- 17 5月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_fixup_rcvbuf() contains a loop to estimate initial socket rcv space needed for a given mss. With large MTU (like 64K on lo), we can loop ~500 times and consume a lot of cpu cycles. perf top of 200 concurrent netperf -t TCP_CRR 5.62% netperf [kernel.kallsyms] [k] tcp_init_buffer_space 1.71% netperf [kernel.kallsyms] [k] _raw_spin_lock 1.55% netperf [kernel.kallsyms] [k] kmem_cache_free 1.51% netperf [kernel.kallsyms] [k] tcp_transmit_skb 1.50% netperf [kernel.kallsyms] [k] tcp_ack Lets use a 100% factor, and remove the loop. 100% is needed anyway for tcp_adv_win_scale=1 default value, and is also the maximum factor. Refs: commit b49960a0 ("tcp: change tcp_adv_win_scale and tcp_rmem[2]") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Add MIB counters for checksum errors in IP layer, and TCP/UDP/ICMP layers, to help diagnose problems. $ nstat -a | grep Csum IcmpInCsumErrors 72 0.0 TcpInCsumErrors 382 0.0 UdpInCsumErrors 463221 0.0 Icmp6InCsumErrors 75 0.0 Udp6InCsumErrors 173442 0.0 IpExtInCsumErrors 10884 0.0 Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
commit bd090dfc (tcp: tcp_replace_ts_recent() should not be called from tcp_validate_incoming()) introduced a TS ecr bug in slow path processing. 1 A > B P. 1:10001(10000) ack 1 <nop,nop,TS val 1001 ecr 200> 2 B < A . 1:1(0) ack 1 win 257 <sack 9001:10001,TS val 300 ecr 1001> 3 A > B . 1:1001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> 4 A > B . 1001:2001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> (ecr 200 should be ecr 300 in packets 3 & 4) Problem is tcp_ack() can trigger send of new packets (retransmits), reflecting the prior TSval, instead of the TSval contained in the currently processed incoming packet. Fix this by calling tcp_replace_ts_recent() from tcp_ack() after the checks, but before the actions. Reported-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On SACK reneging the sender immediately retransmits and forces a timeout but disables Eifel (undo). If the (buggy) receiver does not drop any packet this can trigger a false slow-start retransmit storm driven by the ACKs of the original packets. This can be detected with undo and TCP timestamps. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 3月, 2013 3 次提交
-
-
由 Yuchung Cheng 提交于
This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Consolidate all of TCP CA_Loss state processing in tcp_fastretrans_alert() into a new function called tcp_process_loss(). This is to prepare the new F-RTO implementation in the next patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2013 1 次提交
-
-
由 Christoph Paasch 提交于
TCPCT uses option-number 253, reserved for experimental use and should not be used in production environments. Further, TCPCT does not fully implement RFC 6013. As a nice side-effect, removing TCPCT increases TCP's performance for very short flows: Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests for files of 1KB size. before this patch: average (among 7 runs) of 20845.5 Requests/Second after: average (among 7 runs) of 21403.6 Requests/Second Signed-off-by: NChristoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 3月, 2013 2 次提交
-
-
由 Nandita Dukkipati 提交于
This is the second of the TLP patch series; it augments the basic TLP algorithm with a loss detection scheme. This patch implements a mechanism for loss detection when a Tail loss probe retransmission plugs a hole thereby masking packet loss from the sender. The loss detection algorithm relies on counting TLP dupacks as outlined in Sec. 3 of: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 The basic idea is: Sender keeps track of TLP "episode" upon retransmission of a TLP packet. An episode ends when the sender receives an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the episode. We want to make sure that before the episode ends the sender receives a "TLP dupack", indicating that the TLP retransmission was unnecessary, so there was no loss/hole that needed plugging. If the sender gets no TLP dupack before the end of the episode, then it reduces ssthresh and the congestion window, because the TLP packet arriving at the receiver probably plugged a hole. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Nandita Dukkipati 提交于
This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 3月, 2013 1 次提交
-
-
由 Neal Cardwell 提交于
We should not update ts_recent and call tcp_rcv_rtt_measure_ts() both before and after going to step5. That wastes CPU and double-counts the receiver-side RTT sample. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 2月, 2013 2 次提交
-
-
由 Pravin B Shelar 提交于
Patch cef401de (net: fix possible wrong checksum generation) fixed wrong checksum calculation but it broke TSO by defining new GSO type but not a netdev feature for that type. net_gso_ok() would not allow hardware checksum/segmentation offload of such packets without the feature. Following patch fixes TSO and wrong checksum. This patch uses same logic that Eric Dumazet used. Patch introduces new flag SKBTX_SHARED_FRAG if at least one frag can be modified by the user. but SKBTX_SHARED_FRAG flag is kept in skb shared info tx_flags rather than gso_type. tx_flags is better compared to gso_type since we can have skb with shared frag without gso packet. It does not link SHARED_FRAG to GSO, So there is no need to define netdev feature for this. Signed-off-by: NPravin B Shelar <pshelar@nicira.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Andrey Vagin 提交于
A socket timestamp is a sum of the global tcp_time_stamp and a per-socket offset. A socket offset is added in places where externally visible tcp timestamp option is parsed/initialized. Connections in the SYN_RECV state are not supported, global tcp_time_stamp is used for them, because repair mode doesn't support this state. In a future it can be implemented by the similar way as for TIME_WAIT sockets. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: NAndrey Vagin <avagin@openvz.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 2月, 2013 1 次提交
-
-
由 Ilpo Järvinen 提交于
There are transients during normal FRTO procedure during which the packets_in_flight can go to zero between write_queue state updates and firing the resulting segments out. As FRTO processing occurs during that window the check must be more precise to not match "spuriously" :-). More specificly, e.g., when packets_in_flight is zero but FLAG_DATA_ACKED is true the problematic branch that set cwnd into zero would not be taken and new segments might be sent out later. Signed-off-by: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi> Tested-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2013 1 次提交
-
-
由 Stephen Hemminger 提交于
TCP Appropriate Byte Count was added by me, but later disabled. There is no point in maintaining it since it is a potential source of bugs and Linux already implements other better window protection heuristics. Signed-off-by: NStephen Hemminger <stephen@networkplumber.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 2月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Commit 9dc27415 (tcp: fix ABC in tcp_slow_start()) uncovered a bug in FRTO code : tcp_process_frto() is setting snd_cwnd to 0 if the number of in flight packets is 0. As Neal pointed out, if no packet is in flight we lost our chance to disambiguate whether a loss timeout was spurious. We should assume it was a proper loss. Reported-by: NPasi Kärkkäinen <pasik@iki.fi> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 2月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On receiving the SYN-ACK, Fast Open checks icsk_retransmit for SYN retransmission to detect SYN/data drops. But if F-RTO is disabled, icsk_retransmit is reset at step D of tcp_fastretrans_alert() ( under tcp_ack()) before tcp_rcv_fastopen_synack(). The fix is to use total_retrans instead which accounts for SYN retransmission regardless the use of F-RTO. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 1月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Pravin Shelar mentioned that GSO could potentially generate wrong TX checksum if skb has fragments that are overwritten by the user between the checksum computation and transmit. He suggested to linearize skbs but this extra copy can be avoided for normal tcp skbs cooked by tcp_sendmsg(). This patch introduces a new SKB_GSO_SHARED_FRAG flag, set in skb_shinfo(skb)->gso_type if at least one frag can be modified by the user. Typical sources of such possible overwrites are {vm}splice(), sendfile(), and macvtap/tun/virtio_net drivers. Tested: $ netperf -H 7.7.8.84 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3959.52 $ netperf -H 7.7.8.84 -t TCP_SENDFILE TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3216.80 Performance of the SENDFILE is impacted by the extra allocation and copy, and because we use order-0 pages, while the TCP_STREAM uses bigger pages. Reported-by: NPravin Shelar <pshelar@nicira.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 1月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
commit c3ae62af (tcp: should drop incoming frames without ACK flag set) added a regression on the handling of RST messages. RST should be allowed to come even without ACK bit set. We validate the RST by checking the exact sequence, as requested by RFC 793 and 5961 3.2, in tcp_validate_incoming() Reported-by: NEric Wong <normalperson@yhbt.net> Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Tested-by: NEric Wong <normalperson@yhbt.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 1月, 2013 1 次提交
-
-
由 Hannes Frederic Sowa 提交于
As per suggestion from Eric Dumazet this patch makes tcp_ecn sysctl namespace aware. The reason behind this patch is to ease the testing of ecn problems on the internet and allows applications to tune their own use of ecn. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 12月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
In commit 96e0bf4b (tcp: Discard segments that ack data not yet sent) John Dykstra enforced a check against ack sequences. In commit 354e4aa3 (tcp: RFC 5961 5.2 Blind Data Injection Attack Mitigation) I added more safety tests. But we missed fact that these tests are not performed if ACK bit is not set. RFC 793 3.9 mandates TCP should drop a frame without ACK flag set. " fifth check the ACK field, if the ACK bit is off drop the segment and return" Not doing so permits an attacker to only guess an acceptable sequence number, evading stronger checks. Many thanks to Zhiyun Qian for bringing this issue to our attention. See : http://web.eecs.umich.edu/~zhiyunq/pub/ccs12_TCP_sequence_number_inference.pdfReported-by: NZhiyun Qian <zhiyunq@umich.edu> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: John Dykstra <john.dykstra1@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 12月, 2012 1 次提交
-
-
由 Yuchung Cheng 提交于
If SYN-ACK partially acks SYN-data, the client retransmits the remaining data by tcp_retransmit_skb(). This increments lost recovery state variables like tp->retrans_out in Open state. If loss recovery happens before the retransmission is acked, it triggers the WARN_ON check in tcp_fastretrans_alert(). For example: the client sends SYN-data, gets SYN-ACK acking only ISN, retransmits data, sends another 4 data packets and get 3 dupacks. Since the retransmission is not caused by network drop it should not update the recovery state variables. Further the server may return a smaller MSS than the cached MSS used for SYN-data, so the retranmission needs a loop. Otherwise some data will not be retransmitted until timeout or other loss recovery events. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 11月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
We added support for RFC 5961 in latest kernels but TCP fails to perform exhaustive check of ACK sequence. We can update our view of peer tsval from a frame that is later discarded by tcp_ack() This makes timestamps enabled sessions vulnerable to injection of a high tsval : peers start an ACK storm, since the victim sends a dupack each time it receives an ACK from the other peer. As tcp_validate_incoming() is called before tcp_ack(), we should not peform tcp_replace_ts_recent() from it, and let callers do it at the right time. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Cc: Romain Francoise <romain@orebokech.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 11月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 11月, 2012 1 次提交
-
-
由 Pavel Emelyanov 提交于
When sending data into a tcp socket in repair state we should check for the amount of data being 0 explicitly. Otherwise we'll have an skb with seq == end_seq in rcv queue, but tcp doesn't expect this to happen (in particular a warn_on in tcp_recvmsg shoots). Signed-off-by: NPavel Emelyanov <xemul@parallels.com> Reported-by: NGiorgos Mavrikas <gmavrikas@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 10月, 2012 3 次提交
-
-
由 Jerry Chu 提交于
A packet with an invalid ack_seq may cause a TCP Fast Open socket to switch to the unexpected TCP_CLOSING state, triggering a BUG_ON kernel panic. When a FIN packet with an invalid ack_seq# arrives at a socket in the TCP_FIN_WAIT1 state, rather than discarding the packet, the current code will accept the FIN, causing state transition to TCP_CLOSING. This may be a small deviation from RFC793, which seems to say that the packet should be dropped. Unfortunately I did not expect this case for Fast Open hence it will trigger a BUG_ON panic. It turns out there is really nothing bad about a TFO socket going into TCP_CLOSING state so I could just remove the BUG_ON statements. But after some thought I think it's better to treat this case like TCP_SYN_RECV and return a RST to the confused peer who caused the unacceptable ack_seq to be generated in the first place. Signed-off-by: NH.K. Jerry Chu <hkchu@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Add a bit TCPI_OPT_SYN_DATA (32) to the socket option TCP_INFO:tcpi_options. It's set if the data in SYN (sent or received) is acked by SYN-ACK. Server or client application can use this information to check Fast Open success rate. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] All TCP stacks MAY implement the following mitigation. TCP stacks that implement this mitigation MUST add an additional input check to any incoming segment. The ACK value is considered acceptable only if it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT). All incoming segments whose ACK value doesn't satisfy the above condition MUST be discarded and an ACK sent back. Move tcp_send_challenge_ack() before tcp_ack() to avoid a forward declaration. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Jerry Chu <hkchu@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 9月, 2012 3 次提交
-
-
由 Neal Cardwell 提交于
When recording the number of SYNACK retransmits for servers using TCP Fast Open, fix the code to ensure that we copy over the retransmit count from the request_sock after we receive the ACK that completes the 3-way handshake. The story here is similar to that of SYNACK RTT measurements. Previously we were always doing this in tcp_v4_syn_recv_sock(). However, for TCP Fast Open connections tcp_v4_conn_req_fastopen() calls tcp_v4_syn_recv_sock() at the time we receive the SYN. So for TFO we must copy the final SYNACK retransmit count in tcp_rcv_state_process(). Note that copying over the SYNACK retransmit count will give us the correct count since, as is mentioned in a comment in tcp_retransmit_timer(), before we receive an ACK for our SYN-ACK a TFO passive connection does not retransmit anything else (e.g., data or FIN segments). Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Neal Cardwell 提交于
A TCP Fast Open (TFO) passive connection must call both tcp_check_req() and tcp_validate_incoming() for all incoming ACKs that are attempting to complete the 3WHS. This is needed to parallel all the action that happens for a non-TFO connection, where for an ACK that is attempting to complete the 3WHS we call both tcp_check_req() and tcp_validate_incoming(). For example, upon receiving the ACK that completes the 3WHS, we need to call tcp_fast_parse_options() and update ts_recent based on the incoming timestamp value in the ACK. One symptom of the problem with the previous code was that for passive TFO connections using TCP timestamps, the outgoing TS ecr values ignored the incoming TS val value on the ACK that completed the 3WHS. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Neal Cardwell 提交于
When taking SYNACK RTT samples for servers using TCP Fast Open, fix the code to ensure that we only call tcp_valid_rtt_meas() after we receive the ACK that completes the 3-way handshake. Previously we were always taking an RTT sample in tcp_v4_syn_recv_sock(). However, for TCP Fast Open connections tcp_v4_conn_req_fastopen() calls tcp_v4_syn_recv_sock() at the time we receive the SYN. So for TFO we must wait until tcp_rcv_state_process() to take the RTT sample. To fix this, we wait until after TFO calls tcp_v4_syn_recv_sock() before we set the snt_synack timestamp, since tcp_synack_rtt_meas() already ensures that we only take a SYNACK RTT sample if snt_synack is non-zero. To be careful, we only take a snt_synack timestamp when a SYNACK transmit or retransmit succeeds. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 9月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
Stephan Springl found that commit 1402d366 "tcp: introduce tcp_try_coalesce" introduced a regression for rlogin It turns out problem comes from TCP urgent data handling and a change in behavior in input path. rlogin sends two one-byte packets with URG ptr set, and when next data frame is coalesced, we lack sk_data_ready() calls to wakeup consumer. Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NStephan Springl <springl-k@lar.bfw.de> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 9月, 2012 3 次提交
-
-
由 Yuchung Cheng 提交于
Use proportional rate reduction (PRR) algorithm to reduce cwnd in CWR state, in addition to Recovery state. Retire the current rate-halving in CWR. When losses are detected via ACKs in CWR state, the sender enters Recovery state but the cwnd reduction continues and does not restart. Rename and refactor cwnd reduction functions since both CWR and Recovery use the same algorithm: tcp_init_cwnd_reduction() is new and initiates reduction state variables. tcp_cwnd_reduction() is previously tcp_update_cwnd_in_recovery(). tcp_ends_cwnd_reduction() is previously tcp_complete_cwr(). The rate halving functions and logic such as tcp_cwnd_down(), tcp_min_cwnd(), and the cwnd moderation inside tcp_enter_cwr() are removed. The unused parameter, flag, in tcp_cwnd_reduction() is also removed. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
To prepare replacing rate halving with PRR algorithm in CWR state. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
To prepare replacing rate halving with PRR algorithm in CWR state. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 9月, 2012 2 次提交
-
-
由 Jerry Chu 提交于
This patch adds the main processing path to complete the TFO server patches. A TFO request (i.e., SYN+data packet with a TFO cookie option) first gets processed in tcp_v4_conn_request(). If it passes the various TFO checks by tcp_fastopen_check(), a child socket will be created right away to be accepted by applications, rather than waiting for the 3WHS to finish. In additon to the use of TFO cookie, a simple max_qlen based scheme is put in place to fend off spoofed TFO attack. When a valid ACK comes back to tcp_rcv_state_process(), it will cause the state of the child socket to switch from either TCP_SYN_RECV to TCP_ESTABLISHED, or TCP_FIN_WAIT1 to TCP_FIN_WAIT2. At this time retransmission will resume for any unack'ed (data, FIN,...) segments. Signed-off-by: NH.K. Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jerry Chu 提交于
This patch adds all the necessary data structure and support functions to implement TFO server side. It also documents a number of flags for the sysctl_tcp_fastopen knob, and adds a few Linux extension MIBs. In addition, it includes the following: 1. a new TCP_FASTOPEN socket option an application must call to supply a max backlog allowed in order to enable TFO on its listener. 2. A number of key data structures: "fastopen_rsk" in tcp_sock - for a big socket to access its request_sock for retransmission and ack processing purpose. It is non-NULL iff 3WHS not completed. "fastopenq" in request_sock_queue - points to a per Fast Open listener data structure "fastopen_queue" to keep track of qlen (# of outstanding Fast Open requests) and max_qlen, among other things. "listener" in tcp_request_sock - to point to the original listener for book-keeping purpose, i.e., to maintain qlen against max_qlen as part of defense against IP spoofing attack. 3. various data structure and functions, many in tcp_fastopen.c, to support server side Fast Open cookie operations, including /proc/sys/net/ipv4/tcp_fastopen_key to allow manual rekeying. Signed-off-by: NH.K. Jerry Chu <hkchu@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Tom Herbert <therbert@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 8月, 2012 1 次提交
-
-
由 Yuchung Cheng 提交于
The cwnd reduction in fast recovery is based on the number of packets newly delivered per ACK. For non-sack connections every DUPACK signifies a packet has been delivered, but the sender mistakenly skips counting them for cwnd reduction. The fix is to compute newly_acked_sacked after DUPACKs are accounted in sacked_out for non-sack connections. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 8月, 2012 1 次提交
-
-
由 Razvan Ghitulete 提交于
The field tp->snd_wl1 is twice initialized, the second time seems to be wrong as it may overwrite any update in tcp_ack. Signed-off-by: NRazvan Ghitulete <rghitulete@ixiacom.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 8月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
While playing with CoDel and ECN marking, I discovered a non optimal behavior of receiver of CE (Congestion Encountered) segments. In pathological cases, sender has reduced its cwnd to low values, and receiver delays its ACK (by 40 ms). While RFC 3168 6.1.3 (The TCP Receiver) doesn't explicitly recommend to send immediate ACKS, we believe its better to not delay ACKS, because a CE segment should give same signal than a dropped segment, and its quite important to reduce RTT to give ECE/CWR signals as fast as possible. Note we already call tcp_enter_quickack_mode() from TCP_ECN_check_ce() if we receive a retransmit, for the same reason. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-