1. 04 9月, 2008 19 次提交
    • T
      dccp: Policy-based packet dequeueing infrastructure · d6da3511
      Tomasz Grobelny 提交于
      This patch adds a generic infrastructure for policy-based dequeueing of 
      TX packets and provides two policies:
       * a simple FIFO policy (which is the default) and
       * a priority based policy (set via socket options).
      Both policies honour the tx_qlen sysctl for the maximum size of the write
      queue (can be overridden via socket options). 
      
      The priority policy uses skb->priority internally to assign an u32 priority
      identifier, using the same ranking as SO_PRIORITY. The skb->priority field
      is set to 0 when the packet leaves DCCP. The priority is supplied as ancillary
      data using cmsg(3), the patch also provides the requisite parsing routines.
      Signed-off-by: NTomasz Grobelny <tomasz@grobelny.oswiecenia.net>
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      d6da3511
    • G
      dccp: Refine the wait-for-ccid mechanism · 146993cf
      Gerrit Renker 提交于
      This extends the existing wait-for-ccid routine so that it may be used with
      different types of CCID. It further addresses the problems listed below.
      
      The code looks if the write queue is non-empty and grants the TX CCID up to
      `timeout' jiffies to drain the queue. It will instead purge that queue if
       * the delay suggested by the CCID exceeds the time budget;
       * a socket error occurred while waiting for the CCID;
       * there is a signal pending (eg. annoyed user pressed Control-C);
       * the CCID does not support delays (we don't know how long it will take).
      
      
                       D e t a i l s  [can be removed]
                       -------------------------------
      DCCP's sending mechanism functions a bit like non-blocking I/O: dccp_sendmsg()
      will enqueue up to net.dccp.default.tx_qlen packets (default=5), without waiting
      for them to be released to the network.
      
      Rate-based CCIDs, such as CCID3/4, can impose sending delays of up to maximally
      64 seconds (t_mbi in RFC 3448). Hence the write queue may still contain packets
      when the application closes. Since the write queue is congestion-controlled by
      the CCID, draining the queue is also under control of the CCID.
      
      There are several problems that needed to be addressed:
       1) The queue-drain mechanism only works with rate-based CCIDs. If CCID2 for
          example has a full TX queue and becomes network-limited just as the
          application wants to close, then waiting for CCID2 to become unblocked could
          lead to an indefinite  delay (i.e., application "hangs").
       2) Since each TX CCID in turn uses a feedback mechanism, there may be changes
          in its sending policy while the queue is being drained. This can lead to
          further delays during which the application will not be able to terminate.
       3) The minimum wait time for CCID3/4 can be expected to be the queue length
          times the current inter-packet delay. For example if tx_qlen=100 and a delay
          of 15 ms is used for each packet, then the application would have to wait
          for a minimum of 1.5 seconds before being allowed to exit.
       4) There is no way for the user/application to control this behaviour. It would
          be good to use the timeout argument of dccp_close() as an upper bound. Then
          the maximum time that an application is willing to wait for its CCIDs to can
          be set via the SO_LINGER option.
      
      These problems are addressed by giving the CCID a grace period of up to the
      `timeout' value.
      
      The wait-for-ccid function is, as before, used when the application 
       (a) has read all the data in its receive buffer and
       (b) if SO_LINGER was set with a non-zero linger time, or
       (c) the socket is either in the OPEN (active close) or in the PASSIVE_CLOSEREQ
           state (client application closes after receiving CloseReq).
      
      In addition, there is a catch-all case by calling __skb_queue_purge() after 
      waiting for the CCID. This is necessary since the write queue may still have
      data when
       (a) the host has been passively-closed,
       (b) abnormal termination (unread data, zero linger time),
       (c) wait-for-ccid could not finish within the given time limit.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      146993cf
    • G
      dccp ccid-2: Implementation of circular Ack Vector buffer with overflow handling · d7dc7e5f
      Gerrit Renker 提交于
      This completes the implementation of a circular buffer for Ack Vectors, by 
      extending the current (linear array-based) implementation.  The changes are:
      
       (a) An `overflow' flag to deal with the case of overflow. As before, dynamic
           growth of the buffer will not be supported; but code will be added to deal
           robustly with overflowing Ack Vector buffers.
      
       (b) A `tail_seqno' field. When naively implementing the algorithm of Appendix A
           in RFC 4340, problems arise whenever subsequent Ack Vector records overlap,
           which can bring the entire run length calculation completely out of synch.
           (This is documented on http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/\
                                                   ack_vectors/tracking_tail_ackno/ .)
       (c) The buffer lengthi is now computed dynamically (i.e. current fill level),
           as the span between head to tail.
      
      As a result, dccp_ackvec_pending() is now simpler - the #ifdef is no longer 
      necessary since buf_empty is always true when IP_DCCP_ACKVEC is not configured.
      
      Note on overflow handling: 
      -------------------------
       The Ack Vector code previously simply started to drop packets when the
       Ack Vector buffer overflowed. This means that the userspace application
       will not be able to receive, only because of an Ack Vector storage problem.
       
       Furthermore, overflow may be transient, so that applications may later
       recover from the overflow. Recovering from dropped packets is more difficult
       (e.g. video key frames).
       
       Hence the patch uses a different policy: when the buffer overflows, the oldest
       entries are subsequently overwritten. This has a higher chance of recovery.
       Details are on http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/ack_vectors/Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      d7dc7e5f
    • G
      dccp: Fix the adjustments to AWL and SWL · bfbddd08
      Gerrit Renker 提交于
      This fixes a problem and a potential loophole with regard to seqno/ackno
      validity: the problem is that the initial adjustments to AWL/SWL were
      only performed at the begin of the connection, during the handshake.
      
      Since the Sequence Window feature is always greater than Wmin=32 (7.5.2), 
      it is however necessary to perform these adjustments at least for the first
      W/W' (variables as per 7.5.1) packets in the lifetime of a connection.
      
      This requirement is complicated by the fact that W/W' can change at any time
      during the lifetime of a connection.
      
      Therefore the consequence is to perform this safety check each time SWL/AWL
      are updated.
      
      A second problem solved by this patch is that the remote/local Sequence Window
      feature values (which set the bounds for AWL/SWL/SWH) are undefined until the
      feature negotiation has completed.
      
      During the initial handshake we have more stringent sequence number protection,
      the changes added by this patch effect that {A,S}W{L,H} are within the correct
      bounds at the instant that feature negotiation completes (since the SeqWin
      feature activation handlers call dccp_update_gsr/gss()). 
      
      A detailed rationale is below -- can be removed from the commit message.
      
      
      1. Server sequence number checks during initial handshake
      ---------------------------------------------------------
      The server can not use the fields of the listening socket for seqno/ackno checks
      and thus needs to store all relevant information on a per-connection basis on
      the dccp_request socket. This is a size-constrained structure and has currently
      only ISS (dreq_iss) and ISR (dreq_isr) defined.
      Adding further fields (SW{L,H}, AW{L,H}) would increase the size of the struct
      and it is questionable whether this will have any practical gain. The currently
      implemented solution is as follows.
       * receiving first Request: dccp_v{4,6}_conn_request sets 
                                  ISR := P.seqno, ISS := dccp_v{4,6}_init_sequence()
      
       * sending first Response:  dccp_v{4,6}_send_response via dccp_make_response()	
                                  sets P.seqno := ISS, sets P.ackno := ISR
      
       * receiving retransmitted Request: dccp_check_req() overrides ISR := P.seqno
      
       * answering retransmitted Request: dccp_make_response() sets ISS += 1,
                                          otherwise as per first Response
      
       * completing the handshake: succeeds in dccp_check_req() for the first Ack
                                   where P.ackno == ISS (P.seqno is not tested)
      
       * creating child socket: ISS, ISR are copied from the request_sock
      
      This solution will succeed whenever the server can receive the Request and the
      subsequent Ack in succession, without retransmissions. If there is packet loss,
      the client needs to retransmit until this condition succeeds; it will otherwise
      eventually give up. Adding further fields to the request_sock could increase
      the robustness a bit, in that it would make possible to let a reordered Ack
      (from a retransmitted Response) pass. The argument against such a solution is
      that if the packet loss is not persistent and an Ack gets through, why not
      wait for the one answering the original response: if the loss is persistent, it
      is probably better to not start the connection in the first place.
      
      Long story short: the present design (by Arnaldo) is simple and will likely work
      just as well as a more complicated solution. As a consequence, {A,S}W{L,H} are
      not needed until the moment the request_sock is cloned into the accept queue.
      
      At that stage feature negotiation has completed, so that the values for the local
      and remote Sequence Window feature (7.5.2) are known, i.e. we are now in a better
      position to compute {A,S}W{L,H}.
      
      
      2. Client sequence number checks during initial handshake
      ---------------------------------------------------------
      Until entering PARTOPEN the client does not need the adjustments, since it 
      constrains the Ack window to the packet it sent.
      
       * sending first Request: dccp_v{4,6}_connect() choose ISS, 
                                dccp_connect() then sets GAR := ISS (as per 8.5),
      			  dccp_transmit_skb() (with the previous bug fix) sets
      			         GSS := ISS, AWL := ISS, AWH := GSS
       * n-th retransmitted Request (with previous patch):
      	                  dccp_retransmit_skb() via timer calls
      			  dccp_transmit_skb(), which sets GSS := ISS+n
                                and then AWL := ISS, AWH := ISS+n
      	                  
       * receiving any Response: dccp_rcv_request_sent_state_process() 
      	                   -- accepts packet if AWL <= P.ackno <= AWH;
      			   -- sets GSR = ISR = P.seqno
      
       * sending the Ack completing the handshake: dccp_send_ack() calls 
                                 dccp_transmit_skb(), which sets GSS += 1
      			   and AWL := ISS, AWH := GSS
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      bfbddd08
    • G
      dccp: Schedule an Ack when receiving timestamps · 2975abd2
      Gerrit Renker 提交于
      This schedules an Ack when receiving a timestamp, exploiting the
      existing inet_csk_schedule_ack() function, saving one case in the
      `dccp_ack_pending()' function.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      2975abd2
    • G
      dccp: Special case of the MPS for client-PARTOPEN with DataAcks · 88ddac51
      Gerrit Renker 提交于
      To increase robustness, it is necessary to resend Confirm feature-negotiation
      options, even though the RFC does not mandate it. But feature negotiation
      options can take (much) more room than the options on common DataAck packets.
      
      Instead of reducing the MPS always for a case which only applies to the three
      messages send during initial handshake, this patch devises a special case:
      
         if the payload length of the DataAck in PARTOPEN is too large, an Ack is sent
         to carry the options, and the feature-negotiation list is then flushed.
      
         This means that the server gets two Acks for one Response. If both Acks get
         lost, it is probably better to restart the connection anyway and devising yet
         another special-case does not seem worth the extra complexity.
      
      The patch (over-)estimates the expected overhead to be 32*4 bytes -- commonly
      seen values were 20-90 bytes for initial feature-negotiation options. 
      
      It uses sizeof(u32) to mean "aligned units of 4 bytes". For consistency,
      another use of sizeof is modified.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      88ddac51
    • G
      dccp: Support for the exchange of NN options in established state · 624a965a
      Gerrit Renker 提交于
      In contrast to static feature negotiation at the begin of a connection, which
      establishes the capabilities of both endpoints, this patch introduces support
      for dynamic exchange of feature negotiation options.
      
      Such a dynamic exchange is necessary in at least two cases:
       * CCID-2's Ack Ratio (RFC 4341, 6.1.2) which changes during the connection;
       * Sequence Window values that, as per RFC 4340, 7.5.2, should be sent "as
         as the connection progresses".
      
      Both are NN (non-negotiable) features. Hence dynamic feature "negotiation" is
      distinguished from static/pre-connection negotiation by the following:
       * no new capabilities are negotiated (those that matter for the connection
         are negotiated prior to setting up the connection, comparable to SIP);
       * features must be understood by each endpoint: as per RFC 4340, 6.4, 
         Sequence Window is "Req'd" and Ack Ratio must be understood when CCID-2
         is used as per the note underneath Table 4.
      
      These characteristics are reflected in the implementation:
       * only NN options can be exchanged after connection setup;
       * NN options are activated directly after validating them. The rationale is
         that a peer must accept every valid NN value (RFC 4340, 6.3.2), hence it
         will either accept the value and send a "Confirm R", or it will send an
         empty Confirm (which will reset the connection according to FN rules). 
       * An Ack is scheduled directly after activation to accelerate communicating
         the update to the peer.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      624a965a
    • G
      dccp: Debugging functions for feature negotiation · 76f738a7
      Gerrit Renker 提交于
      Since all feature-negotiation processing now takes place in feat.c, functions
      for producing verbose debugging output are concentrated there.
      
      New functions to print out values, entry records, and options are provided,
      and also a macro is defined to not always have the function name in the
      output line.
      
      Thanks a lot to Wei Yongjun and Giuseppe Galeota for help with errors in an
      earlier revision of this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      76f738a7
    • G
      dccp: Initialisation and type-checking of feature sysctls · 0a482267
      Gerrit Renker 提交于
      This patch takes care of initialising and type-checking sysctls related to
      feature negotiation. Type checking is important since some of the sysctls
      now directly act on the feature-negotiation process.
      
      The sysctls are initialised with the known default values for each feature.
      For the type-checking the value constraints from RFC 4340 are used:
      
       * Sequence Window uses the specified Wmin=32, the maximum is ulong (4 bytes),
         tested and confirmed that it works up to 4294967295 - for Gbps speed;
       * Ack Ratio is between 0 .. 0xffff (2-byte unsigned integer);
       * CCIDs are between 0 .. 255;
       * request_retries, retries1, retries2 also between 0..255 for good measure;
       * tx_qlen is checked to be non-negative;
       * sync_ratelimit remains as before.
      
      Further changes:
      ----------------
      Performed s@sysctl_dccp_feat@sysctl_dccp@g since the sysctls are now in feat.c.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      0a482267
    • G
      dccp: Implement both feature-local and feature-remote Sequence Window feature · 51c7d4fa
      Gerrit Renker 提交于
      This adds full support for local/remote Sequence Window feature, from which the 
        * sequence-number-validity (W) and 
        * acknowledgment-number-validity (W') windows 
      derive as specified in RFC 4340, 7.5.3. 
      
      Specifically, the following changes are introduced:
        * integrated new socket fields into dccp_sk;
        * updated the update_gsr/gss routines with regard to these fields;
        * updated handler code: the Sequence Window feature is located at the TX side,
          so the local feature is meant if the handler-rx flag is false;
        * the initialisation of `rcv_wnd' in reqsk is removed, since
          - rcv_wnd is not used by the code anywhere;
          - sequence number checks are not done in the LISTEN state (cf. 7.5.3);
          - dccp_check_req checks the Ack number validity more rigorously;
        * the `struct dccp_minisock' became empty and is now removed.
      
      Until the handshake completes with activating negotiated values, the local/remote
      Sequence-Window values are undefined and thus can not reliably be estimated.
      This issue is addressed in a separate patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      51c7d4fa
    • G
      dccp ccid-2: Phase out the use of boolean Ack Vector sysctl · b235dc4a
      Gerrit Renker 提交于
      This removes the use of the sysctl and the minisock variable for the Send Ack
      Vector feature, which is now handled fully dynamically via feature negotiation;
      i.e. when CCID2 is enabled, Ack Vectors are automatically enabled (as per
      RFC 4341, 4.).
      
      Using a sysctl in parallel to this implementation would open the door to
      crashes, since much of the code relies on tests of the boolean minisock /
      sysctl variable. Thus, this patch replaces all tests of type
      
      	if (dccp_msk(sk)->dccpms_send_ack_vector)
      		/* ... */
      with
      	if (dp->dccps_hc_rx_ackvec != NULL)
      		/* ... */
      
      The dccps_hc_rx_ackvec is allocated by the dccp_hdlr_ackvec() when feature
      negotiation concluded that Ack Vectors are to be used on the half-connection.
      Otherwise, it is NULL (due to dccp_init_sock/dccp_create_openreq_child),
      so that the test is a valid one.
      
      The activation handler for Ack Vectors is called as soon as the feature
      negotiation has concluded at the
       * server when the Ack marking the transition RESPOND => OPEN arrives;
       * client after it has sent its ACK, marking the transition REQUEST => PARTOPEN.
      
      Adding the sequence number of the Response packet to the Ack Vector has been 
      removed, since
       (a) connection establishment implies that the Response has been received;
       (b) the CCIDs only look at packets received in the (PART)OPEN state, i.e.
           this entry will always be ignored;
       (c) it can not be used for anything useful - to detect loss for instance, only
           packets received after the loss can serve as pseudo-dupacks.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      b235dc4a
    • G
      dccp: Remove manual influence on NDP Count feature · 68e074bf
      Gerrit Renker 提交于
      Updating the NDP count feature is handled automatically now:
       * for CCID-2 it is disabled, since the code does not use NDP counts;
       * for CCID-3 it is enabled, as NDP counts are used to determine loss lengths.
      
      Allowing the user to change NDP values leads to unpredictable and failing
      behaviour, since it is then possible to disable NDP counts even when they
      are needed (e.g. in CCID-3).
      
      This means that only those user settings are sensible that agree with the
      values for Send NDP Count implied by the choice of CCID. But those settings
      are already activated by the feature negotiation (CCID dependency tracking),
      hence this form of support is redundant.
      
      At startup the initialisation of the NDP count feature is with the default
      value of 0, which is done implicitly by the zeroing-out of the socket when
      it is allocated. If the choice of CCID or feature negotiation enables NDP
      count, this will then be updated via the NDP activation handler.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      68e074bf
    • G
      dccp: Feature activation handlers · c926c6ae
      Gerrit Renker 提交于
      This patch provides the post-processing of feature negotiation state, after
      the negotiation has completed.
      
      To this purpose, handlers are used and added to the dccp_feat_table. Each
      handler is passed a boolean flag whether the RX or TX side of the feature
      is meant.
      
      Several handlers are provided already, new handlers can easily be added.
      
      The initialisation is now fully dynamic, i.e. CCIDs are activated only
      after the feature negotiation. The integration of this dynamic activation
      is done in the subsequent patches.
      
      Thanks to Wei Yongjun for pointing out the necessity of skipping over empty
      Confirm options while copying the negotiated feature values.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      c926c6ae
    • G
      dccp: Insert feature-negotiation options into skb · 0ef118a0
      Gerrit Renker 提交于
      This patch replaces the earlier insertion routine from options.c, so that
      code specific to feature negotiation can remain in feat.c. This is possible
      by calling a function already existing in options.c.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      0ef118a0
    • G
      dccp: Deprecate Ack Ratio sysctl · 17c30b40
      Gerrit Renker 提交于
      This patch deprecates the Ack Ratio sysctl, since
       * Ack Ratio is entirely ignored by CCID-3 and CCID-4,
       * Ack Ratio currently doesn't work in CCID-2 (i.e. is always set to 1);
       * even if it would work in CCID-2, there is no point for a user to change it:
         - Ack Ratio is constrained by cwnd (RFC 4341, 6.1.2),
         - if Ack Ratio > cwnd, the system resorts to spurious RTO timeouts 
           (since waiting for Acks which will never arrive in this window),
         - cwnd is not a user-configurable value.	
      
      The only reasonable place for Ack Ratio is to print it for debugging. It is
      planned to do this later on, as part of e.g. dccp_probe.
      
      With this patch Ack Ratio is now under full control of feature negotiation:
       * Ack Ratio is resolved as a dependency of the selected CCID;
       * if the chosen CCID supports it (i.e. CCID == CCID-2), Ack Ratio is set to
         the default of 2, following RFC 4340, 11.3 - "New connections start with Ack
         Ratio 2 for both endpoints";
       * what happens then is part of another patch set, since it concerns the 
         dynamic update of Ack Ratio while the connection is in full flight.
      
      Thanks to Tomasz Grobelny for discussion leading up to this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      17c30b40
    • G
      dccp: Mechanism to resolve CCID dependencies · d4c8741c
      Gerrit Renker 提交于
      This adds a hook to resolve features whose value depends on the choice of
      CCID. It is done at the server since it can only be done after the CCID
      values have been negotiated; i.e. the client will add its CCID preference
      list on the Change options sent in the Request, which will be reconciled
      with the local preference list of the server.
      
      The concept is documented on 
      http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/feature_negotiation/\
      				implementation_notes.html#ccid_dependencies
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      d4c8741c
    • G
      dccp: Resolve dependencies of features on choice of CCID · 093e1f46
      Gerrit Renker 提交于
      This provides a missing link in the code chain, as several features implicitly
      depend and/or rely on the choice of CCID. Most notably, this is the Send Ack Vector
      feature, but also Ack Ratio and Send Loss Event Rate (also taken care of).
      
      For Send Ack Vector, the situation is as follows:
       * since CCID2 mandates the use of Ack Vectors, there is no point in allowing 
         endpoints which use CCID2 to disable Ack Vector features such a connection;
      
       * a peer with a TX CCID of CCID2 will always expect Ack Vectors, and a peer
         with a RX CCID of CCID2 must always send Ack Vectors (RFC 4341, sec. 4);
      
       * for all other CCIDs, the use of (Send) Ack Vector is optional and thus
         negotiable. However, this implies that the code negotiating the use of Ack
         Vectors also supports it (i.e. is able to supply and to either parse or
         ignore received Ack Vectors). Since this is not the case (CCID-3 has no Ack
         Vector support), the use of Ack Vectors is here disabled, with a comment
         in the source code.
      
      An analogous consideration arises for the Send Loss Event Rate feature,
      since the CCID-3 implementation does not support the loss interval options
      of RFC 4342. To make such use explicit, corresponding feature-negotiation
      options are inserted which signal the use of the loss event rate option,
      as it is used by the CCID3 code.
      
      Lastly, the values of the Ack Ratio feature are matched to the choice of CCID.
      
      The patch implements this as a function which is called after the user has
      made all other registrations for changing default values of features.
      
      The table is variable-length, the reserved (and hence for feature-negotiation
      invalid, confirmed by considering section 19.4 of RFC 4340) feature number `0'
      is used to mark the end of the table.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      093e1f46
    • G
      dccp: Cleanup routines for feature negotiation · 70208383
      Gerrit Renker 提交于
      This inserts the required de-allocation routines for memory allocated by 
      feature negotiation in the socket destructors, replacing dccp_feat_clean()
      in one instance.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      70208383
    • G
      dccp: Per-socket initialisation of feature negotiation · 828755ce
      Gerrit Renker 提交于
      This provides feature-negotiation initialisation for both DCCP sockets and
      DCCP request_sockets, to support feature negotiation during connection setup.
      
      It also resolves a FIXME regarding the congestion control initialisation.
      
      Thanks to Wei Yongjun for help with the IPv6 side of this patch.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      Acked-by: NIan McDonald <ian.mcdonald@jandi.co.nz>
      828755ce
  2. 07 8月, 2008 1 次提交
    • G
      tcp: Fix kernel panic when calling tcp_v(4/6)_md5_do_lookup · 6edafaaf
      Gui Jianfeng 提交于
      If the following packet flow happen, kernel will panic.
      MathineA			MathineB
      		SYN
      	---------------------->    
              	SYN+ACK
      	<----------------------
      		ACK(bad seq)
      	---------------------->
      When a bad seq ACK is received, tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr))
      is finally called by tcp_v4_reqsk_send_ack(), but the first parameter(skb->sk) is 
      NULL at that moment, so kernel panic happens.
      This patch fixes this bug.
      
      OOPS output is as following:
      [  302.812793] IP: [<c05cfaa6>] tcp_v4_md5_do_lookup+0x12/0x42
      [  302.817075] Oops: 0000 [#1] SMP 
      [  302.819815] Modules linked in: ipv6 loop dm_multipath rtc_cmos rtc_core rtc_lib pcspkr pcnet32 mii i2c_piix4 parport_pc i2c_core parport ac button ata_piix libata dm_mod mptspi mptscsih mptbase scsi_transport_spi sd_mod scsi_mod crc_t10dif ext3 jbd mbcache uhci_hcd ohci_hcd ehci_hcd [last unloaded: scsi_wait_scan]
      [  302.849946] 
      [  302.851198] Pid: 0, comm: swapper Not tainted (2.6.27-rc1-guijf #5)
      [  302.855184] EIP: 0060:[<c05cfaa6>] EFLAGS: 00010296 CPU: 0
      [  302.858296] EIP is at tcp_v4_md5_do_lookup+0x12/0x42
      [  302.861027] EAX: 0000001e EBX: 00000000 ECX: 00000046 EDX: 00000046
      [  302.864867] ESI: ceb69e00 EDI: 1467a8c0 EBP: cf75f180 ESP: c0792e54
      [  302.868333]  DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
      [  302.871287] Process swapper (pid: 0, ti=c0792000 task=c0712340 task.ti=c0746000)
      [  302.875592] Stack: c06f413a 00000000 cf75f180 ceb69e00 00000000 c05d0d86 000016d0 ceac5400 
      [  302.883275]        c05d28f8 000016d0 ceb69e00 ceb69e20 681bf6e3 00001000 00000000 0a67a8c0 
      [  302.890971]        ceac5400 c04250a3 c06f413a c0792eb0 c0792edc cf59a620 cf59a620 cf59a634 
      [  302.900140] Call Trace:
      [  302.902392]  [<c05d0d86>] tcp_v4_reqsk_send_ack+0x17/0x35
      [  302.907060]  [<c05d28f8>] tcp_check_req+0x156/0x372
      [  302.910082]  [<c04250a3>] printk+0x14/0x18
      [  302.912868]  [<c05d0aa1>] tcp_v4_do_rcv+0x1d3/0x2bf
      [  302.917423]  [<c05d26be>] tcp_v4_rcv+0x563/0x5b9
      [  302.920453]  [<c05bb20f>] ip_local_deliver_finish+0xe8/0x183
      [  302.923865]  [<c05bb10a>] ip_rcv_finish+0x286/0x2a3
      [  302.928569]  [<c059e438>] dev_alloc_skb+0x11/0x25
      [  302.931563]  [<c05a211f>] netif_receive_skb+0x2d6/0x33a
      [  302.934914]  [<d0917941>] pcnet32_poll+0x333/0x680 [pcnet32]
      [  302.938735]  [<c05a3b48>] net_rx_action+0x5c/0xfe
      [  302.941792]  [<c042856b>] __do_softirq+0x5d/0xc1
      [  302.944788]  [<c042850e>] __do_softirq+0x0/0xc1
      [  302.948999]  [<c040564b>] do_softirq+0x55/0x88
      [  302.951870]  [<c04501b1>] handle_fasteoi_irq+0x0/0xa4
      [  302.954986]  [<c04284da>] irq_exit+0x35/0x69
      [  302.959081]  [<c0405717>] do_IRQ+0x99/0xae
      [  302.961896]  [<c040422b>] common_interrupt+0x23/0x28
      [  302.966279]  [<c040819d>] default_idle+0x2a/0x3d
      [  302.969212]  [<c0402552>] cpu_idle+0xb2/0xd2
      [  302.972169]  =======================
      [  302.974274] Code: fc ff 84 d2 0f 84 df fd ff ff e9 34 fe ff ff 83 c4 0c 5b 5e 5f 5d c3 90 90 57 89 d7 56 53 89 c3 50 68 3a 41 6f c0 e8 e9 55 e5 ff <8b> 93 9c 04 00 00 58 85 d2 59 74 1e 8b 72 10 31 db 31 c9 85 f6 
      [  303.011610] EIP: [<c05cfaa6>] tcp_v4_md5_do_lookup+0x12/0x42 SS:ESP 0068:c0792e54
      [  303.018360] Kernel panic - not syncing: Fatal exception in interrupt
      Signed-off-by: NGui Jianfeng <guijianfeng@cn.fujitsu.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6edafaaf
  3. 26 7月, 2008 2 次提交
    • G
      dccp: Allow to distinguish original and retransmitted packets · 59435444
      Gerrit Renker 提交于
      This patch allows the sender to distinguish original and retransmitted packets,
      which is in particular needed for the retransmission of DCCP-Requests:
       * the first Request uses ISS (generated in net/dccp/ip*.c), and sets GSS = ISS;
       * all retransmitted Requests use GSS' = GSS + 1, so that the n-th retransmitted
         Request has sequence number ISS + n (mod 48).
      
      To add generic support, the patch reorganises existing code so that:
       * icsk_retransmits == 0     for the original packet and
       * icsk_retransmits = n > 0  for the n-th retransmitted packet
      at the time dccp_transmit_skb() is called, via dccp_retransmit_skb().
       
      Thanks to Wei Yongjun for pointing this problem out.
      
      Further changes:
      ----------------
       * removed the `skb' argument from dccp_retransmit_skb(), since sk_send_head
         is used for all retransmissions (the exception is client-Acks in PARTOPEN
         state, but these do not use sk_send_head);
       * since sk_send_head always contains the original skb (via dccp_entail()),
         skb_cloned() never evaluated to true and thus pskb_copy() was never used.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      59435444
    • I
      net: convert BUG_TRAP to generic WARN_ON · 547b792c
      Ilpo Järvinen 提交于
      Removes legacy reinvent-the-wheel type thing. The generic
      machinery integrates much better to automated debugging aids
      such as kerneloops.org (and others), and is unambiguous due to
      better naming. Non-intuively BUG_TRAP() is actually equal to
      WARN_ON() rather than BUG_ON() though some might actually be
      promoted to BUG_ON() but I left that to future.
      
      I could make at least one BUILD_BUG_ON conversion.
      Signed-off-by: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      547b792c
  4. 13 7月, 2008 1 次提交
    • G
      dccp ccid-3: Fix error in loss detection · 2013c7e3
      Gerrit Renker 提交于
      The TFRC loss detection code used the wrong loss condition (RFC 4340, 7.7.1):
       * the difference between sequence numbers s1 and s2 instead of 
       * the number of packets missing between s1 and s2 (one less than the distance).
      
      Since this condition appears in many places of the code, it has been put into a
      separate function, dccp_loss_free().
      
      Further changes:
      ----------------
       * tidied up incorrect typing (it was using `int' for u64/s64 types);
       * optimised conditional statements for common case of non-reordered packets;
       * rewrote comments/documentation to match the changes.
      Signed-off-by: NGerrit Renker <gerrit@erg.abdn.ac.uk>
      2013c7e3
  5. 15 6月, 2008 1 次提交
  6. 13 4月, 2008 1 次提交
    • P
      [DCCP]: Fix skb->cb conflicts with IP · 028b0275
      Patrick McHardy 提交于
      dev_queue_xmit() and the other IP output functions expect to get a skb
      with clear or properly initialized skb->cb. Unlike TCP and UDP, the
      dccp_skb_cb doesn't contain a struct inet_skb_parm at the beginning,
      so the DCCP-specific data is interpreted by the IP output functions.
      This can cause false negatives for the conditional POST_ROUTING hook
      invocation, making the packet bypass the hook.
      
      Add a inet_skb_parm/inet6_skb_parm union to the beginning of
      dccp_skb_cb to avoid clashes. Also add a BUILD_BUG_ON to make
      sure it fits in the cb.
      
      [ Combined with patch from Gerrit Renker to remove two now unnecessary
        memsets of IPCB(skb)->opt ]
      Signed-off-by: NPatrick McHardy <kaber@trash.net>
      Acked-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      028b0275
  7. 04 4月, 2008 1 次提交
  8. 06 3月, 2008 1 次提交
  9. 03 2月, 2008 1 次提交
    • A
      [SOCK] proto: Add hashinfo member to struct proto · ab1e0a13
      Arnaldo Carvalho de Melo 提交于
      This way we can remove TCP and DCCP specific versions of
      
      sk->sk_prot->get_port: both v4 and v6 use inet_csk_get_port
      sk->sk_prot->hash:     inet_hash is directly used, only v6 need
                             a specific version to deal with mapped sockets
      sk->sk_prot->unhash:   both v4 and v6 use inet_hash directly
      
      struct inet_connection_sock_af_ops also gets a new member, bind_conflict, so
      that inet_csk_get_port can find the per family routine.
      
      Now only the lookup routines receive as a parameter a struct inet_hashtable.
      
      With this we further reuse code, reducing the difference among INET transport
      protocols.
      
      Eventually work has to be done on UDP and SCTP to make them share this
      infrastructure and get as a bonus inet_diag interfaces so that iproute can be
      used with these protocols.
      
      net-2.6/net/ipv4/inet_hashtables.c:
        struct proto			     |   +8
        struct inet_connection_sock_af_ops |   +8
       2 structs changed
        __inet_hash_nolisten               |  +18
        __inet_hash                        | -210
        inet_put_port                      |   +8
        inet_bind_bucket_create            |   +1
        __inet_hash_connect                |   -8
       5 functions changed, 27 bytes added, 218 bytes removed, diff: -191
      
      net-2.6/net/core/sock.c:
        proto_seq_show                     |   +3
       1 function changed, 3 bytes added, diff: +3
      
      net-2.6/net/ipv4/inet_connection_sock.c:
        inet_csk_get_port                  |  +15
       1 function changed, 15 bytes added, diff: +15
      
      net-2.6/net/ipv4/tcp.c:
        tcp_set_state                      |   -7
       1 function changed, 7 bytes removed, diff: -7
      
      net-2.6/net/ipv4/tcp_ipv4.c:
        tcp_v4_get_port                    |  -31
        tcp_v4_hash                        |  -48
        tcp_v4_destroy_sock                |   -7
        tcp_v4_syn_recv_sock               |   -2
        tcp_unhash                         | -179
       5 functions changed, 267 bytes removed, diff: -267
      
      net-2.6/net/ipv6/inet6_hashtables.c:
        __inet6_hash |   +8
       1 function changed, 8 bytes added, diff: +8
      
      net-2.6/net/ipv4/inet_hashtables.c:
        inet_unhash                        | +190
        inet_hash                          | +242
       2 functions changed, 432 bytes added, diff: +432
      
      vmlinux:
       16 functions changed, 485 bytes added, 492 bytes removed, diff: -7
      
      /home/acme/git/net-2.6/net/ipv6/tcp_ipv6.c:
        tcp_v6_get_port                    |  -31
        tcp_v6_hash                        |   -7
        tcp_v6_syn_recv_sock               |   -9
       3 functions changed, 47 bytes removed, diff: -47
      
      /home/acme/git/net-2.6/net/dccp/proto.c:
        dccp_destroy_sock                  |   -7
        dccp_unhash                        | -179
        dccp_hash                          |  -49
        dccp_set_state                     |   -7
        dccp_done                          |   +1
       5 functions changed, 1 bytes added, 242 bytes removed, diff: -241
      
      /home/acme/git/net-2.6/net/dccp/ipv4.c:
        dccp_v4_get_port                   |  -31
        dccp_v4_request_recv_sock          |   -2
       2 functions changed, 33 bytes removed, diff: -33
      
      /home/acme/git/net-2.6/net/dccp/ipv6.c:
        dccp_v6_get_port                   |  -31
        dccp_v6_hash                       |   -7
        dccp_v6_request_recv_sock          |   +5
       3 functions changed, 5 bytes added, 38 bytes removed, diff: -33
      Signed-off-by: NArnaldo Carvalho de Melo <acme@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ab1e0a13
  10. 29 1月, 2008 5 次提交
  11. 11 10月, 2007 7 次提交