- 01 2月, 2018 40 次提交
-
-
由 William Kucharski 提交于
There are multiple comments surrounding do_fault_around that memtion fault_around_pages() and fault_around_mask(), two routines that do not exist. These comments should be reworded to reference fault_around_bytes, the value which is used to determine how much do_fault_around() will attempt to read when processing a fault. These comments should have been updated when fault_around_pages() and fault_around_mask() were removed in commit aecd6f44 ("mm: close race between do_fault_around() and fault_around_bytes_set()"). Fixes: aecd6f44 ("mm: close race between do_fault_around() and fault_around_bytes_set()") Link: http://lkml.kernel.org/r/302D0B14-C7E9-44C6-8BED-033F9ACBD030@oracle.comSigned-off-by: NWilliam Kucharski <william.kucharski@oracle.com> Reviewed-by: NLarry Bassel <larry.bassel@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Henry Willard 提交于
Workloads consisting of a large number of processes running the same program with a very large shared data segment may experience performance problems when numa balancing attempts to migrate the shared cow pages. This manifests itself with many processes or tasks in TASK_UNINTERRUPTIBLE state waiting for the shared pages to be migrated. The program listed below simulates the conditions with these results when run with 288 processes on a 144 core/8 socket machine. Average throughput Average throughput Average throughput with numa_balancing=0 with numa_balancing=1 with numa_balancing=1 without the patch with the patch --------------------- --------------------- --------------------- 2118782 2021534 2107979 Complex production environments show less variability and fewer poorly performing outliers accompanied with a smaller number of processes waiting on NUMA page migration with this patch applied. In some cases, %iowait drops from 16%-26% to 0. // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved. */ #include <sys/time.h> #include <stdio.h> #include <wait.h> #include <sys/mman.h> int a[1000000] = {13}; int main(int argc, const char **argv) { int n = 0; int i; pid_t pid; int stat; int *count_array; int cpu_count = 288; long total = 0; struct timeval t1, t2 = {(argc > 1 ? atoi(argv[1]) : 10), 0}; if (argc > 2) cpu_count = atoi(argv[2]); count_array = mmap(NULL, cpu_count * sizeof(int), (PROT_READ|PROT_WRITE), (MAP_SHARED|MAP_ANONYMOUS), 0, 0); if (count_array == MAP_FAILED) { perror("mmap:"); return 0; } for (i = 0; i < cpu_count; ++i) { pid = fork(); if (pid <= 0) break; if ((i & 0xf) == 0) usleep(2); } if (pid != 0) { if (i == 0) { perror("fork:"); return 0; } for (;;) { pid = wait(&stat); if (pid < 0) break; } for (i = 0; i < cpu_count; ++i) total += count_array[i]; printf("Total %ld\n", total); munmap(count_array, cpu_count * sizeof(int)); return 0; } gettimeofday(&t1, 0); timeradd(&t1, &t2, &t1); while (timercmp(&t2, &t1, <)) { int b = 0; int j; for (j = 0; j < 1000000; j++) b += a[j]; gettimeofday(&t2, 0); n++; } count_array[i] = n; return 0; } This patch changes change_pte_range() to skip shared copy-on-write pages when called from change_prot_numa(). NOTE: change_prot_numa() is nominally called from task_numa_work() and queue_pages_test_walk(). task_numa_work() is the auto NUMA balancing path, and queue_pages_test_walk() is part of explicit NUMA policy management. However, queue_pages_test_walk() only calls change_prot_numa() when MPOL_MF_LAZY is specified and currently that is not allowed, so change_prot_numa() is only called from auto NUMA balancing. In the case of explicit NUMA policy management, shared pages are not migrated unless MPOL_MF_MOVE_ALL is specified, and MPOL_MF_MOVE_ALL depends on CAP_SYS_NICE. Currently, there is no way to pass information about MPOL_MF_MOVE_ALL to change_pte_range. This will have to be fixed if MPOL_MF_LAZY is enabled and MPOL_MF_MOVE_ALL is to be honored in lazy migration mode. task_numa_work() skips the read-only VMAs of programs and shared libraries. Link: http://lkml.kernel.org/r/1516751617-7369-1-git-send-email-henry.willard@oracle.comSigned-off-by: NHenry Willard <henry.willard@oracle.com> Reviewed-by: NHåkon Bugge <haakon.bugge@oracle.com> Reviewed-by: NSteve Sistare <steven.sistare@oracle.com> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Dan Carpenter has noticed that mbind migration callback (new_page) can get a NULL vma pointer and choke on it inside alloc_huge_page_vma which relies on the VMA to get the hstate. We used to BUG_ON this case but the BUG_+ON has been removed recently by "hugetlb, mempolicy: fix the mbind hugetlb migration". The proper way to handle this is to get the hstate from the migrated page and rely on huge_node (resp. get_vma_policy) do the right thing with null VMA. We are currently falling back to the default mempolicy in that case which is in line what THP path is doing here. Link: http://lkml.kernel.org/r/20180110104712.GR1732@dhcp22.suse.czSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
do_mbind migration code relies on alloc_huge_page_noerr for hugetlb pages. alloc_huge_page_noerr uses alloc_huge_page which is a highlevel allocation function which has to take care of reserves, overcommit or hugetlb cgroup accounting. None of that is really required for the page migration because the new page is only temporal and either will replace the original page or it will be dropped. This is essentially as for other migration call paths and there shouldn't be any reason to handle mbind in a special way. The current implementation is even suboptimal because the migration might fail just because the hugetlb cgroup limit is reached, or the overcommit is saturated. Fix this by making mbind like other hugetlb migration paths. Add a new migration helper alloc_huge_page_vma as a wrapper around alloc_huge_page_nodemask with additional mempolicy handling. alloc_huge_page_noerr has no more users and it can go. Link: http://lkml.kernel.org/r/20180103093213.26329-7-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Hugetlb allocator has several layer of allocation functions depending and the purpose of the allocation. There are two allocators depending on whether the page can be allocated from the page allocator or we need a contiguous allocator. This is currently opencoded in alloc_fresh_huge_page which is the only path that might allocate giga pages which require the later allocator. Create alloc_fresh_huge_page which hides this implementation detail and use it in all callers which hardcoded the buddy allocator path (__hugetlb_alloc_buddy_huge_page). This shouldn't introduce any funtional change because both migration and surplus allocators exlude giga pages explicitly. While we are at it let's do some renaming. The current scheme is not consistent and overly painfull to read and understand. Get rid of prefix underscores from most functions. There is no real reason to make names longer. * alloc_fresh_huge_page is the new layer to abstract underlying allocator * __hugetlb_alloc_buddy_huge_page becomes shorter and neater alloc_buddy_huge_page. * Former alloc_fresh_huge_page becomes alloc_pool_huge_page because we put the new page directly to the pool * alloc_surplus_huge_page can drop the opencoded prep_new_huge_page code as it uses alloc_fresh_huge_page now * others lose their excessive prefix underscores to make names shorter [dan.carpenter@oracle.com: fix double unlock bug in alloc_surplus_huge_page()] Link: http://lkml.kernel.org/r/20180109200559.g3iz5kvbdrz7yydp@mwanda Link: http://lkml.kernel.org/r/20180103093213.26329-6-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
alloc_surplus_huge_page increases the pool size and the number of surplus pages opportunistically to prevent from races with the pool size change. See commit d1c3fb1f ("hugetlb: introduce nr_overcommit_hugepages sysctl") for more details. The resulting code is unnecessarily hairy, cause code duplication and doesn't allow to share the allocation paths. Moreover pool size changes tend to be very seldom so optimizing for them is not really reasonable. Simplify the code and allow to allocate a fresh surplus page as long as we are under the overcommit limit and then recheck the condition after the allocation and drop the new page if the situation has changed. This should provide a reasonable guarantee that an abrupt allocation requests will not go way off the limit. If we consider races with the pool shrinking and enlarging then we should be reasonably safe as well. In the first case we are off by one in the worst case and the second case should work OK because the page is not yet visible. We can waste CPU cycles for the allocation but that should be acceptable for a relatively rare condition. Link: http://lkml.kernel.org/r/20180103093213.26329-5-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Gigantic hugetlb pages were ingrown to the hugetlb code as an alien specie with a lot of special casing. The allocation path is not an exception. Unnecessarily so to be honest. It is true that the underlying allocator is different but that is an implementation detail. This patch unifies the hugetlb allocation path that a prepares fresh pool pages. alloc_fresh_gigantic_page basically copies alloc_fresh_huge_page logic so we can move everything there. This will simplify set_max_huge_pages which doesn't have to care about what kind of huge page we allocate. Link: http://lkml.kernel.org/r/20180103093213.26329-3-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
Patch series "mm, hugetlb: allocation API and migration improvements" Motivation: this is a follow up for [3] for the allocation API and [4] for the hugetlb migration. It wasn't really easy to split those into two separate patch series as they share some code. My primary motivation to touch this code is to make the gigantic pages migration working. The giga pages allocation code is just too fragile and hacked into the hugetlb code now. This series tries to move giga pages closer to the first class citizen. We are not there yet but having 5 patches is quite a lot already and it will already make the code much easier to follow. I will come with other changes on top after this sees some review. The first two patches should be trivial to review. The third patch changes the way how we migrate huge pages. Newly allocated pages are a subject of the overcommit check and they participate surplus accounting which is quite unfortunate as the changelog explains. This patch doesn't change anything wrt. giga pages. Patch #4 removes the surplus accounting hack from __alloc_surplus_huge_page. I hope I didn't miss anything there and a deeper review is really due there. Patch #5 finally unifies allocation paths and giga pages shouldn't be any special anymore. There is also some renaming going on as well. This patch (of 6): hugetlb allocator has two entry points to the page allocator - alloc_fresh_huge_page_node - __hugetlb_alloc_buddy_huge_page The two differ very subtly in two aspects. The first one doesn't care about HTLB_BUDDY_* stats and it doesn't initialize the huge page. prep_new_huge_page is not used because it not only initializes hugetlb specific stuff but because it also put_page and releases the page to the hugetlb pool which is not what is required in some contexts. This makes things more complicated than necessary. Simplify things by a) removing the page allocator entry point duplicity and only keep __hugetlb_alloc_buddy_huge_page and b) make prep_new_huge_page more reusable by removing the put_page which moves the page to the allocator pool. All current callers are updated to call put_page explicitly. Later patches will add new callers which won't need it. This patch shouldn't introduce any functional change. Link: http://lkml.kernel.org/r/20180103093213.26329-2-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
mem_cgroup_resize_[memsw]_limit() tries to free only 32 (SWAP_CLUSTER_MAX) pages on each iteration. This makes it practically impossible to decrease limit of memory cgroup. Tasks could easily allocate back 32 pages, so we can't reduce memory usage, and once retry_count reaches zero we return -EBUSY. Easy to reproduce the problem by running the following commands: mkdir /sys/fs/cgroup/memory/test echo $$ >> /sys/fs/cgroup/memory/test/tasks cat big_file > /dev/null & sleep 1 && echo $((100*1024*1024)) > /sys/fs/cgroup/memory/test/memory.limit_in_bytes -bash: echo: write error: Device or resource busy Instead of relying on retry_count, keep retrying the reclaim until the desired limit is reached or fail if the reclaim doesn't make any progress or a signal is pending. Link: http://lkml.kernel.org/r/20180119132544.19569-1-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Christopher Díaz Riveros 提交于
Fix the following sparse warning: mm/memcontrol.c:1097:14: warning: symbol 'memcg1_stats' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20180118193327.14200-1-chrisadr@gentoo.orgSigned-off-by: NChristopher Díaz Riveros <chrisadr@gentoo.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ralph Campbell 提交于
The variable 'entry' is used before being initialized in hmm_vma_walk_pmd(). No bad effect (beside performance hit) so !non_swap_entry(0) evaluate to true which trigger a fault as if CPU was trying to access migrated memory and migrate memory back from device memory to regular memory. This function (hmm_vma_walk_pmd()) is called when a device driver tries to populate its own page table. For migrated memory it should not happen as the device driver should already have populated its page table correctly during the migration. Only case I can think of is multi-GPU where a second GPU triggers migration back to regular memory. Again this would just result in a performance hit, nothing bad would happen. Link: http://lkml.kernel.org/r/20180122185759.26286-1-jglisse@redhat.comSigned-off-by: NRalph Campbell <rcampbell@nvidia.com> Signed-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Petr Tesarik 提交于
The comment is confusing. On the one hand, it refers to 32-bit alignment (struct page alignment on 32-bit platforms), but this would only guarantee that the 2 lowest bits must be zero. On the other hand, it claims that at least 3 bits are available, and 3 bits are actually used. This is not broken, because there is a stronger alignment guarantee, just less obvious. Let's fix the comment to make it clear how many bits are available and why. Although memmap arrays are allocated in various places, the resulting pointer is encoded eventually, so I am adding a BUG_ON() here to enforce at runtime that all expected bits are indeed available. I have also added a BUILD_BUG_ON to check that PFN_SECTION_SHIFT is sufficient, because this part of the calculation can be easily checked at build time. [ptesarik@suse.com: v2] Link: http://lkml.kernel.org/r/20180125100516.589ea6af@ezekiel.suse.cz Link: http://lkml.kernel.org/r/20180119080908.3a662e6f@ezekiel.suse.czSigned-off-by: NPetr Tesarik <ptesarik@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kemi Wang <kemi.wang@intel.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
"mode" argument is not used by try_to_compact_pages() and sub functions anymore, it has been replaced by "prio". Fix the comment to explain the use of "prio" argument. Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: NYang Shi <yang.shi@linux.alibaba.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oscar Salvador 提交于
static struct page_ext_operations *page_ext_ops[] always contains debug_guardpage_ops, static struct page_ext_operations *page_ext_ops[] = { &debug_guardpage_ops, #ifdef CONFIG_PAGE_OWNER &page_owner_ops, #endif ... } but for it to work, CONFIG_DEBUG_PAGEALLOC must be enabled first. If someone has CONFIG_PAGE_EXTENSION, but has none of its users, eg: (CONFIG_PAGE_OWNER, CONFIG_DEBUG_PAGEALLOC, CONFIG_IDLE_PAGE_TRACKING), we can shrink page_ext_init() to a simple retq. $ size vmlinux (before patch) text data bss dec hex filename 14356698 5681582 1687748 21726028 14b834c vmlinux $ size vmlinux (after patch) text data bss dec hex filename 14356008 5681538 1687748 21725294 14b806e vmlinux On the other hand, it might does not even make sense, since if someone enables CONFIG_PAGE_EXTENSION, I would expect him to enable also at least one of its users. Link: http://lkml.kernel.org/r/20180105130235.GA21241@techadventures.netSigned-off-by: NOscar Salvador <osalvador@techadventures.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jaewon Kim <jaewon31.kim@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Desaulniers 提交于
Fix warning about shifting unsigned literals being undefined behavior. Link: http://lkml.kernel.org/r/1515642078-4259-1-git-send-email-nick.desaulniers@gmail.comSigned-off-by: NNick Desaulniers <nick.desaulniers@gmail.com> Suggested-by: NMinchan Kim <minchan@kernel.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Nick Desaulniers <nick.desaulniers@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oscar Salvador 提交于
Remove two redundant assignments in init_pages_in_zone(). [osalvador@techadventures.net: v3] Link: http://lkml.kernel.org/r/20180117124513.GA876@techadventures.net [akpm@linux-foundation.org: coding style tweaks] Link: http://lkml.kernel.org/r/20180110084355.GA22822@techadventures.netSigned-off-by: NOscar Salvador <osalvador@techadventures.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shile Zhang 提交于
Link: http://lkml.kernel.org/r/1515485774-4768-1-git-send-email-zhangshile@gmail.comSigned-off-by: NShile Zhang <zhangshile@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yu Zhao 提交于
mem_cgroup_resize_limit() and mem_cgroup_resize_memsw_limit() have identical logics. Refactor code so we don't need to keep two pieces of code that does same thing. Link: http://lkml.kernel.org/r/20180108224238.14583-1-yuzhao@google.comSigned-off-by: NYu Zhao <yuzhao@google.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yu Zhao 提交于
We waste sizeof(swp_entry_t) for zswap header when using zsmalloc as zpool driver because zsmalloc doesn't support eviction. Add zpool_evictable() to detect if zpool is potentially evictable, and use it in zswap to avoid waste memory for zswap header. [yuzhao@google.com: The zpool->" prefix is a result of copy & paste] Link: http://lkml.kernel.org/r/20180110225626.110330-1-yuzhao@google.com Link: http://lkml.kernel.org/r/20180110224741.83751-1-yuzhao@google.comSigned-off-by: NYu Zhao <yuzhao@google.com> Acked-by: NDan Streetman <ddstreet@ieee.org> Reviewed-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 shidao.ytt 提交于
During our recent testing with fadvise(FADV_DONTNEED), we find that if given offset/length is not page-aligned, the last page will not be discarded. The tool we use is vmtouch (https://hoytech.com/vmtouch/), we map a 10KB-sized file into memory and then try to run this tool to evict the whole file mapping, but the last single page always remains staying in the memory: $./vmtouch -e test_10K Files: 1 Directories: 0 Evicted Pages: 3 (12K) Elapsed: 2.1e-05 seconds $./vmtouch test_10K Files: 1 Directories: 0 Resident Pages: 1/3 4K/12K 33.3% Elapsed: 5.5e-05 seconds However when we test with an older kernel, say 3.10, this problem is gone. So we wonder if this is a regression: $./vmtouch -e test_10K Files: 1 Directories: 0 Evicted Pages: 3 (12K) Elapsed: 8.2e-05 seconds $./vmtouch test_10K Files: 1 Directories: 0 Resident Pages: 0/3 0/12K 0% <-- partial page also discarded Elapsed: 5e-05 seconds After digging a little bit into this problem, we find it seems not a regression. Not discarding partial page is likely to be on purpose according to commit 441c228f ("mm: fadvise: document the fadvise(FADV_DONTNEED) behaviour for partial pages") written by Mel Gorman. He explained why partial pages should be preserved instead of being discarded when using fadvise(FADV_DONTNEED). However, the interesting part is that the actual code did NOT work as the same as it was described, the partial page was still discarded anyway, due to a calculation mistake of `end_index' passed to invalidate_mapping_pages(). This mistake has not been fixed until recently, that's why we fail to reproduce our problem in old kernels. The fix is done in commit 18aba41c ("mm/fadvise.c: do not discard partial pages with POSIX_FADV_DONTNEED") by Oleg Drokin. Back to the original testing, our problem becomes that there is a special case that, if the page-unaligned `endbyte' is also the end of file, it is not necessary at all to preserve the last partial page, as we all know no one else will use the rest of it. It should be safe enough if we just discard the whole page. So we add an EOF check in this patch. We also find a poosbile real world issue in mainline kernel. Assume such scenario: A userspace backup application want to backup a huge amount of small files (<4k) at once, the developer might (I guess) want to use fadvise(FADV_DONTNEED) to save memory. However, FADV_DONTNEED won't really happen since the only page mapped is a partial page, and kernel will preserve it. Our patch also fixes this problem, since we know the endbyte is EOF, so we discard it. Here is a simple reproducer to reproduce and verify each scenario we described above: test_fadvise.c ============================== #include <sys/mman.h> #include <sys/stat.h> #include <fcntl.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <unistd.h> int main(int argc, char **argv) { int i, fd, ret, len; struct stat buf; void *addr; unsigned char *vec; char *strbuf; ssize_t pagesize = getpagesize(); ssize_t filesize; fd = open(argv[1], O_RDWR|O_CREAT, S_IRUSR|S_IWUSR); if (fd < 0) return -1; filesize = strtoul(argv[2], NULL, 10); strbuf = malloc(filesize); memset(strbuf, 42, filesize); write(fd, strbuf, filesize); free(strbuf); fsync(fd); len = (filesize + pagesize - 1) / pagesize; printf("length of pages: %d\n", len); addr = mmap(NULL, filesize, PROT_READ, MAP_SHARED, fd, 0); if (addr == MAP_FAILED) return -1; ret = posix_fadvise(fd, 0, filesize, POSIX_FADV_DONTNEED); if (ret < 0) return -1; vec = malloc(len); ret = mincore(addr, filesize, (void *)vec); if (ret < 0) return -1; for (i = 0; i < len; i++) printf("pages[%d]: %x\n", i, vec[i] & 0x1); free(vec); close(fd); return 0; } ============================== Test 1: running on kernel with commit 18aba41c reverted: [root@caspar ~]# uname -r 4.15.0-rc6.revert+ [root@caspar ~]# ./test_fadvise file1 1024 length of pages: 1 pages[0]: 0 # <-- partial page discarded [root@caspar ~]# ./test_fadvise file2 8192 length of pages: 2 pages[0]: 0 pages[1]: 0 [root@caspar ~]# ./test_fadvise file3 10240 length of pages: 3 pages[0]: 0 pages[1]: 0 pages[2]: 0 # <-- partial page discarded Test 2: running on mainline kernel: [root@caspar ~]# uname -r 4.15.0-rc6+ [root@caspar ~]# ./test_fadvise test1 1024 length of pages: 1 pages[0]: 1 # <-- partial and the only page not discarded [root@caspar ~]# ./test_fadvise test2 8192 length of pages: 2 pages[0]: 0 pages[1]: 0 [root@caspar ~]# ./test_fadvise test3 10240 length of pages: 3 pages[0]: 0 pages[1]: 0 pages[2]: 1 # <-- partial page not discarded Test 3: running on kernel with this patch: [root@caspar ~]# uname -r 4.15.0-rc6.patched+ [root@caspar ~]# ./test_fadvise test1 1024 length of pages: 1 pages[0]: 0 # <-- partial page and EOF, discarded [root@caspar ~]# ./test_fadvise test2 8192 length of pages: 2 pages[0]: 0 pages[1]: 0 [root@caspar ~]# ./test_fadvise test3 10240 length of pages: 3 pages[0]: 0 pages[1]: 0 pages[2]: 0 # <-- partial page and EOF, discarded [akpm@linux-foundation.org: tweak code comment] Link: http://lkml.kernel.org/r/5222da9ee20e1695eaabb69f631f200d6e6b8876.1515132470.git.jinli.zjl@alibaba-inc.comSigned-off-by: Nshidao.ytt <shidao.ytt@alibaba-inc.com> Signed-off-by: NCaspar Zhang <jinli.zjl@alibaba-inc.com> Reviewed-by: NOliver Yang <zhiche.yy@alibaba-inc.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Minchan Kim asked the following question -- what locks protects address_space destroying when race happens between inode trauncation and __isolate_lru_page? Jan Kara clarified by describing the race as follows CPU1 CPU2 truncate(inode) __isolate_lru_page() ... truncate_inode_page(mapping, page); delete_from_page_cache(page) spin_lock_irqsave(&mapping->tree_lock, flags); __delete_from_page_cache(page, NULL) page_cache_tree_delete(..) ... mapping = page_mapping(page); page->mapping = NULL; ... spin_unlock_irqrestore(&mapping->tree_lock, flags); page_cache_free_page(mapping, page) put_page(page) if (put_page_testzero(page)) -> false - inode now has no pages and can be freed including embedded address_space if (mapping && !mapping->a_ops->migratepage) - we've dereferenced mapping which is potentially already free. The race is theoretically possible but unlikely. Before the delete_from_page_cache, truncate_cleanup_page is called so the page is likely to be !PageDirty or PageWriteback which gets skipped by the only caller that checks the mappping in __isolate_lru_page. Even if the race occurs, a substantial amount of work has to happen during a tiny window with no preemption but it could potentially be done using a virtual machine to artifically slow one CPU or halt it during the critical window. This patch should eliminate the race with truncation by try-locking the page before derefencing mapping and aborting if the lock was not acquired. There was a suggestion from Huang Ying to use RCU as a side-effect to prevent mapping being freed. However, I do not like the solution as it's an unconventional means of preserving a mapping and it's not a context where rcu_read_lock is obviously protecting rcu data. Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net Fixes: c8244935 ("mm: compaction: make isolate_lru_page() filter-aware again") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eric Biggers 提交于
Nothing actually calls userfaultfd_file_create() besides the userfaultfd() system call itself. So simplify things by folding it into the system call and using anon_inode_getfd() instead of anon_inode_getfile(). Do the same in resolve_userfault_fork() as well. This removes over 50 lines with no change in functionality. Link: http://lkml.kernel.org/r/20171229212403.22800-1-ebiggers3@gmail.comSigned-off-by: NEric Biggers <ebiggers@google.com> Reviewed-by: NMike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Link: http://lkml.kernel.org/r/20171107122800.25517-10-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Suggested-by: NMike Kravetz <mike.kravetz@oracle.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
The memfd & fuse tests will share more common code in the following commits to test hugetlb support. Link: http://lkml.kernel.org/r/20171107122800.25517-9-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Link: http://lkml.kernel.org/r/20171107122800.25517-8-marcandre.lureau@redhat.comSuggested-by: NMike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Remove most of the special-casing of hugetlbfs now that sealing is supported. Link: http://lkml.kernel.org/r/20171107122800.25517-7-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Adapt add_seals()/get_seals() to work with hugetbfs-backed memory. Teach memfd_create() to allow sealing operations on MFD_HUGETLB. Link: http://lkml.kernel.org/r/20171107122800.25517-6-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Implements memfd sealing, similar to shmem: - WRITE: deny fallocate(PUNCH_HOLE). mmap() write is denied in memfd_add_seals(). write() doesn't exist for hugetlbfs. - SHRINK: added similar check as shmem_setattr() - GROW: added similar check as shmem_setattr() & shmem_fallocate() Except write() operation that doesn't exist with hugetlbfs, that should make sealing as close as it can be to shmem support. Link: http://lkml.kernel.org/r/20171107122800.25517-5-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
hugetlbfs inode information will need to be accessed by code in mm/shmem.c for file sealing operations. Move inode information definition from .c file to header for needed access. Link: http://lkml.kernel.org/r/20171107122800.25517-4-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Those functions are called for memfd files, backed by shmem or hugetlb (the next patches will handle hugetlb). Link: http://lkml.kernel.org/r/20171107122800.25517-3-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marc-André Lureau 提交于
Patch series "memfd: add sealing to hugetlb-backed memory", v3. Recently, Mike Kravetz added hugetlbfs support to memfd. However, he didn't add sealing support. One of the reasons to use memfd is to have shared memory sealing when doing IPC or sharing memory with another process with some extra safety. qemu uses shared memory & hugetables with vhost-user (used by dpdk), so it is reasonable to use memfd now instead for convenience and security reasons. This patch (of 9): The functions are called through shmem_fcntl() only. And no danger in removing the EXPORTs as the routines only work with shmem file structs. Link: http://lkml.kernel.org/r/20171107122800.25517-2-marcandre.lureau@redhat.comSigned-off-by: NMarc-André Lureau <marcandre.lureau@redhat.com> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
PG_buddy doesn't exist any more. It's called PageBuddy now. Link: http://lkml.kernel.org/r/20171220155552.15884-9-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Be really explicit about what bits / bytes are reserved for users that want to store extra information about the pages they allocate. Link: http://lkml.kernel.org/r/20171220155552.15884-8-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NRandy Dunlap <rdunlap@infradead.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Neither of these values get even close to 256; compound_dtor is currently at a maximum of 3, and compound_order can't be over 64. No machine has inefficient access to bytes since EV5, and while those are still supported, we don't optimise for them any more. This does not shrink struct page, but it removes an ifdef and frees up 2-6 bytes for future use. diff of pahole output: struct callback_head callback_head; /* 32 16 */ struct { long unsigned int compound_head; /* 32 8 */ - unsigned int compound_dtor; /* 40 4 */ - unsigned int compound_order; /* 44 4 */ + unsigned char compound_dtor; /* 40 1 */ + unsigned char compound_order; /* 41 1 */ }; /* 32 16 */ }; /* 32 16 */ union { [mawilcox@microsoft.com: add comment] Link: http://lkml.kernel.org/r/20171221000144.GB2980@bombadil.infradead.org Link: http://lkml.kernel.org/r/20171220155552.15884-7-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Instead of putting the ifdef in the middle of the definition of struct page, pull it forward to the rest of the ifdeffery around the SLUB cmpxchg_double optimisation. Link: http://lkml.kernel.org/r/20171220155552.15884-6-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
The comment on page->mapping is terse, and out of date (it does not mention the possibility of PAGE_MAPPING_MOVABLE). Instead, point the interested reader to page-flags.h where there is a much better comment. Link: http://lkml.kernel.org/r/20171220155552.15884-5-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
The "third double word block" isn't on 32-bit systems. The layout looks like this: unsigned long flags; struct address_space *mapping pgoff_t index; atomic_t _mapcount; atomic_t _refcount; which is 32 bytes on 64-bit, but 20 bytes on 32-bit. Nobody is trying to use the fact that it's double-word aligned today, so just remove the misleading claims. Link: http://lkml.kernel.org/r/20171220155552.15884-4-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
I found the struct { union { struct { union { struct { } } } } } layout rather confusing. Fortunately, there is an easier way to write this. The innermost union is of four things which are the size of an int, so the ones which are used by slab/slob/slub can be pulled up two levels to be in the outermost union with 'counters'. That leaves us with struct { union { struct { atomic_t; atomic_t; } } } which has the same layout, but is easier to read. Output from the current git version of pahole, diffed with -uw to ignore the whitespace changes from the indentation: }; /* 16 8 */ union { long unsigned int counters; /* 24 8 */ - struct { - union { - atomic_t _mapcount; /* 24 4 */ unsigned int active; /* 24 4 */ struct { unsigned int inuse:16; /* 24:16 4 */ @@ -21,7 +18,8 @@ unsigned int frozen:1; /* 24: 0 4 */ }; /* 24 4 */ int units; /* 24 4 */ - }; /* 24 4 */ + struct { + atomic_t _mapcount; /* 24 4 */ atomic_t _refcount; /* 28 4 */ }; /* 24 8 */ }; /* 24 8 */ Link: http://lkml.kernel.org/r/20171220155552.15884-3-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Patch series "Restructure struct page", v2. This series does not attempt any grand restructuring. Instead, it cures the worst of the indentitis, fixes the documentation and reduces the ifdeffery. The only layout change is compound_dtor and compound_order are each reduced to one byte. This patch (of 8): Instead of an ifdef block at the end of the struct, which needed its own comment, define _struct_page_alignment up at the top where it fits nicely with the existing comment. Link: http://lkml.kernel.org/r/20171220155552.15884-2-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-