "R_OK");
          accessTest(testpath, W_OK, "W_OK");
          accessTest(testpath, X_OK, "X_OK");
          accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
          accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
          accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
          accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
      
          exit(EXIT_SUCCESS);
      } /* main */
      
      This can be run against an Ext3 filesystem as well as against an XFS
      filesystem.  If successful, it will show:
      
      	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
      	---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
      	access(/tmp/xxx, 0) returns 0
      	access(/tmp/xxx, R_OK) returns 0
      	access(/tmp/xxx, W_OK) returns 0
      	access(/tmp/xxx, X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK) returns 0
      	access(/tmp/xxx, R_OK | X_OK) returns -1
      	access(/tmp/xxx, W_OK | X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
      
      If unsuccessful, it will show:
      
      	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
      	---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
      	access(/tmp/xxx, 0) returns 0
      	access(/tmp/xxx, R_OK) returns -1
      	access(/tmp/xxx, W_OK) returns -1
      	access(/tmp/xxx, X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK) returns -1
      	access(/tmp/xxx, R_OK | X_OK) returns -1
      	access(/tmp/xxx, W_OK | X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
      
      I've also tested the fix with the SELinux and syscalls LTP testsuites.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Tested-by: NJ. Bruce Fields <bfields@citi.umich.edu>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      3699c53c
    • J
      Revert "CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2]" · 29881c45
      James Morris 提交于
      This reverts commit 14eaddc9.
      
      David has a better version to come.
      29881c45
  13. 06 1月, 2009 1 次提交
    • A
      inode->i_op is never NULL · acfa4380
      Al Viro 提交于
      We used to have rather schizophrenic set of checks for NULL ->i_op even
      though it had been eliminated years ago.  You'd need to go out of your
      way to set it to NULL explicitly _and_ a bunch of code would die on
      such inodes anyway.  After killing two remaining places that still
      did that bogosity, all that crap can go away.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      acfa4380
  14. 05 1月, 2009 1 次提交
    • D
      CRED: Fix regression in cap_capable() as shown up by sys_faccessat() [ver #2] · 14eaddc9
      David Howells 提交于
      Fix a regression in cap_capable() due to:
      
      	commit 5ff7711e635b32f0a1e558227d030c7e45b4a465
      	Author: David Howells <dhowells@redhat.com>
      	Date:   Wed Dec 31 02:52:28 2008 +0000
      
      	    CRED: Differentiate objective and effective subjective credentials on a task
      
      The problem is that the above patch allows a process to have two sets of
      credentials, and for the most part uses the subjective credentials when
      accessing current's creds.
      
      There is, however, one exception: cap_capable(), and thus capable(), uses the
      real/objective credentials of the target task, whether or not it is the current
      task.
      
      Ordinarily this doesn't matter, since usually the two cred pointers in current
      point to the same set of creds.  However, sys_faccessat() makes use of this
      facility to override the credentials of the calling process to make its test,
      without affecting the creds as seen from other processes.
      
      One of the things sys_faccessat() does is to make an adjustment to the
      effective capabilities mask, which cap_capable(), as it stands, then ignores.
      
      The affected capability check is in generic_permission():
      
      	if (!(mask & MAY_EXEC) || execute_ok(inode))
      		if (capable(CAP_DAC_OVERRIDE))
      			return 0;
      
      This change splits capable() from has_capability() down into the commoncap and
      SELinux code.  The capable() security op now only deals with the current
      process, and uses the current process's subjective creds.  A new security op -
      task_capable() - is introduced that can check any task's objective creds.
      
      strictly the capable() security op is superfluous with the presence of the
      task_capable() op, however it should be faster to call the capable() op since
      two fewer arguments need be passed down through the various layers.
      
      This can be tested by compiling the following program from the XFS testsuite:
      
      /*
       *  t_access_root.c - trivial test program to show permission bug.
       *
       *  Written by Michael Kerrisk - copyright ownership not pursued.
       *  Sourced from: http://linux.derkeiler.com/Mailing-Lists/Kernel/2003-10/6030.html
       */
      #include <limits.h>
      #include <unistd.h>
      #include <stdio.h>
      #include <stdlib.h>
      #include <fcntl.h>
      #include <sys/stat.h>
      
      #define UID 500
      #define GID 100
      #define PERM 0
      #define TESTPATH "/tmp/t_access"
      
      static void
      errExit(char *msg)
      {
          perror(msg);
          exit(EXIT_FAILURE);
      } /* errExit */
      
      static void
      accessTest(char *file, int mask, char *mstr)
      {
          printf("access(%s, %s) returns %d\n", file, mstr, access(file, mask));
      } /* accessTest */
      
      int
      main(int argc, char *argv[])
      {
          int fd, perm, uid, gid;
          char *testpath;
          char cmd[PATH_MAX + 20];
      
          testpath = (argc > 1) ? argv[1] : TESTPATH;
          perm = (argc > 2) ? strtoul(argv[2], NULL, 8) : PERM;
          uid = (argc > 3) ? atoi(argv[3]) : UID;
          gid = (argc > 4) ? atoi(argv[4]) : GID;
      
          unlink(testpath);
      
          fd = open(testpath, O_RDWR | O_CREAT, 0);
          if (fd == -1) errExit("open");
      
          if (fchown(fd, uid, gid) == -1) errExit("fchown");
          if (fchmod(fd, perm) == -1) errExit("fchmod");
          close(fd);
      
          snprintf(cmd, sizeof(cmd), "ls -l %s", testpath);
          system(cmd);
      
          if (seteuid(uid) == -1) errExit("seteuid");
      
          accessTest(testpath, 0, "0");
          accessTest(testpath, R_OK, "R_OK");
          accessTest(testpath, W_OK, "W_OK");
          accessTest(testpath, X_OK, "X_OK");
          accessTest(testpath, R_OK | W_OK, "R_OK | W_OK");
          accessTest(testpath, R_OK | X_OK, "R_OK | X_OK");
          accessTest(testpath, W_OK | X_OK, "W_OK | X_OK");
          accessTest(testpath, R_OK | W_OK | X_OK, "R_OK | W_OK | X_OK");
      
          exit(EXIT_SUCCESS);
      } /* main */
      
      This can be run against an Ext3 filesystem as well as against an XFS
      filesystem.  If successful, it will show:
      
      	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
      	---------- 1 dhowells dhowells 0 2008-12-31 03:00 /tmp/xxx
      	access(/tmp/xxx, 0) returns 0
      	access(/tmp/xxx, R_OK) returns 0
      	access(/tmp/xxx, W_OK) returns 0
      	access(/tmp/xxx, X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK) returns 0
      	access(/tmp/xxx, R_OK | X_OK) returns -1
      	access(/tmp/xxx, W_OK | X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
      
      If unsuccessful, it will show:
      
      	[root@andromeda src]# ./t_access_root /tmp/xxx 0 4043 4043
      	---------- 1 dhowells dhowells 0 2008-12-31 02:56 /tmp/xxx
      	access(/tmp/xxx, 0) returns 0
      	access(/tmp/xxx, R_OK) returns -1
      	access(/tmp/xxx, W_OK) returns -1
      	access(/tmp/xxx, X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK) returns -1
      	access(/tmp/xxx, R_OK | X_OK) returns -1
      	access(/tmp/xxx, W_OK | X_OK) returns -1
      	access(/tmp/xxx, R_OK | W_OK | X_OK) returns -1
      
      I've also tested the fix with the SELinux and syscalls LTP testsuites.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      14eaddc9
  15. 15 11月, 2008 1 次提交
  16. 14 11月, 2008 9 次提交
    • D
      CRED: Prettify commoncap.c · 1d045980
      David Howells 提交于
      Prettify commoncap.c.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Reviewed-by: NJames Morris <jmorris@namei.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      1d045980
    • D
      CRED: Make execve() take advantage of copy-on-write credentials · a6f76f23
      David Howells 提交于
      Make execve() take advantage of copy-on-write credentials, allowing it to set
      up the credentials in advance, and then commit the whole lot after the point
      of no return.
      
      This patch and the preceding patches have been tested with the LTP SELinux
      testsuite.
      
      This patch makes several logical sets of alteration:
      
       (1) execve().
      
           The credential bits from struct linux_binprm are, for the most part,
           replaced with a single credentials pointer (bprm->cred).  This means that
           all the creds can be calculated in advance and then applied at the point
           of no return with no possibility of failure.
      
           I would like to replace bprm->cap_effective with:
      
      	cap_isclear(bprm->cap_effective)
      
           but this seems impossible due to special behaviour for processes of pid 1
           (they always retain their parent's capability masks where normally they'd
           be changed - see cap_bprm_set_creds()).
      
           The following sequence of events now happens:
      
           (a) At the start of do_execve, the current task's cred_exec_mutex is
           	 locked to prevent PTRACE_ATTACH from obsoleting the calculation of
           	 creds that we make.
      
           (a) prepare_exec_creds() is then called to make a copy of the current
           	 task's credentials and prepare it.  This copy is then assigned to
           	 bprm->cred.
      
        	 This renders security_bprm_alloc() and security_bprm_free()
           	 unnecessary, and so they've been removed.
      
           (b) The determination of unsafe execution is now performed immediately
           	 after (a) rather than later on in the code.  The result is stored in
           	 bprm->unsafe for future reference.
      
           (c) prepare_binprm() is called, possibly multiple times.
      
           	 (i) This applies the result of set[ug]id binaries to the new creds
           	     attached to bprm->cred.  Personality bit clearance is recorded,
           	     but now deferred on the basis that the exec procedure may yet
           	     fail.
      
               (ii) This then calls the new security_bprm_set_creds().  This should
      	     calculate the new LSM and capability credentials into *bprm->cred.
      
      	     This folds together security_bprm_set() and parts of
      	     security_bprm_apply_creds() (these two have been removed).
      	     Anything that might fail must be done at this point.
      
               (iii) bprm->cred_prepared is set to 1.
      
      	     bprm->cred_prepared is 0 on the first pass of the security
      	     calculations, and 1 on all subsequent passes.  This allows SELinux
      	     in (ii) to base its calculations only on the initial script and
      	     not on the interpreter.
      
           (d) flush_old_exec() is called to commit the task to execution.  This
           	 performs the following steps with regard to credentials:
      
      	 (i) Clear pdeath_signal and set dumpable on certain circumstances that
      	     may not be covered by commit_creds().
      
               (ii) Clear any bits in current->personality that were deferred from
                   (c.i).
      
           (e) install_exec_creds() [compute_creds() as was] is called to install the
           	 new credentials.  This performs the following steps with regard to
           	 credentials:
      
               (i) Calls security_bprm_committing_creds() to apply any security
                   requirements, such as flushing unauthorised files in SELinux, that
                   must be done before the credentials are changed.
      
      	     This is made up of bits of security_bprm_apply_creds() and
      	     security_bprm_post_apply_creds(), both of which have been removed.
      	     This function is not allowed to fail; anything that might fail
      	     must have been done in (c.ii).
      
               (ii) Calls commit_creds() to apply the new credentials in a single
                   assignment (more or less).  Possibly pdeath_signal and dumpable
                   should be part of struct creds.
      
      	 (iii) Unlocks the task's cred_replace_mutex, thus allowing
      	     PTRACE_ATTACH to take place.
      
               (iv) Clears The bprm->cred pointer as the credentials it was holding
                   are now immutable.
      
               (v) Calls security_bprm_committed_creds() to apply any security
                   alterations that must be done after the creds have been changed.
                   SELinux uses this to flush signals and signal handlers.
      
           (f) If an error occurs before (d.i), bprm_free() will call abort_creds()
           	 to destroy the proposed new credentials and will then unlock
           	 cred_replace_mutex.  No changes to the credentials will have been
           	 made.
      
       (2) LSM interface.
      
           A number of functions have been changed, added or removed:
      
           (*) security_bprm_alloc(), ->bprm_alloc_security()
           (*) security_bprm_free(), ->bprm_free_security()
      
           	 Removed in favour of preparing new credentials and modifying those.
      
           (*) security_bprm_apply_creds(), ->bprm_apply_creds()
           (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
      
           	 Removed; split between security_bprm_set_creds(),
           	 security_bprm_committing_creds() and security_bprm_committed_creds().
      
           (*) security_bprm_set(), ->bprm_set_security()
      
           	 Removed; folded into security_bprm_set_creds().
      
           (*) security_bprm_set_creds(), ->bprm_set_creds()
      
           	 New.  The new credentials in bprm->creds should be checked and set up
           	 as appropriate.  bprm->cred_prepared is 0 on the first call, 1 on the
           	 second and subsequent calls.
      
           (*) security_bprm_committing_creds(), ->bprm_committing_creds()
           (*) security_bprm_committed_creds(), ->bprm_committed_creds()
      
           	 New.  Apply the security effects of the new credentials.  This
           	 includes closing unauthorised files in SELinux.  This function may not
           	 fail.  When the former is called, the creds haven't yet been applied
           	 to the process; when the latter is called, they have.
      
       	 The former may access bprm->cred, the latter may not.
      
       (3) SELinux.
      
           SELinux has a number of changes, in addition to those to support the LSM
           interface changes mentioned above:
      
           (a) The bprm_security_struct struct has been removed in favour of using
           	 the credentials-under-construction approach.
      
           (c) flush_unauthorized_files() now takes a cred pointer and passes it on
           	 to inode_has_perm(), file_has_perm() and dentry_open().
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      a6f76f23
    • D
      CRED: Inaugurate COW credentials · d84f4f99
      David Howells 提交于
      Inaugurate copy-on-write credentials management.  This uses RCU to manage the
      credentials pointer in the task_struct with respect to accesses by other tasks.
      A process may only modify its own credentials, and so does not need locking to
      access or modify its own credentials.
      
      A mutex (cred_replace_mutex) is added to the task_struct to control the effect
      of PTRACE_ATTACHED on credential calculations, particularly with respect to
      execve().
      
      With this patch, the contents of an active credentials struct may not be
      changed directly; rather a new set of credentials must be prepared, modified
      and committed using something like the following sequence of events:
      
      	struct cred *new = prepare_creds();
      	int ret = blah(new);
      	if (ret < 0) {
      		abort_creds(new);
      		return ret;
      	}
      	return commit_creds(new);
      
      There are some exceptions to this rule: the keyrings pointed to by the active
      credentials may be instantiated - keyrings violate the COW rule as managing
      COW keyrings is tricky, given that it is possible for a task to directly alter
      the keys in a keyring in use by another task.
      
      To help enforce this, various pointers to sets of credentials, such as those in
      the task_struct, are declared const.  The purpose of this is compile-time
      discouragement of altering credentials through those pointers.  Once a set of
      credentials has been made public through one of these pointers, it may not be
      modified, except under special circumstances:
      
        (1) Its reference count may incremented and decremented.
      
        (2) The keyrings to which it points may be modified, but not replaced.
      
      The only safe way to modify anything else is to create a replacement and commit
      using the functions described in Documentation/credentials.txt (which will be
      added by a later patch).
      
      This patch and the preceding patches have been tested with the LTP SELinux
      testsuite.
      
      This patch makes several logical sets of alteration:
      
       (1) execve().
      
           This now prepares and commits credentials in various places in the
           security code rather than altering the current creds directly.
      
       (2) Temporary credential overrides.
      
           do_coredump() and sys_faccessat() now prepare their own credentials and
           temporarily override the ones currently on the acting thread, whilst
           preventing interference from other threads by holding cred_replace_mutex
           on the thread being dumped.
      
           This will be replaced in a future patch by something that hands down the
           credentials directly to the functions being called, rather than altering
           the task's objective credentials.
      
       (3) LSM interface.
      
           A number of functions have been changed, added or removed:
      
           (*) security_capset_check(), ->capset_check()
           (*) security_capset_set(), ->capset_set()
      
           	 Removed in favour of security_capset().
      
           (*) security_capset(), ->capset()
      
           	 New.  This is passed a pointer to the new creds, a pointer to the old
           	 creds and the proposed capability sets.  It should fill in the new
           	 creds or return an error.  All pointers, barring the pointer to the
           	 new creds, are now const.
      
           (*) security_bprm_apply_creds(), ->bprm_apply_creds()
      
           	 Changed; now returns a value, which will cause the process to be
           	 killed if it's an error.
      
           (*) security_task_alloc(), ->task_alloc_security()
      
           	 Removed in favour of security_prepare_creds().
      
           (*) security_cred_free(), ->cred_free()
      
           	 New.  Free security data attached to cred->security.
      
           (*) security_prepare_creds(), ->cred_prepare()
      
           	 New. Duplicate any security data attached to cred->security.
      
           (*) security_commit_creds(), ->cred_commit()
      
           	 New. Apply any security effects for the upcoming installation of new
           	 security by commit_creds().
      
           (*) security_task_post_setuid(), ->task_post_setuid()
      
           	 Removed in favour of security_task_fix_setuid().
      
           (*) security_task_fix_setuid(), ->task_fix_setuid()
      
           	 Fix up the proposed new credentials for setuid().  This is used by
           	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
           	 setuid() changes.  Changes are made to the new credentials, rather
           	 than the task itself as in security_task_post_setuid().
      
           (*) security_task_reparent_to_init(), ->task_reparent_to_init()
      
           	 Removed.  Instead the task being reparented to init is referred
           	 directly to init's credentials.
      
      	 NOTE!  This results in the loss of some state: SELinux's osid no
      	 longer records the sid of the thread that forked it.
      
           (*) security_key_alloc(), ->key_alloc()
           (*) security_key_permission(), ->key_permission()
      
           	 Changed.  These now take cred pointers rather than task pointers to
           	 refer to the security context.
      
       (4) sys_capset().
      
           This has been simplified and uses less locking.  The LSM functions it
           calls have been merged.
      
       (5) reparent_to_kthreadd().
      
           This gives the current thread the same credentials as init by simply using
           commit_thread() to point that way.
      
       (6) __sigqueue_alloc() and switch_uid()
      
           __sigqueue_alloc() can't stop the target task from changing its creds
           beneath it, so this function gets a reference to the currently applicable
           user_struct which it then passes into the sigqueue struct it returns if
           successful.
      
           switch_uid() is now called from commit_creds(), and possibly should be
           folded into that.  commit_creds() should take care of protecting
           __sigqueue_alloc().
      
       (7) [sg]et[ug]id() and co and [sg]et_current_groups.
      
           The set functions now all use prepare_creds(), commit_creds() and
           abort_creds() to build and check a new set of credentials before applying
           it.
      
           security_task_set[ug]id() is called inside the prepared section.  This
           guarantees that nothing else will affect the creds until we've finished.
      
           The calling of set_dumpable() has been moved into commit_creds().
      
           Much of the functionality of set_user() has been moved into
           commit_creds().
      
           The get functions all simply access the data directly.
      
       (8) security_task_prctl() and cap_task_prctl().
      
           security_task_prctl() has been modified to return -ENOSYS if it doesn't
           want to handle a function, or otherwise return the return value directly
           rather than through an argument.
      
           Additionally, cap_task_prctl() now prepares a new set of credentials, even
           if it doesn't end up using it.
      
       (9) Keyrings.
      
           A number of changes have been made to the keyrings code:
      
           (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
           	 all been dropped and built in to the credentials functions directly.
           	 They may want separating out again later.
      
           (b) key_alloc() and search_process_keyrings() now take a cred pointer
           	 rather than a task pointer to specify the security context.
      
           (c) copy_creds() gives a new thread within the same thread group a new
           	 thread keyring if its parent had one, otherwise it discards the thread
           	 keyring.
      
           (d) The authorisation key now points directly to the credentials to extend
           	 the search into rather pointing to the task that carries them.
      
           (e) Installing thread, process or session keyrings causes a new set of
           	 credentials to be created, even though it's not strictly necessary for
           	 process or session keyrings (they're shared).
      
      (10) Usermode helper.
      
           The usermode helper code now carries a cred struct pointer in its
           subprocess_info struct instead of a new session keyring pointer.  This set
           of credentials is derived from init_cred and installed on the new process
           after it has been cloned.
      
           call_usermodehelper_setup() allocates the new credentials and
           call_usermodehelper_freeinfo() discards them if they haven't been used.  A
           special cred function (prepare_usermodeinfo_creds()) is provided
           specifically for call_usermodehelper_setup() to call.
      
           call_usermodehelper_setkeys() adjusts the credentials to sport the
           supplied keyring as the new session keyring.
      
      (11) SELinux.
      
           SELinux has a number of changes, in addition to those to support the LSM
           interface changes mentioned above:
      
           (a) selinux_setprocattr() no longer does its check for whether the
           	 current ptracer can access processes with the new SID inside the lock
           	 that covers getting the ptracer's SID.  Whilst this lock ensures that
           	 the check is done with the ptracer pinned, the result is only valid
           	 until the lock is released, so there's no point doing it inside the
           	 lock.
      
      (12) is_single_threaded().
      
           This function has been extracted from selinux_setprocattr() and put into
           a file of its own in the lib/ directory as join_session_keyring() now
           wants to use it too.
      
           The code in SELinux just checked to see whether a task shared mm_structs
           with other tasks (CLONE_VM), but that isn't good enough.  We really want
           to know if they're part of the same thread group (CLONE_THREAD).
      
      (13) nfsd.
      
           The NFS server daemon now has to use the COW credentials to set the
           credentials it is going to use.  It really needs to pass the credentials
           down to the functions it calls, but it can't do that until other patches
           in this series have been applied.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      d84f4f99
    • D
      CRED: Use RCU to access another task's creds and to release a task's own creds · c69e8d9c
      David Howells 提交于
      Use RCU to access another task's creds and to release a task's own creds.
      This means that it will be possible for the credentials of a task to be
      replaced without another task (a) requiring a full lock to read them, and (b)
      seeing deallocated memory.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      c69e8d9c
    • D
      CRED: Wrap current->cred and a few other accessors · 86a264ab
      David Howells 提交于
      Wrap current->cred and a few other accessors to hide their actual
      implementation.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      86a264ab
    • D
      CRED: Separate task security context from task_struct · b6dff3ec
      David Howells 提交于
      Separate the task security context from task_struct.  At this point, the
      security data is temporarily embedded in the task_struct with two pointers
      pointing to it.
      
      Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
      entry.S via asm-offsets.
      
      With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      b6dff3ec
    • D
      CRED: Constify the kernel_cap_t arguments to the capset LSM hooks · 15a2460e
      David Howells 提交于
      Constify the kernel_cap_t arguments to the capset LSM hooks.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Acked-by: NJames Morris <jmorris@namei.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      15a2460e
    • D
      CRED: Neuter sys_capset() · 1cdcbec1
      David Howells 提交于
      Take away the ability for sys_capset() to affect processes other than current.
      
      This means that current will not need to lock its own credentials when reading
      them against interference by other processes.
      
      This has effectively been the case for a while anyway, since:
      
       (1) Without LSM enabled, sys_capset() is disallowed.
      
       (2) With file-based capabilities, sys_capset() is neutered.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Acked-by: NAndrew G. Morgan <morgan@kernel.org>
      Acked-by: NJames Morris <jmorris@namei.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      1cdcbec1
    • D
      CRED: Wrap task credential accesses in the capabilities code · b103c598
      David Howells 提交于
      Wrap access to task credentials so that they can be separated more easily from
      the task_struct during the introduction of COW creds.
      
      Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
      
      Change some task->e?[ug]id to task_e?[ug]id().  In some places it makes more
      sense to use RCU directly rather than a convenient wrapper; these will be
      addressed by later patches.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Reviewed-by: NJames Morris <jmorris@namei.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Cc: Andrew G. Morgan <morgan@kernel.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      b103c598
  17. 11 11月, 2008 3 次提交
    • E
      Add a new capable interface that will be used by systems that use audit to · 06112163
      Eric Paris 提交于
      make an A or B type decision instead of a security decision.  Currently
      this is the case at least for filesystems when deciding if a process can use
      the reserved 'root' blocks and for the case of things like the oom
      algorithm determining if processes are root processes and should be less
      likely to be killed.  These types of security system requests should not be
      audited or logged since they are not really security decisions.  It would be
      possible to solve this problem like the vm_enough_memory security check did
      by creating a new LSM interface and moving all of the policy into that
      interface but proves the needlessly bloat the LSM and provide complex
      indirection.
      
      This merely allows those decisions to be made where they belong and to not
      flood logs or printk with denials for thing that are not security decisions.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Acked-by: NStephen Smalley <sds@tycho.nsa.gov>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      06112163
    • E
      Any time fcaps or a setuid app under SECURE_NOROOT is used to result in a · 3fc689e9
      Eric Paris 提交于
      non-zero pE we will crate a new audit record which contains the entire set
      of known information about the executable in question, fP, fI, fE, fversion
      and includes the process's pE, pI, pP.  Before and after the bprm capability
      are applied.  This record type will only be emitted from execve syscalls.
      
      an example of making ping use fcaps instead of setuid:
      
      setcap "cat_net_raw+pe" /bin/ping
      
      type=SYSCALL msg=audit(1225742021.015:236): arch=c000003e syscall=59 success=yes exit=0 a0=1457f30 a1=14606b0 a2=1463940 a3=321b770a70 items=2 ppid=2929 pid=2963 auid=0 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500 tty=pts0 ses=3 comm="ping" exe="/bin/ping" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
      type=UNKNOWN[1321] msg=audit(1225742021.015:236): fver=2 fp=0000000000002000 fi=0000000000000000 fe=1 old_pp=0000000000000000 old_pi=0000000000000000 old_pe=0000000000000000 new_pp=0000000000002000 new_pi=0000000000000000 new_pe=0000000000002000
      type=EXECVE msg=audit(1225742021.015:236): argc=2 a0="ping" a1="127.0.0.1"
      type=CWD msg=audit(1225742021.015:236):  cwd="/home/test"
      type=PATH msg=audit(1225742021.015:236): item=0 name="/bin/ping" inode=49256 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ping_exec_t:s0 cap_fp=0000000000002000 cap_fe=1 cap_fver=2
      type=PATH msg=audit(1225742021.015:236): item=1 name=(null) inode=507915 dev=fd:00 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:ld_so_t:s0
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      3fc689e9
    • E
      This patch add a generic cpu endian caps structure and externally available · c0b00441
      Eric Paris 提交于
      functions which retrieve fcaps information from disk.  This information is
      necessary so fcaps information can be collected and recorded by the audit
      system.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      c0b00441
  18. 06 11月, 2008 1 次提交
    • S
      file capabilities: add no_file_caps switch (v4) · 1f29fae2
      Serge E. Hallyn 提交于
      Add a no_file_caps boot option when file capabilities are
      compiled into the kernel (CONFIG_SECURITY_FILE_CAPABILITIES=y).
      
      This allows distributions to ship a kernel with file capabilities
      compiled in, without forcing users to use (and understand and
      trust) them.
      
      When no_file_caps is specified at boot, then when a process executes
      a file, any file capabilities stored with that file will not be
      used in the calculation of the process' new capability sets.
      
      This means that booting with the no_file_caps boot option will
      not be the same as booting a kernel with file capabilities
      compiled out - in particular a task with  CAP_SETPCAP will not
      have any chance of passing capabilities to another task (which
      isn't "really" possible anyway, and which may soon by killed
      altogether by David Howells in any case), and it will instead
      be able to put new capabilities in its pI.  However since fI
      will always be empty and pI is masked with fI, it gains the
      task nothing.
      
      We also support the extra prctl options, setting securebits and
      dropping capabilities from the per-process bounding set.
      
      The other remaining difference is that killpriv, task_setscheduler,
      setioprio, and setnice will continue to be hooked.  That will
      be noticable in the case where a root task changed its uid
      while keeping some caps, and another task owned by the new uid
      tries to change settings for the more privileged task.
      
      Changelog:
      	Nov 05 2008: (v4) trivial port on top of always-start-\
      		with-clear-caps patch
      	Sep 23 2008: nixed file_caps_enabled when file caps are
      		not compiled in as it isn't used.
      		Document no_file_caps in kernel-parameters.txt.
      Signed-off-by: NSerge Hallyn <serue@us.ibm.com>
      Acked-by: NAndrew G. Morgan <morgan@kernel.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      1f29fae2
  19. 02 11月, 2008 1 次提交
  20. 27 9月, 2008 1 次提交
  21. 14 8月, 2008 1 次提交
    • D
      security: Fix setting of PF_SUPERPRIV by __capable() · 5cd9c58f
      David Howells 提交于
      Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
      the target process if that is not the current process and it is trying to
      change its own flags in a different way at the same time.
      
      __capable() is using neither atomic ops nor locking to protect t->flags.  This
      patch removes __capable() and introduces has_capability() that doesn't set
      PF_SUPERPRIV on the process being queried.
      
      This patch further splits security_ptrace() in two:
      
       (1) security_ptrace_may_access().  This passes judgement on whether one
           process may access another only (PTRACE_MODE_ATTACH for ptrace() and
           PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
           current is the parent.
      
       (2) security_ptrace_traceme().  This passes judgement on PTRACE_TRACEME only,
           and takes only a pointer to the parent process.  current is the child.
      
           In Smack and commoncap, this uses has_capability() to determine whether
           the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
           This does not set PF_SUPERPRIV.
      
      Two of the instances of __capable() actually only act on current, and so have
      been changed to calls to capable().
      
      Of the places that were using __capable():
      
       (1) The OOM killer calls __capable() thrice when weighing the killability of a
           process.  All of these now use has_capability().
      
       (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
           whether the parent was allowed to trace any process.  As mentioned above,
           these have been split.  For PTRACE_ATTACH and /proc, capable() is now
           used, and for PTRACE_TRACEME, has_capability() is used.
      
       (3) cap_safe_nice() only ever saw current, so now uses capable().
      
       (4) smack_setprocattr() rejected accesses to tasks other than current just
           after calling __capable(), so the order of these two tests have been
           switched and capable() is used instead.
      
       (5) In smack_file_send_sigiotask(), we need to allow privileged processes to
           receive SIGIO on files they're manipulating.
      
       (6) In smack_task_wait(), we let a process wait for a privileged process,
           whether or not the process doing the waiting is privileged.
      
      I've tested this with the LTP SELinux and syscalls testscripts.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Acked-by: NCasey Schaufler <casey@schaufler-ca.com>
      Acked-by: NAndrew G. Morgan <morgan@kernel.org>
      Acked-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      5cd9c58f
  22. 25 7月, 2008 1 次提交
  23. 14 7月, 2008 1 次提交
    • S
      Security: split proc ptrace checking into read vs. attach · 006ebb40
      Stephen Smalley 提交于
      Enable security modules to distinguish reading of process state via
      proc from full ptrace access by renaming ptrace_may_attach to
      ptrace_may_access and adding a mode argument indicating whether only
      read access or full attach access is requested.  This allows security
      modules to permit access to reading process state without granting
      full ptrace access.  The base DAC/capability checking remains unchanged.
      
      Read access to /proc/pid/mem continues to apply a full ptrace attach
      check since check_mem_permission() already requires the current task
      to already be ptracing the target.  The other ptrace checks within
      proc for elements like environ, maps, and fds are changed to pass the
      read mode instead of attach.
      
      In the SELinux case, we model such reading of process state as a
      reading of a proc file labeled with the target process' label.  This
      enables SELinux policy to permit such reading of process state without
      permitting control or manipulation of the target process, as there are
      a number of cases where programs probe for such information via proc
      but do not need to be able to control the target (e.g. procps,
      lsof, PolicyKit, ConsoleKit).  At present we have to choose between
      allowing full ptrace in policy (more permissive than required/desired)
      or breaking functionality (or in some cases just silencing the denials
      via dontaudit rules but this can hide genuine attacks).
      
      This version of the patch incorporates comments from Casey Schaufler
      (change/replace existing ptrace_may_attach interface, pass access
      mode), and Chris Wright (provide greater consistency in the checking).
      
      Note that like their predecessors __ptrace_may_attach and
      ptrace_may_attach, the __ptrace_may_access and ptrace_may_access
      interfaces use different return value conventions from each other (0
      or -errno vs. 1 or 0).  I retained this difference to avoid any
      changes to the caller logic but made the difference clearer by
      changing the latter interface to return a bool rather than an int and
      by adding a comment about it to ptrace.h for any future callers.
      Signed-off-by: NStephen Smalley <sds@tycho.nsa.gov>
      Acked-by: NChris Wright <chrisw@sous-sol.org>
      Signed-off-by: NJames Morris <jmorris@namei.org>
      006ebb40
  24. 05 7月, 2008 1 次提交
  25. 29 4月, 2008 1 次提交
  26. 28 4月, 2008 1 次提交
    • A
      capabilities: implement per-process securebits · 3898b1b4
      Andrew G. Morgan 提交于
      Filesystem capability support makes it possible to do away with (set)uid-0
      based privilege and use capabilities instead.  That is, with filesystem
      support for capabilities but without this present patch, it is (conceptually)
      possible to manage a system with capabilities alone and never need to obtain
      privilege via (set)uid-0.
      
      Of course, conceptually isn't quite the same as currently possible since few
      user applications, certainly not enough to run a viable system, are currently
      prepared to leverage capabilities to exercise privilege.  Further, many
      applications exist that may never get upgraded in this way, and the kernel
      will continue to want to support their setuid-0 base privilege needs.
      
      Where pure-capability applications evolve and replace setuid-0 binaries, it is
      desirable that there be a mechanisms by which they can contain their
      privilege.  In addition to leveraging the per-process bounding and inheritable
      sets, this should include suppressing the privilege of the uid-0 superuser
      from the process' tree of children.
      
      The feature added by this patch can be leveraged to suppress the privilege
      associated with (set)uid-0.  This suppression requires CAP_SETPCAP to
      initiate, and only immediately affects the 'current' process (it is inherited
      through fork()/exec()).  This reimplementation differs significantly from the
      historical support for securebits which was system-wide, unwieldy and which
      has ultimately withered to a dead relic in the source of the modern kernel.
      
      With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
      all legacy privilege (through uid=0) for itself and all subsequently
      fork()'d/exec()'d children with:
      
        prctl(PR_SET_SECUREBITS, 0x2f);
      
      This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
      enabled at configure time.
      
      [akpm@linux-foundation.org: fix uninitialised var warning]
      [serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
      Signed-off-by: NAndrew G. Morgan <morgan@kernel.org>
      Acked-by: NSerge Hallyn <serue@us.ibm.com>
      Reviewed-by: NJames Morris <jmorris@namei.org>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: Paul Moore <paul.moore@hp.com>
      Signed-off-by: NSerge E. Hallyn <serue@us.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3898b1b4