1. 12 10月, 2009 1 次提交
  2. 25 8月, 2009 1 次提交
  3. 24 8月, 2009 1 次提交
  4. 11 7月, 2009 1 次提交
  5. 06 7月, 2009 1 次提交
  6. 22 12月, 2008 2 次提交
  7. 03 11月, 2008 1 次提交
  8. 31 10月, 2008 2 次提交
    • S
      ftrace: nmi safe code clean ups · a26a2a27
      Steven Rostedt 提交于
      Impact: cleanup
      
      This patch cleans up the NMI safe code for dynamic ftrace as suggested
      by Andrew Morton.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      a26a2a27
    • S
      ftrace: nmi safe code modification · 17666f02
      Steven Rostedt 提交于
      Impact: fix crashes that can occur in NMI handlers, if their code is modified
      
      Modifying code is something that needs special care. On SMP boxes,
      if code that is being modified is also being executed on another CPU,
      that CPU will have undefined results.
      
      The dynamic ftrace uses kstop_machine to make the system act like a
      uniprocessor system. But this does not address NMIs, that can still
      run on other CPUs.
      
      One approach to handle this is to make all code that are used by NMIs
      not be traced. But NMIs can call notifiers that spread throughout the
      kernel and this will be very hard to maintain, and the chance of missing
      a function is very high.
      
      The approach that this patch takes is to have the NMIs modify the code
      if the modification is taking place. The way this works is that just
      writing to code executing on another CPU is not harmful if what is
      written is the same as what exists.
      
      Two buffers are used: an IP buffer and a "code" buffer.
      
      The steps that the patcher takes are:
      
       1) Put in the instruction pointer into the IP buffer
          and the new code into the "code" buffer.
       2) Set a flag that says we are modifying code
       3) Wait for any running NMIs to finish.
       4) Write the code
       5) clear the flag.
       6) Wait for any running NMIs to finish.
      
      If an NMI is executed, it will also write the pending code.
      Multiple writes are OK, because what is being written is the same.
      Then the patcher must wait for all running NMIs to finish before
      going to the next line that must be patched.
      
      This is basically the RCU approach to code modification.
      
      Thanks to Ingo Molnar for suggesting the idea, and to Arjan van de Ven
      for his guidence on what is safe and what is not.
      Signed-off-by: NSteven Rostedt <srostedt@redhat.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      17666f02
  9. 21 9月, 2008 1 次提交