- 22 9月, 2020 3 次提交
-
-
由 David Hildenbrand 提交于
stable inclusion from linux-4.19.103 commit 0a69047d8235c60d88c6ca488d8dccc7c60d4d3c -------------------------------- [ Upstream commit e822969c ] Patch series "mm: fix max_pfn not falling on section boundary", v2. Playing with different memory sizes for a x86-64 guest, I discovered that some memmaps (highest section if max_mem does not fall on the section boundary) are marked as being valid and online, but contain garbage. We have to properly initialize these memmaps. Looking at /proc/kpageflags and friends, I found some more issues, partially related to this. This patch (of 3): If max_pfn is not aligned to a section boundary, we can easily run into BUGs. This can e.g., be triggered on x86-64 under QEMU by specifying a memory size that is not a multiple of 128MB (e.g., 4097MB, but also 4160MB). I was told that on real HW, we can easily have this scenario (esp., one of the main reasons sub-section hotadd of devmem was added). The issue is, that we have a valid memmap (pfn_valid()) for the whole section, and the whole section will be marked "online". pfn_to_online_page() will succeed, but the memmap contains garbage. E.g., doing a "./page-types -r -a 0x144001" when QEMU was started with "-m 4160M" - (see tools/vm/page-types.c): [ 200.476376] BUG: unable to handle page fault for address: fffffffffffffffe [ 200.477500] #PF: supervisor read access in kernel mode [ 200.478334] #PF: error_code(0x0000) - not-present page [ 200.479076] PGD 59614067 P4D 59614067 PUD 59616067 PMD 0 [ 200.479557] Oops: 0000 [#4] SMP NOPTI [ 200.479875] CPU: 0 PID: 603 Comm: page-types Tainted: G D W 5.5.0-rc1-next-20191209 #93 [ 200.480646] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu4 [ 200.481648] RIP: 0010:stable_page_flags+0x4d/0x410 [ 200.482061] Code: f3 ff 41 89 c0 48 b8 00 00 00 00 01 00 00 00 45 84 c0 0f 85 cd 02 00 00 48 8b 53 08 48 8b 2b 48f [ 200.483644] RSP: 0018:ffffb139401cbe60 EFLAGS: 00010202 [ 200.484091] RAX: fffffffffffffffe RBX: fffffbeec5100040 RCX: 0000000000000000 [ 200.484697] RDX: 0000000000000001 RSI: ffffffff9535c7cd RDI: 0000000000000246 [ 200.485313] RBP: ffffffffffffffff R08: 0000000000000000 R09: 0000000000000000 [ 200.485917] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000144001 [ 200.486523] R13: 00007ffd6ba55f48 R14: 00007ffd6ba55f40 R15: ffffb139401cbf08 [ 200.487130] FS: 00007f68df717580(0000) GS:ffff9ec77fa00000(0000) knlGS:0000000000000000 [ 200.487804] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 200.488295] CR2: fffffffffffffffe CR3: 0000000135d48000 CR4: 00000000000006f0 [ 200.488897] Call Trace: [ 200.489115] kpageflags_read+0xe9/0x140 [ 200.489447] proc_reg_read+0x3c/0x60 [ 200.489755] vfs_read+0xc2/0x170 [ 200.490037] ksys_pread64+0x65/0xa0 [ 200.490352] do_syscall_64+0x5c/0xa0 [ 200.490665] entry_SYSCALL_64_after_hwframe+0x49/0xbe But it can be triggered much easier via "cat /proc/kpageflags > /dev/null" after cold/hot plugging a DIMM to such a system: [root@localhost ~]# cat /proc/kpageflags > /dev/null [ 111.517275] BUG: unable to handle page fault for address: fffffffffffffffe [ 111.517907] #PF: supervisor read access in kernel mode [ 111.518333] #PF: error_code(0x0000) - not-present page [ 111.518771] PGD a240e067 P4D a240e067 PUD a2410067 PMD 0 This patch fixes that by at least zero-ing out that memmap (so e.g., page_to_pfn() will not crash). Commit 907ec5fc ("mm: zero remaining unavailable struct pages") tried to fix a similar issue, but forgot to consider this special case. After this patch, there are still problems to solve. E.g., not all of these pages falling into a memory hole will actually get initialized later and set PageReserved - they are only zeroed out - but at least the immediate crashes are gone. A follow-up patch will take care of this. Link: http://lkml.kernel.org/r/20191211163201.17179-2-david@redhat.com Fixes: f7f99100 ("mm: stop zeroing memory during allocation in vmemmap") Signed-off-by: NDavid Hildenbrand <david@redhat.com> Tested-by: NDaniel Jordan <daniel.m.jordan@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Bob Picco <bob.picco@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: <stable@vger.kernel.org> [4.15+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Pavel Tatashin 提交于
stable inclusion from linux-4.19.103 commit f19a50c1e3ba9f58ca5a591a82ac4852da8bc4ee -------------------------------- [ Upstream commit ec393a0f ] When checking for valid pfns in zero_resv_unavail(), it is not necessary to verify that pfns within pageblock_nr_pages ranges are valid, only the first one needs to be checked. This is because memory for pages are allocated in contiguous chunks that contain pageblock_nr_pages struct pages. Link: http://lkml.kernel.org/r/20181002143821.5112-3-msys.mizuma@gmail.comSigned-off-by: NPavel Tatashin <pavel.tatashin@microsoft.com> Signed-off-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com> Reviewed-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Naoya Horiguchi 提交于
stable inclusion from linux-4.19.103 commit 9ac5917a1d28220981512c4f4c391c90a997e0c6 -------------------------------- [ Upstream commit 907ec5fc ] Patch series "mm: Fix for movable_node boot option", v3. This patch series contains a fix for the movable_node boot option issue which was introduced by commit 124049de ("x86/e820: put !E820_TYPE_RAM regions into memblock.reserved"). The commit breaks the option because it changed the memory gap range to reserved memblock. So, the node is marked as Normal zone even if the SRAT has Hot pluggable affinity. First and second patch fix the original issue which the commit tried to fix, then revert the commit. This patch (of 3): There is a kernel panic that is triggered when reading /proc/kpageflags on the kernel booted with kernel parameter 'memmap=nn[KMG]!ss[KMG]': BUG: unable to handle kernel paging request at fffffffffffffffe PGD 9b20e067 P4D 9b20e067 PUD 9b210067 PMD 0 Oops: 0000 [#1] SMP PTI CPU: 2 PID: 1728 Comm: page-types Not tainted 4.17.0-rc6-mm1-v4.17-rc6-180605-0816-00236-g2dfb086ef02c+ #160 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014 RIP: 0010:stable_page_flags+0x27/0x3c0 Code: 00 00 00 0f 1f 44 00 00 48 85 ff 0f 84 a0 03 00 00 41 54 55 49 89 fc 53 48 8b 57 08 48 8b 2f 48 8d 42 ff 83 e2 01 48 0f 44 c7 <48> 8b 00 f6 c4 01 0f 84 10 03 00 00 31 db 49 8b 54 24 08 4c 89 e7 RSP: 0018:ffffbbd44111fde0 EFLAGS: 00010202 RAX: fffffffffffffffe RBX: 00007fffffffeff9 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000202 RDI: ffffed1182fff5c0 RBP: ffffffffffffffff R08: 0000000000000001 R09: 0000000000000001 R10: ffffbbd44111fed8 R11: 0000000000000000 R12: ffffed1182fff5c0 R13: 00000000000bffd7 R14: 0000000002fff5c0 R15: ffffbbd44111ff10 FS: 00007efc4335a500(0000) GS:ffff93a5bfc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: fffffffffffffffe CR3: 00000000b2a58000 CR4: 00000000001406e0 Call Trace: kpageflags_read+0xc7/0x120 proc_reg_read+0x3c/0x60 __vfs_read+0x36/0x170 vfs_read+0x89/0x130 ksys_pread64+0x71/0x90 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7efc42e75e23 Code: 09 00 ba 9f 01 00 00 e8 ab 81 f4 ff 66 2e 0f 1f 84 00 00 00 00 00 90 83 3d 29 0a 2d 00 00 75 13 49 89 ca b8 11 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 34 c3 48 83 ec 08 e8 db d3 01 00 48 89 04 24 According to kernel bisection, this problem became visible due to commit f7f99100 which changes how struct pages are initialized. Memblock layout affects the pfn ranges covered by node/zone. Consider that we have a VM with 2 NUMA nodes and each node has 4GB memory, and the default (no memmap= given) memblock layout is like below: MEMBLOCK configuration: memory size = 0x00000001fff75c00 reserved size = 0x000000000300c000 memory.cnt = 0x4 memory[0x0] [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0 memory[0x1] [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0 memory[0x2] [0x0000000100000000-0x000000013fffffff], 0x0000000040000000 bytes on node 0 flags: 0x0 memory[0x3] [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0 ... If you give memmap=1G!4G (so it just covers memory[0x2]), the range [0x100000000-0x13fffffff] is gone: MEMBLOCK configuration: memory size = 0x00000001bff75c00 reserved size = 0x000000000300c000 memory.cnt = 0x3 memory[0x0] [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0 memory[0x1] [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0 memory[0x2] [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0 ... This causes shrinking node 0's pfn range because it is calculated by the address range of memblock.memory. So some of struct pages in the gap range are left uninitialized. We have a function zero_resv_unavail() which does zeroing the struct pages outside memblock.memory, but currently it covers only the reserved unavailable range (i.e. memblock.memory && !memblock.reserved). This patch extends it to cover all unavailable range, which fixes the reported issue. Link: http://lkml.kernel.org/r/20181002143821.5112-2-msys.mizuma@gmail.com Fixes: f7f99100 ("mm: stop zeroing memory during allocation in vmemmap") Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com> Tested-by: NOscar Salvador <osalvador@suse.de> Tested-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com> Reviewed-by: NPavel Tatashin <pavel.tatashin@microsoft.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
- 06 8月, 2020 1 次提交
-
-
由 Johannes Weiner 提交于
mainline inclusion from v5.4-rc6 commit 1be334e5 category: feature bugzilla: NA CVE: NA ------------------------------------------------- While investigating a bug related to higher atomic allocation failures, we noticed the failure warnings positively drowning the console, and in our case trigger lockup warnings because of a serial console too slow to handle all that output. But even if we had a faster console, it's unclear what additional information the current level of repetition provides. Allocation failures happen for three reasons: The machine is OOM, the VM is failing to handle reasonable requests, or somebody is making unreasonable requests (and didn't acknowledge their opportunism with __GFP_NOWARN). Having the memory dump, a callstack, and the ratelimit stats on skipped failure warnings should provide enough information to let users/admins/developers know whether something is wrong and point them in the right direction for debugging, bpftracing etc. Limit allocation failure warnings to one spew every ten seconds. Link: http://lkml.kernel.org/r/20191028194906.26899-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Conflicts: mm/page_alloc.c Signed-off-by: NChen Jun <chenjun102@huawei.com> Reviewed-by: NKefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
- 27 12月, 2019 24 次提交
-
-
由 Aaron Lu 提交于
[ Upstream commit 742aa7fb ] There are multiple places of freeing a page, they all do the same things so a common function can be used to reduce code duplicate. It also avoids bug fixed in one function but left in another. Link: http://lkml.kernel.org/r/20181119134834.17765-3-aaron.lu@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pankaj gupta <pagupta@redhat.com> Cc: Pawel Staszewski <pstaszewski@itcare.pl> Cc: Tariq Toukan <tariqt@mellanox.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Aaron Lu 提交于
[ Upstream commit 65895b67 ] page_frag_free() calls __free_pages_ok() to free the page back to Buddy. This is OK for high order page, but for order-0 pages, it misses the optimization opportunity of using Per-Cpu-Pages and can cause zone lock contention when called frequently. Pawel Staszewski recently shared his result of 'how Linux kernel handles normal traffic'[1] and from perf data, Jesper Dangaard Brouer found the lock contention comes from page allocator: mlx5e_poll_tx_cq | --16.34%--napi_consume_skb | |--12.65%--__free_pages_ok | | | --11.86%--free_one_page | | | |--10.10%--queued_spin_lock_slowpath | | | --0.65%--_raw_spin_lock | |--1.55%--page_frag_free | --1.44%--skb_release_data Jesper explained how it happened: mlx5 driver RX-page recycle mechanism is not effective in this workload and pages have to go through the page allocator. The lock contention happens during mlx5 DMA TX completion cycle. And the page allocator cannot keep up at these speeds.[2] I thought that __free_pages_ok() are mostly freeing high order pages and thought this is an lock contention for high order pages but Jesper explained in detail that __free_pages_ok() here are actually freeing order-0 pages because mlx5 is using order-0 pages to satisfy its page pool allocation request.[3] The free path as pointed out by Jesper is: skb_free_head() -> skb_free_frag() -> page_frag_free() And the pages being freed on this path are order-0 pages. Fix this by doing similar things as in __page_frag_cache_drain() - send the being freed page to PCP if it's an order-0 page, or directly to Buddy if it is a high order page. With this change, Paweł hasn't noticed lock contention yet in his workload and Jesper has noticed a 7% performance improvement using a micro benchmark and lock contention is gone. Ilias' test on a 'low' speed 1Gbit interface on an cortex-a53 shows ~11% performance boost testing with 64byte packets and __free_pages_ok() disappeared from perf top. [1]: https://www.spinics.net/lists/netdev/msg531362.html [2]: https://www.spinics.net/lists/netdev/msg531421.html [3]: https://www.spinics.net/lists/netdev/msg531556.html [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/20181120014544.GB10657@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Reported-by: NPawel Staszewski <pstaszewski@itcare.pl> Analysed-by: NJesper Dangaard Brouer <brouer@redhat.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJesper Dangaard Brouer <brouer@redhat.com> Acked-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Tested-by: NIlias Apalodimas <ilias.apalodimas@linaro.org> Acked-by: NAlexander Duyck <alexander.h.duyck@linux.intel.com> Acked-by: NTariq Toukan <tariqt@mellanox.com> Acked-by: NPankaj gupta <pagupta@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Mel Gorman 提交于
commit 3e8fc007 upstream. Deferred memory initialisation updates zone->managed_pages during the initialisation phase but before that finishes, the per-cpu page allocator (pcpu) calculates the number of pages allocated/freed in batches as well as the maximum number of pages allowed on a per-cpu list. As zone->managed_pages is not up to date yet, the pcpu initialisation calculates inappropriately low batch and high values. This increases zone lock contention quite severely in some cases with the degree of severity depending on how many CPUs share a local zone and the size of the zone. A private report indicated that kernel build times were excessive with extremely high system CPU usage. A perf profile indicated that a large chunk of time was lost on zone->lock contention. This patch recalculates the pcpu batch and high values after deferred initialisation completes for every populated zone in the system. It was tested on a 2-socket AMD EPYC 2 machine using a kernel compilation workload -- allmodconfig and all available CPUs. mmtests configuration: config-workload-kernbench-max Configuration was modified to build on a fresh XFS partition. kernbench 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Amean user-256 13249.50 ( 0.00%) 16401.31 * -23.79%* Amean syst-256 14760.30 ( 0.00%) 4448.39 * 69.86%* Amean elsp-256 162.42 ( 0.00%) 119.13 * 26.65%* Stddev user-256 42.97 ( 0.00%) 19.15 ( 55.43%) Stddev syst-256 336.87 ( 0.00%) 6.71 ( 98.01%) Stddev elsp-256 2.46 ( 0.00%) 0.39 ( 84.03%) 5.4.0-rc3 5.4.0-rc3 vanilla resetpcpu-v2 Duration User 39766.24 49221.79 Duration System 44298.10 13361.67 Duration Elapsed 519.11 388.87 The patch reduces system CPU usage by 69.86% and total build time by 26.65%. The variance of system CPU usage is also much reduced. Before, this was the breakdown of batch and high values over all zones was: 256 batch: 1 256 batch: 63 512 batch: 7 256 high: 0 256 high: 378 512 high: 42 512 pcpu pagesets had a batch limit of 7 and a high limit of 42. After the patch: 256 batch: 1 768 batch: 63 256 high: 0 768 high: 378 [mgorman@techsingularity.net: fix merge/linkage snafu] Link: http://lkml.kernel.org/r/20191023084705.GD3016@techsingularity.netLink: http://lkml.kernel.org/r/20191021094808.28824-2-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NDavid Hildenbrand <david@redhat.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Qian Cai <cai@lca.pw> Cc: <stable@vger.kernel.org> [4.1+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Vlastimil Babka 提交于
mainline inclusion from mainline-5.4-rc1 commit 49433085 category: bugfix bugzilla: 23291 CVE: NA ------------------------------------------------- Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.comReported-by: NMike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com> Tested-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NChenwandun <chenwandun@huawei.com> Reviewed-by: NKefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Shakeel Butt 提交于
mainline inclusion from mainline-5.1-rc1 commit 60cd4bcd62384cfa1e5890cebacccf08b3161156 category: bugfix bugzilla: 21077 CVE: NA ------------------------------------------------ Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NYang Yingliang <yangyingliang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Daniel Jordan 提交于
hulk inclusion category: feature bugzilla: 13228 CVE: NA --------------------------- Deferred struct page initialization currently runs one thread per node, but this is a bottleneck during boot on big machines, so use ktask within each pgdatinit thread to parallelize the struct page initialization, allowing the system to take better advantage of its memory bandwidth. Because the system is not fully up yet and most CPUs are idle, use more than the default maximum number of ktask threads. The kernel doesn't know the memory bandwidth of a given system to get the most efficient number of threads, so there's some guesswork involved. In testing, a reasonable value turned out to be about a quarter of the CPUs on the node. __free_pages_core used to increase the zone's managed page count by the number of pages being freed. To accommodate multiple threads, however, account the number of freed pages with an atomic shared across the ktask threads and bump the managed page count with it after ktask is finished. Test: Boot the machine with deferred struct page init three times Machine: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz, 88 CPUs, 503G memory, 2 sockets kernel speedup max time per stdev node (ms) baseline (4.15-rc2) 5860 8.6 ktask 9.56x 613 12.4 Signed-off-by: NDaniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: NHongbo Yao <yaohongbo@huawei.com> Reviewed-by: NXie XiuQi <xiexiuqi@huawei.com> Tested-by: NHongbo Yao <yaohongbo@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com> -
由 Linxu Fang 提交于
[ Upstream commit 299c83dc ] 342332e6 ("mm/page_alloc.c: introduce kernelcore=mirror option") and later patches rewrote the calculation of node spanned pages. e506b996 ("mem-hotplug: fix node spanned pages when we have a movable node"), but the current code still has problems, When we have a node with only zone_movable and the node id is not zero, the size of node spanned pages is double added. That's because we have an empty normal zone, and zone_start_pfn or zone_end_pfn is not between arch_zone_lowest_possible_pfn and arch_zone_highest_possible_pfn, so we need to use clamp to constrain the range just like the commit <96e907d1> (bootmem: Reimplement __absent_pages_in_range() using for_each_mem_pfn_range()). e.g. Zone ranges: DMA [mem 0x0000000000001000-0x0000000000ffffff] DMA32 [mem 0x0000000001000000-0x00000000ffffffff] Normal [mem 0x0000000100000000-0x000000023fffffff] Movable zone start for each node Node 0: 0x0000000100000000 Node 1: 0x0000000140000000 Early memory node ranges node 0: [mem 0x0000000000001000-0x000000000009efff] node 0: [mem 0x0000000000100000-0x00000000bffdffff] node 0: [mem 0x0000000100000000-0x000000013fffffff] node 1: [mem 0x0000000140000000-0x000000023fffffff] node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0x100000 present:0x100000 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 2097152 node_spanned_pages:2097152 Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K cma-reserved) It shows that the current memory of node 1 is double added. After this patch, the problem is fixed. node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0 present:0 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 1048576 node_spanned_pages:1048576 memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K cma-reserved) Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.comSigned-off-by: NLinxu Fang <fanglinxu@huawei.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Jia He 提交于
hulk inclusion category: performance bugzilla: 11028 CVE: NA ------------------------------------------------- Commit b92df1de ("mm: page_alloc: skip over regions of invalid pfns where possible") optimized the loop in memmap_init_zone(). But it causes possible panic bug. So Daniel Vacek reverted it later. But as suggested by Daniel Vacek, it is fine to using memblock to skip gaps and finding next valid frame with CONFIG_HAVE_ARCH_PFN_VALID. Daniel said: "On arm and arm64, memblock is used by default. But generic version of pfn_valid() is based on mem sections and memblock_next_valid_pfn() does not always return the next valid one but skips more resulting in some valid frames to be skipped (as if they were invalid). And that's why kernel was eventually crashing on some !arm machines." About the performance consideration: As said by James in b92df1de, "I have tested this patch on a virtual model of a Samurai CPU with a sparse memory map. The kernel boot time drops from 109 to 62 seconds." Thus it would be better if we remain memblock_next_valid_pfn on arm/arm64. Suggested-by: NDaniel Vacek <neelx@redhat.com> Signed-off-by: NJia He <jia.he@hxt-semitech.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Vlastimil Babka 提交于
mainline inclusion from mainline-v5.2-rc1 commit 63931eb9 category: bugfix bugzilla: 16020 CVE: NA ------------------------------------------------- alloc_pages_exact*() allocates a page of sufficient order and then splits it to return only the number of pages requested. That makes it incompatible with __GFP_COMP, because compound pages cannot be split. As shown by [1] things may silently work until the requested size (possibly depending on user) stops being power of two. Then for CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without CONFIG_DEBUG_VM, consequences are unclear. There are several options here, none of them great: 1) Don't do the splitting when __GFP_COMP is passed, and return the whole compound page. However if caller then returns it via free_pages_exact(), that will be unexpected and the freeing actions there will be wrong. 2) Warn and remove __GFP_COMP from the flags. But the caller may have really wanted it, so things may break later somewhere. 3) Warn and return NULL. However NULL may be unexpected, especially for small sizes. This patch picks option 2, because as Michal Hocko put it: "callers wanted it" is much less probable than "caller is simply confused and more gfp flags is surely better than fewer". [1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Lijun Fang 提交于
euler inclusion category: feature bugzilla: 11082 CVE: NA ----------------- CDM nodes should not be part of mems_allowed, However, It must be allowed to alloc from CDM node, when mpol->mode was MPOL_BIND. Signed-off-by: NLijun Fang <fanglijun3@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Anshuman Khandual 提交于
euler inclusion category: feature bugzilla: 11082 CVE: NA ------------------- __GFP_THISNODE specifically asks the memory to be allocated from the given node. Not all the requests that end up in __alloc_pages_nodemask() are originated from the process context where cpuset makes more sense. The current condition enforces cpuset limitation on every allocation whether originated from process context or not which prevents __GFP_THISNODE mandated allocations to come from the specified node. In context of the coherent device memory node which is isolated from all cpuset nodemask in the system, it prevents the only way of allocation into it which has been changed with this patch. Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NLijun Fang <fanglijun3@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Anshuman Khandual 提交于
euler inclusion category: feature bugzilla: 11082 CVE: NA ------------------- This implements allocation isolation for CDM nodes in buddy allocator by discarding CDM memory zones all the time except in the cases where the gfp flag has got __GFP_THISNODE or the nodemask contains CDM nodes in cases where it is non NULL (explicit allocation request in the kernel or user process MPOL_BIND policy based requests). Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NLijun Fang <fanglijun3@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Anshuman Khandual 提交于
euler inclusion category: feature bugzilla: 11082 CVE: NA ------------------- Kernel allocation to CDM node has already been prevented by putting it's entire memory in ZONE_MOVABLE. But the CDM nodes must also be isolated from implicit allocations happening on the system. Any isolation seeking CDM node requires isolation from implicit memory allocations from user space but at the same time there should also have an explicit way to do the memory allocation. Platform node's both zonelists are fundamental to where the memory comes from when there is an allocation request. In order to achieve these two objectives as stated above, zonelists building process has to change as both zonelists (i.e FALLBACK and NOFALLBACK) gives access to the node's memory zones during any kind of memory allocation. The following changes are implemented in this regard. * CDM node's zones are not part of any other node's FALLBACK zonelist * CDM node's FALLBACK list contains it's own memory zones followed by all system RAM zones in regular order as before * CDM node's zones are part of it's own NOFALLBACK zonelist These above changes ensure the following which in turn isolates the CDM nodes as desired. * There wont be any implicit memory allocation ending up in the CDM node * Only __GFP_THISNODE marked allocations will come from the CDM node * CDM node memory can be allocated through mbind(MPOL_BIND) interface * System RAM memory will be used as fallback option in regular order in case the CDM memory is insufficient during targted allocation request Sample zonelist configuration: [NODE (0)] RAM ZONELIST_FALLBACK (0xc00000000140da00) (0) (node 0) (DMA 0xc00000000140c000) (1) (node 1) (DMA 0xc000000100000000) ZONELIST_NOFALLBACK (0xc000000001411a10) (0) (node 0) (DMA 0xc00000000140c000) [NODE (1)] RAM ZONELIST_FALLBACK (0xc000000100001a00) (0) (node 1) (DMA 0xc000000100000000) (1) (node 0) (DMA 0xc00000000140c000) ZONELIST_NOFALLBACK (0xc000000100005a10) (0) (node 1) (DMA 0xc000000100000000) [NODE (2)] CDM ZONELIST_FALLBACK (0xc000000001427700) (0) (node 2) (Movable 0xc000000001427080) (1) (node 0) (DMA 0xc00000000140c000) (2) (node 1) (DMA 0xc000000100000000) ZONELIST_NOFALLBACK (0xc00000000142b710) (0) (node 2) (Movable 0xc000000001427080) [NODE (3)] CDM ZONELIST_FALLBACK (0xc000000001431400) (0) (node 3) (Movable 0xc000000001430d80) (1) (node 0) (DMA 0xc00000000140c000) (2) (node 1) (DMA 0xc000000100000000) ZONELIST_NOFALLBACK (0xc000000001435410) (0) (node 3) (Movable 0xc000000001430d80) [NODE (4)] CDM ZONELIST_FALLBACK (0xc00000000143b100) (0) (node 4) (Movable 0xc00000000143aa80) (1) (node 0) (DMA 0xc00000000140c000) (2) (node 1) (DMA 0xc000000100000000) ZONELIST_NOFALLBACK (0xc00000000143f110) (0) (node 4) (Movable 0xc00000000143aa80) Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NLijun Fang <fanglijun3@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com> -
由 Anshuman Khandual 提交于
euler inclusion category: feature bugzilla: 11082 CVE: NA ------------------- There are certain devices like specialized accelerator, GPU cards, network cards, FPGA cards etc which might contain onboard memory which is coherent along with the existing system RAM while being accessed either from the CPU or from the device. They share some similar properties with that of normal system RAM but at the same time can also be different with respect to system RAM. User applications might be interested in using this kind of coherent device memory explicitly or implicitly along side the system RAM utilizing all possible core memory functions like anon mapping (LRU), file mapping (LRU), page cache (LRU), driver managed (non LRU), HW poisoning, NUMA migrations etc. To achieve this kind of tight integration with core memory subsystem, the device onboard coherent memory must be represented as a memory only NUMA node. At the same time arch must export some kind of a function to identify of this node as a coherent device memory not any other regular cpu less memory only NUMA node. After achieving the integration with core memory subsystem coherent device memory might still need some special consideration inside the kernel. There can be a variety of coherent memory nodes with different expectations from the core kernel memory. But right now only one kind of special treatment is considered which requires certain isolation. Now consider the case of a coherent device memory node type which requires isolation. This kind of coherent memory is onboard an external device attached to the system through a link where there is always a chance of a link failure taking down the entire memory node with it. More over the memory might also have higher chance of ECC failure as compared to the system RAM. Hence allocation into this kind of coherent memory node should be regulated. Kernel allocations must not come here. Normal user space allocations too should not come here implicitly (without user application knowing about it). This summarizes isolation requirement of certain kind of coherent device memory node as an example. There can be different kinds of isolation requirement also. Some coherent memory devices might not require isolation altogether after all. Then there might be other coherent memory devices which might require some other special treatment after being part of core memory representation . For now, will look into isolation seeking coherent device memory node not the other ones. To implement the integration as well as isolation, the coherent memory node must be present in N_MEMORY and a new N_COHERENT_DEVICE node mask inside the node_states[] array. During memory hotplug operations, the new nodemask N_COHERENT_DEVICE is updated along with N_MEMORY for these coherent device memory nodes. This also creates the following new sysfs based interface to list down all the coherent memory nodes of the system. /sys/devices/system/node/is_cdm_node Architectures must export function arch_check_node_cdm() which identifies any coherent device memory node in case they enable CONFIG_COHERENT_DEVICE. Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> [Backported to 4.19 -remove set or clear node state for memory_hotplug -separate CONFIG_COHERENT and CPUSET] Signed-off-by: NLijun Fang <fanglijun3@huawei.com> Reviewed-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Qian Cai 提交于
mainline inclusion from mainline-5.1-rc6 commit 1a9f2191 category: bugfix bugzilla: 14055 CVE: NA ------------------------------------------------- has_unmovable_pages() is used by allocating CMA and gigantic pages as well as the memory hotplug. The later doesn't know how to offline CMA pool properly now, but if an unused (free) CMA page is encountered, then has_unmovable_pages() happily considers it as a free memory and propagates this up the call chain. Memory offlining code then frees the page without a proper CMA tear down which leads to an accounting issues. Moreover if the same memory range is onlined again then the memory never gets back to the CMA pool. State after memory offline: # grep cma /proc/vmstat nr_free_cma 205824 # cat /sys/kernel/debug/cma/cma-kvm_cma/count 209920 Also, kmemleak still think those memory address are reserved below but have already been used by the buddy allocator after onlining. This patch fixes the situation by treating CMA pageblocks as unmovable except when has_unmovable_pages() is called as part of CMA allocation. Offlined Pages 4096 kmemleak: Cannot insert 0xc000201f7d040008 into the object search tree (overlaps existing) Call Trace: dump_stack+0xb0/0xf4 (unreliable) create_object+0x344/0x380 __kmalloc_node+0x3ec/0x860 kvmalloc_node+0x58/0x110 seq_read+0x41c/0x620 __vfs_read+0x3c/0x70 vfs_read+0xbc/0x1a0 ksys_read+0x7c/0x140 system_call+0x5c/0x70 kmemleak: Kernel memory leak detector disabled kmemleak: Object 0xc000201cc8000000 (size 13757317120): kmemleak: comm "swapper/0", pid 0, jiffies 4294937297 kmemleak: min_count = -1 kmemleak: count = 0 kmemleak: flags = 0x5 kmemleak: checksum = 0 kmemleak: backtrace: cma_declare_contiguous+0x2a4/0x3b0 kvm_cma_reserve+0x11c/0x134 setup_arch+0x300/0x3f8 start_kernel+0x9c/0x6e8 start_here_common+0x1c/0x4b0 kmemleak: Automatic memory scanning thread ended [cai@lca.pw: use is_migrate_cma_page() and update commit log] Link: http://lkml.kernel.org/r/20190416170510.20048-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190413002623.8967-1-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NOscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Qian Cai 提交于
mainline inclusion from mainline-5.1-rc3 commit 9b7ea46a82b31c74a37e6ff1c2a1df7d53e392ab category: bugfix bugzilla: 13472 CVE: NA ------------------------------------------------- Commit f1dd2cd1 ("mm, memory_hotplug: do not associate hotadded memory to zones until online") introduced move_pfn_range_to_zone() which calls memmap_init_zone() during onlining a memory block. memmap_init_zone() will reset pagetype flags and makes migrate type to be MOVABLE. However, in __offline_pages(), it also call undo_isolate_page_range() after offline_isolated_pages() to do the same thing. Due to commit 2ce13640 ("mm: __first_valid_page skip over offline pages") changed __first_valid_page() to skip offline pages, undo_isolate_page_range() here just waste CPU cycles looping around the offlining PFN range while doing nothing, because __first_valid_page() will return NULL as offline_isolated_pages() has already marked all memory sections within the pfn range as offline via offline_mem_sections(). Also, after calling the "useless" undo_isolate_page_range() here, it reaches the point of no returning by notifying MEM_OFFLINE. Those pages will be marked as MIGRATE_MOVABLE again once onlining. The only thing left to do is to decrease the number of isolated pageblocks zone counter which would make some paths of the page allocation slower that the above commit introduced. Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages on ppc64, an "int" should still be enough to represent the number of pageblocks there. Fix an incorrect comment along the way. [cai@lca.pw: v4] Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw Fixes: 2ce13640 ("mm: __first_valid_page skip over offline pages") Signed-off-by: NQian Cai <cai@lca.pw> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [4.13+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Michal Hocko 提交于
mainline inclusion from mainline-v5.0-rc1 commit d381c54760dcfad23743da40516e7e003d73952a category: bugfix bugzilla: 13472 CVE: NA ------------------------------------------------ Heiko has complained that his log is swamped by warnings from has_unmovable_pages [ 20.536664] page dumped because: has_unmovable_pages [ 20.536792] page:000003d081ff4080 count:1 mapcount:0 mapping:000000008ff88600 index:0x0 compound_mapcount: 0 [ 20.536794] flags: 0x3fffe0000010200(slab|head) [ 20.536795] raw: 03fffe0000010200 0000000000000100 0000000000000200 000000008ff88600 [ 20.536796] raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000 [ 20.536797] page dumped because: has_unmovable_pages [ 20.536814] page:000003d0823b0000 count:1 mapcount:0 mapping:0000000000000000 index:0x0 [ 20.536815] flags: 0x7fffe0000000000() [ 20.536817] raw: 07fffe0000000000 0000000000000100 0000000000000200 0000000000000000 [ 20.536818] raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000 which are not triggered by the memory hotplug but rather CMA allocator. The original idea behind dumping the page state for all call paths was that these messages will be helpful debugging failures. From the above it seems that this is not the case for the CMA path because we are lacking much more context. E.g the second reported page might be a CMA allocated page. It is still interesting to see a slab page in the CMA area but it is hard to tell whether this is bug from the above output alone. Address this issue by dumping the page state only on request. Both start_isolate_page_range and has_unmovable_pages already have an argument to ignore hwpoison pages so make this argument more generic and turn it into flags and allow callers to combine non-default modes into a mask. While we are at it, has_unmovable_pages call from is_pageblock_removable_nolock (sysfs removable file) is questionable to report the failure so drop it from there as well. Link: http://lkml.kernel.org/r/20181218092802.31429-1-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Michal Hocko 提交于
mainline inclusion from mainline-5.0-rc1 commit 2932c8b0 category: bugfix bugzilla: 13472 CVE: NA ------------------------------------------------ There is only very limited information printed when the memory offlining fails: [ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff This tells us that the failure is triggered by the userspace intervention but it doesn't tell us much more about the underlying reason. It might be that the page migration failes repeatedly and the userspace timeout expires and send a signal or it might be some of the earlier steps (isolation, memory notifier) takes too long. If the migration failes then it would be really helpful to see which page that and its state. The same applies to the isolation phase. If we fail to isolate a page from the allocator then knowing the state of the page would be helpful as well. Dump the page state that fails to get isolated or migrated. This will tell us more about the failure and what to focus on during debugging. [akpm@linux-foundation.org: add missing printk arg] [mhocko@suse.com: tweak dump_page() `reason' text] Link: http://lkml.kernel.org/r/20181116083020.20260-6-mhocko@kernel.org Link: http://lkml.kernel.org/r/20181107101830.17405-6-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Oscar Salvador <OSalvador@suse.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Jann Horn 提交于
[ Upstream commit 2c2ade81 ] The basic idea behind ->pagecnt_bias is: If we pre-allocate the maximum number of references that we might need to create in the fastpath later, the bump-allocation fastpath only has to modify the non-atomic bias value that tracks the number of extra references we hold instead of the atomic refcount. The maximum number of allocations we can serve (under the assumption that no allocation is made with size 0) is nc->size, so that's the bias used. However, even when all memory in the allocation has been given away, a reference to the page is still held; and in the `offset < 0` slowpath, the page may be reused if everyone else has dropped their references. This means that the necessary number of references is actually `nc->size+1`. Luckily, from a quick grep, it looks like the only path that can call page_frag_alloc(fragsz=1) is TAP with the IFF_NAPI_FRAGS flag, which requires CAP_NET_ADMIN in the init namespace and is only intended to be used for kernel testing and fuzzing. To test for this issue, put a `WARN_ON(page_ref_count(page) == 0)` in the `offset < 0` path, below the virt_to_page() call, and then repeatedly call writev() on a TAP device with IFF_TAP|IFF_NO_PI|IFF_NAPI_FRAGS|IFF_NAPI, with a vector consisting of 15 elements containing 1 byte each. Signed-off-by: NJann Horn <jannh@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Qian Cai 提交于
mainline inclusion from mainline-5.0 commit 4117992df66a category: bugfix bugzilla: 11620 CVE: NA ------------------------------------------------ KASAN does not play well with the page poisoning (CONFIG_PAGE_POISONING). It triggers false positives in the allocation path, BUG: KASAN: use-after-free in memchr_inv+0x2ea/0x330 Read of size 8 at addr ffff88881f800000 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Not tainted 5.0.0-rc1+ #54 Call Trace: dump_stack+0xe0/0x19a print_address_description.cold.2+0x9/0x28b kasan_report.cold.3+0x7a/0xb5 __asan_report_load8_noabort+0x19/0x20 memchr_inv+0x2ea/0x330 kernel_poison_pages+0x103/0x3d5 get_page_from_freelist+0x15e7/0x4d90 because KASAN has not yet unpoisoned the shadow page for allocation before it checks memchr_inv() but only found a stale poison pattern. Also, false positives in free path, BUG: KASAN: slab-out-of-bounds in kernel_poison_pages+0x29e/0x3d5 Write of size 4096 at addr ffff8888112cc000 by task swapper/0/1 CPU: 5 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc1+ #55 Call Trace: dump_stack+0xe0/0x19a print_address_description.cold.2+0x9/0x28b kasan_report.cold.3+0x7a/0xb5 check_memory_region+0x22d/0x250 memset+0x28/0x40 kernel_poison_pages+0x29e/0x3d5 __free_pages_ok+0x75f/0x13e0 due to KASAN adds poisoned redzones around slab objects, but the page poisoning needs to poison the whole page. Link: http://lkml.kernel.org/r/20190114233405.67843-1-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 zhongjiang 提交于
euler inclusion category: bugfix CVE: NA Bugzilla: 9580 --------------------------- Just add Kconfig to the feature. Signed-off-by: Nzhongjiang <zhongjiang@huawei.com> Reviewed-by: NJing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 zhong jiang 提交于
euleros inclusion category: feature feature: pagecache limit add proc sysctl interface to set pagecache limit for reclaim memory Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Reviewed-by: NJing xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Nzhong jiang <zhongjiang@huawei.com> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Waiman Long 提交于
[ Upstream commit 3c0c12cc ] When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred pages initialization can take a long time. Below were the reported init times on a 8-socket 96-core 4TB IvyBridge system. 1) Non-debug kernel without CONFIG_KASAN [ 8.764222] node 1 initialised, 132086516 pages in 7027ms 2) Debug kernel with CONFIG_KASAN [ 146.288115] node 1 initialised, 132075466 pages in 143052ms So the page init time in a debug kernel was 20X of the non-debug kernel. The long init time can be problematic as the page initialization is done with interrupt disabled. In this particular case, it caused the appearance of following warning messages as well as NMI backtraces of all the cores that were doing the initialization. [ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks: [ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252 [ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253 [ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253 [ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253 [ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253 [ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253 [ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253 [ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2) The long init time was mainly caused by the call to kasan_free_pages() to poison the newly initialized pages. On a 4TB system, we are talking about almost 500GB of memory probably on the same node. In reality, we may not need to poison the newly initialized pages before they are ever allocated. So KASAN poisoning of freed pages before the completion of deferred memory initialization is now disabled. Those pages will be properly poisoned when they are allocated or freed after deferred pages initialization is done. With this change, the new page initialization time became: [ 21.948010] node 1 initialised, 132075466 pages in 18702ms This was still about double the non-debug kernel time, but was much better than before. Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.comSigned-off-by: NWaiman Long <longman@redhat.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
由 Michal Hocko 提交于
commit 4aa9fc2a upstream. This reverts commit 2830bf6f. The underlying assumption that one sparse section belongs into a single numa node doesn't hold really. Robert Shteynfeld has reported a boot failure. The boot log was not captured but his memory layout is as follows: Early memory node ranges node 1: [mem 0x0000000000001000-0x0000000000090fff] node 1: [mem 0x0000000000100000-0x00000000dbdf8fff] node 1: [mem 0x0000000100000000-0x0000001423ffffff] node 0: [mem 0x0000001424000000-0x0000002023ffffff] This means that node0 starts in the middle of a memory section which is also in node1. memmap_init_zone tries to initialize padding of a section even when it is outside of the given pfn range because there are code paths (e.g. memory hotplug) which assume that the full worth of memory section is always initialized. In this particular case, though, such a range is already intialized and most likely already managed by the page allocator. Scribbling over those pages corrupts the internal state and likely blows up when any of those pages gets used. Reported-by: NRobert Shteynfeld <robert.shteynfeld@gmail.com> Fixes: 2830bf6f ("mm, memory_hotplug: initialize struct pages for the full memory section") Cc: stable@kernel.org Signed-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
-
- 29 12月, 2018 2 次提交
-
-
由 Oscar Salvador 提交于
commit 17e2e7d7e1b83fa324b3f099bfe426659aa3c2a4 upstream. While playing with gigantic hugepages and memory_hotplug, I triggered the following #PF when "cat memoryX/removable": BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 #PF error: [normal kernel read fault] PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 1 PID: 1481 Comm: cat Tainted: G E 4.20.0-rc6-mm1-1-default+ #18 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 RIP: 0010:has_unmovable_pages+0x154/0x210 Call Trace: is_mem_section_removable+0x7d/0x100 removable_show+0x90/0xb0 dev_attr_show+0x1c/0x50 sysfs_kf_seq_show+0xca/0x1b0 seq_read+0x133/0x380 __vfs_read+0x26/0x180 vfs_read+0x89/0x140 ksys_read+0x42/0x90 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The reason is we do not pass the Head to page_hstate(), and so, the call to compound_order() in page_hstate() returns 0, so we end up checking all hstates's size to match PAGE_SIZE. Obviously, we do not find any hstate matching that size, and we return NULL. Then, we dereference that NULL pointer in hugepage_migration_supported() and we got the #PF from above. Fix that by getting the head page before calling page_hstate(). Also, since gigantic pages span several pageblocks, re-adjust the logic for skipping pages. While are it, we can also get rid of the round_up(). [osalvador@suse.de: remove round_up(), adjust skip pages logic per Michal] Link: http://lkml.kernel.org/r/20181221062809.31771-1-osalvador@suse.de Link: http://lkml.kernel.org/r/20181217225113.17864-1-osalvador@suse.deSigned-off-by: NOscar Salvador <osalvador@suse.de> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Mikhail Zaslonko 提交于
commit 2830bf6f05fb3e05bc4743274b806c821807a684 upstream. If memory end is not aligned with the sparse memory section boundary, the mapping of such a section is only partly initialized. This may lead to VM_BUG_ON due to uninitialized struct page access from is_mem_section_removable() or test_pages_in_a_zone() function triggered by memory_hotplug sysfs handlers: Here are the the panic examples: CONFIG_DEBUG_VM=y CONFIG_DEBUG_VM_PGFLAGS=y kernel parameter mem=2050M -------------------------- page:000003d082008000 is uninitialized and poisoned page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) Call Trace: ( test_pages_in_a_zone+0xde/0x160) show_valid_zones+0x5c/0x190 dev_attr_show+0x34/0x70 sysfs_kf_seq_show+0xc8/0x148 seq_read+0x204/0x480 __vfs_read+0x32/0x178 vfs_read+0x82/0x138 ksys_read+0x5a/0xb0 system_call+0xdc/0x2d8 Last Breaking-Event-Address: test_pages_in_a_zone+0xde/0x160 Kernel panic - not syncing: Fatal exception: panic_on_oops kernel parameter mem=3075M -------------------------- page:000003d08300c000 is uninitialized and poisoned page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) Call Trace: ( is_mem_section_removable+0xb4/0x190) show_mem_removable+0x9a/0xd8 dev_attr_show+0x34/0x70 sysfs_kf_seq_show+0xc8/0x148 seq_read+0x204/0x480 __vfs_read+0x32/0x178 vfs_read+0x82/0x138 ksys_read+0x5a/0xb0 system_call+0xdc/0x2d8 Last Breaking-Event-Address: is_mem_section_removable+0xb4/0x190 Kernel panic - not syncing: Fatal exception: panic_on_oops Fix the problem by initializing the last memory section of each zone in memmap_init_zone() till the very end, even if it goes beyond the zone end. Michal said: : This has alwways been problem AFAIU. It just went unnoticed because we : have zeroed memmaps during allocation before f7f99100 ("mm: stop : zeroing memory during allocation in vmemmap") and so the above test : would simply skip these ranges as belonging to zone 0 or provided a : garbage. : : So I guess we do care for post f7f99100 kernels mostly and : therefore Fixes: f7f99100 ("mm: stop zeroing memory during : allocation in vmemmap") Link: http://lkml.kernel.org/r/20181212172712.34019-2-zaslonko@linux.ibm.com Fixes: f7f99100 ("mm: stop zeroing memory during allocation in vmemmap") Signed-off-by: NMikhail Zaslonko <zaslonko@linux.ibm.com> Reviewed-by: NGerald Schaefer <gerald.schaefer@de.ibm.com> Suggested-by: NMichal Hocko <mhocko@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reported-by: NMikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Tested-by: NMikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 12月, 2018 1 次提交
-
-
由 Wei Yang 提交于
[ Upstream commit 8f416836c0d50b198cad1225132e5abebf8980dc ] init_currently_empty_zone() will adjust pgdat->nr_zones and set it to 'zone_idx(zone) + 1' unconditionally. This is correct in the normal case, while not exact in hot-plug situation. This function is used in two places: * free_area_init_core() * move_pfn_range_to_zone() In the first case, we are sure zone index increase monotonically. While in the second one, this is under users control. One way to reproduce this is: ---------------------------- 1. create a virtual machine with empty node1 -m 4G,slots=32,maxmem=32G \ -smp 4,maxcpus=8 \ -numa node,nodeid=0,mem=4G,cpus=0-3 \ -numa node,nodeid=1,mem=0G,cpus=4-7 2. hot-add cpu 3-7 cpu-add [3-7] 2. hot-add memory to nod1 object_add memory-backend-ram,id=ram0,size=1G device_add pc-dimm,id=dimm0,memdev=ram0,node=1 3. online memory with following order echo online_movable > memory47/state echo online > memory40/state After this, node1 will have its nr_zones equals to (ZONE_NORMAL + 1) instead of (ZONE_MOVABLE + 1). Michal said: "Having an incorrect nr_zones might result in all sorts of problems which would be quite hard to debug (e.g. reclaim not considering the movable zone). I do not expect many users would suffer from this it but still this is trivial and obviously right thing to do so backporting to the stable tree shouldn't be harmful (last famous words)" Link: http://lkml.kernel.org/r/20181117022022.9956-1-richard.weiyang@gmail.com Fixes: f1dd2cd1 ("mm, memory_hotplug: do not associate hotadded memory to zones until online") Signed-off-by: NWei Yang <richard.weiyang@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 01 12月, 2018 2 次提交
-
-
由 Michal Hocko 提交于
[ Upstream commit c63ae43ba53bc432b414fd73dd5f4b01fcb1ab43 ] Konstantin has noticed that kvmalloc might trigger the following warning: WARNING: CPU: 0 PID: 6676 at mm/vmstat.c:986 __fragmentation_index+0x54/0x60 [...] Call Trace: fragmentation_index+0x76/0x90 compaction_suitable+0x4f/0xf0 shrink_node+0x295/0x310 node_reclaim+0x205/0x250 get_page_from_freelist+0x649/0xad0 __alloc_pages_nodemask+0x12a/0x2a0 kmalloc_large_node+0x47/0x90 __kmalloc_node+0x22b/0x2e0 kvmalloc_node+0x3e/0x70 xt_alloc_table_info+0x3a/0x80 [x_tables] do_ip6t_set_ctl+0xcd/0x1c0 [ip6_tables] nf_setsockopt+0x44/0x60 SyS_setsockopt+0x6f/0xc0 do_syscall_64+0x67/0x120 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 the problem is that we only check for an out of bound order in the slow path and the node reclaim might happen from the fast path already. This is fixable by making sure that kvmalloc doesn't ever use kmalloc for requests that are larger than KMALLOC_MAX_SIZE but this also shows that the code is rather fragile. A recent UBSAN report just underlines that by the following report UBSAN: Undefined behaviour in mm/page_alloc.c:3117:19 shift exponent 51 is too large for 32-bit type 'int' CPU: 0 PID: 6520 Comm: syz-executor1 Not tainted 4.19.0-rc2 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0xd2/0x148 lib/dump_stack.c:113 ubsan_epilogue+0x12/0x94 lib/ubsan.c:159 __ubsan_handle_shift_out_of_bounds+0x2b6/0x30b lib/ubsan.c:425 __zone_watermark_ok+0x2c7/0x400 mm/page_alloc.c:3117 zone_watermark_fast mm/page_alloc.c:3216 [inline] get_page_from_freelist+0xc49/0x44c0 mm/page_alloc.c:3300 __alloc_pages_nodemask+0x21e/0x640 mm/page_alloc.c:4370 alloc_pages_current+0xcc/0x210 mm/mempolicy.c:2093 alloc_pages include/linux/gfp.h:509 [inline] __get_free_pages+0x12/0x60 mm/page_alloc.c:4414 dma_mem_alloc+0x36/0x50 arch/x86/include/asm/floppy.h:156 raw_cmd_copyin drivers/block/floppy.c:3159 [inline] raw_cmd_ioctl drivers/block/floppy.c:3206 [inline] fd_locked_ioctl+0xa00/0x2c10 drivers/block/floppy.c:3544 fd_ioctl+0x40/0x60 drivers/block/floppy.c:3571 __blkdev_driver_ioctl block/ioctl.c:303 [inline] blkdev_ioctl+0xb3c/0x1a30 block/ioctl.c:601 block_ioctl+0x105/0x150 fs/block_dev.c:1883 vfs_ioctl fs/ioctl.c:46 [inline] do_vfs_ioctl+0x1c0/0x1150 fs/ioctl.c:687 ksys_ioctl+0x9e/0xb0 fs/ioctl.c:702 __do_sys_ioctl fs/ioctl.c:709 [inline] __se_sys_ioctl fs/ioctl.c:707 [inline] __x64_sys_ioctl+0x7e/0xc0 fs/ioctl.c:707 do_syscall_64+0xc4/0x510 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Note that this is not a kvmalloc path. It is just that the fast path really depends on having sanitzed order as well. Therefore move the order check to the fast path. Link: http://lkml.kernel.org/r/20181113094305.GM15120@dhcp22.suse.czSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Reported-by: NKyungtae Kim <kt0755@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Byoungyoung Lee <lifeasageek@gmail.com> Cc: "Dae R. Jeong" <threeearcat@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
由 Michal Hocko 提交于
[ Upstream commit 9d7899999c62c1a81129b76d2a6ecbc4655e1597 ] Page state checks are racy. Under a heavy memory workload (e.g. stress -m 200 -t 2h) it is quite easy to hit a race window when the page is allocated but its state is not fully populated yet. A debugging patch to dump the struct page state shows has_unmovable_pages: pfn:0x10dfec00, found:0x1, count:0x0 page:ffffea0437fb0000 count:1 mapcount:1 mapping:ffff880e05239841 index:0x7f26e5000 compound_mapcount: 1 flags: 0x5fffffc0090034(uptodate|lru|active|head|swapbacked) Note that the state has been checked for both PageLRU and PageSwapBacked already. Closing this race completely would require some sort of retry logic. This can be tricky and error prone (think of potential endless or long taking loops). Workaround this problem for movable zones at least. Such a zone should only contain movable pages. Commit 15c30bc0 ("mm, memory_hotplug: make has_unmovable_pages more robust") has told us that this is not strictly true though. Bootmem pages should be marked reserved though so we can move the original check after the PageReserved check. Pages from other zones are still prone to races but we even do not pretend that memory hotremove works for those so pre-mature failure doesn't hurt that much. Link: http://lkml.kernel.org/r/20181106095524.14629-1-mhocko@kernel.org Fixes: 15c30bc0 ("mm, memory_hotplug: make has_unmovable_pages more robust") Signed-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NBaoquan He <bhe@redhat.com> Tested-by: NBaoquan He <bhe@redhat.com> Acked-by: NBaoquan He <bhe@redhat.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Acked-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sashal@kernel.org>
-
- 09 10月, 2018 1 次提交
-
-
由 Srikar Dronamraju 提交于
Remove the leftover pglist_data::numabalancing_migrate_lock and its initialization, we stopped using this lock with: efaffc5e ("mm, sched/numa: Remove rate-limiting of automatic NUMA balancing migration") [ mingo: Rewrote the changelog. ] Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: NMel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux-MM <linux-mm@kvack.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1538824999-31230-1-git-send-email-srikar@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 02 10月, 2018 1 次提交
-
-
由 Mel Gorman 提交于
Rate limiting of page migrations due to automatic NUMA balancing was introduced to mitigate the worst-case scenario of migrating at high frequency due to false sharing or slowly ping-ponging between nodes. Since then, a lot of effort was spent on correctly identifying these pages and avoiding unnecessary migrations and the safety net may no longer be required. Jirka Hladky reported a regression in 4.17 due to a scheduler patch that avoids spreading STREAM tasks wide prematurely. However, once the task was properly placed, it delayed migrating the memory due to rate limiting. Increasing the limit fixed the problem for him. Currently, the limit is hard-coded and does not account for the real capabilities of the hardware. Even if an estimate was attempted, it would not properly account for the number of memory controllers and it could not account for the amount of bandwidth used for normal accesses. Rather than fudging, this patch simply eliminates the rate limiting. However, Jirka reports that a STREAM configuration using multiple processes achieved similar performance to 4.16. In local tests, this patch improved performance of STREAM relative to the baseline but it is somewhat machine-dependent. Most workloads show little or not performance difference implying that there is not a heavily reliance on the throttling mechanism and it is safe to remove. STREAM on 2-socket machine 4.19.0-rc5 4.19.0-rc5 numab-v1r1 noratelimit-v1r1 MB/sec copy 43298.52 ( 0.00%) 44673.38 ( 3.18%) MB/sec scale 30115.06 ( 0.00%) 31293.06 ( 3.91%) MB/sec add 32825.12 ( 0.00%) 34883.62 ( 6.27%) MB/sec triad 32549.52 ( 0.00%) 34906.60 ( 7.24% Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NRik van Riel <riel@surriel.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Jirka Hladky <jhladky@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Linux-MM <linux-mm@kvack.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181001100525.29789-2-mgorman@techsingularity.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 9月, 2018 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
When scanning for movable pages, filter out Hugetlb pages if hugepage migration is not supported. Without this we hit infinte loop in __offline_pages() where we do pfn = scan_movable_pages(start_pfn, end_pfn); if (pfn) { /* We have movable pages */ ret = do_migrate_range(pfn, end_pfn); goto repeat; } Fix this by checking hugepage_migration_supported both in has_unmovable_pages which is the primary backoff mechanism for page offlining and for consistency reasons also into scan_movable_pages because it doesn't make any sense to return a pfn to non-migrateable huge page. This issue was revealed by, but not caused by 72b39cfc ("mm, memory_hotplug: do not fail offlining too early"). Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com Fixes: 72b39cfc ("mm, memory_hotplug: do not fail offlining too early") Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: NHaren Myneni <haren@linux.vnet.ibm.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 8月, 2018 1 次提交
-
-
由 Mukesh Ojha 提交于
The conversion of the hotplug notifiers to a state machine left the notifier.h includes around in some places. Remove them. Signed-off-by: NMukesh Ojha <mojha@codeaurora.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1535114033-4605-1-git-send-email-mojha@codeaurora.org
-
- 24 8月, 2018 1 次提交
-
-
由 Naoya Horiguchi 提交于
A process can be killed with SIGBUS(BUS_MCEERR_AR) when it tries to allocate a page that was just freed on the way of soft-offline. This is undesirable because soft-offline (which is about corrected error) is less aggressive than hard-offline (which is about uncorrected error), and we can make soft-offline fail and keep using the page for good reason like "system is busy." Two main changes of this patch are: - setting migrate type of the target page to MIGRATE_ISOLATE. As done in free_unref_page_commit(), this makes kernel bypass pcplist when freeing the page. So we can assume that the page is in freelist just after put_page() returns, - setting PG_hwpoison on free page under zone->lock which protects freelists, so this allows us to avoid setting PG_hwpoison on a page that is decided to be allocated soon. [akpm@linux-foundation.org: tweak set_hwpoison_free_buddy_page() comment] Link: http://lkml.kernel.org/r/1531452366-11661-3-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: NXishi Qiu <xishi.qiuxishi@alibaba-inc.com> Tested-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <zy.zhengyi@alibaba-inc.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 8月, 2018 2 次提交
-
-
由 Oscar Salvador 提交于
Currently, whenever a new node is created/re-used from the memhotplug path, we call free_area_init_node()->free_area_init_core(). But there is some code that we do not really need to run when we are coming from such path. free_area_init_core() performs the following actions: 1) Initializes pgdat internals, such as spinlock, waitqueues and more. 2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on when creating hash tables. 3) Account number of managed_pages per zone, substracting dma_reserved and memmap pages. 4) Initializes some fields of the zone structure data 5) Calls init_currently_empty_zone to initialize all the freelists 6) Calls memmap_init to initialize all pages belonging to certain zone When called from memhotplug path, free_area_init_core() only performs actions #1 and #4. Action #2 is pointless as the zones do not have any pages since either the node was freed, or we are re-using it, eitherway all zones belonging to this node should have 0 pages. For the same reason, action #3 results always in manages_pages being 0. Action #5 and #6 are performed later on when onlining the pages: online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone() online_pages()->move_pfn_range_to_zone()->memmap_init_zone() This patch does two things: First, moves the node/zone initializtion to their own function, so it allows us to create a small version of free_area_init_core, where we only perform: 1) Initialization of pgdat internals, such as spinlock, waitqueues and more 4) Initialization of some fields of the zone structure data These two functions are: pgdat_init_internals() and zone_init_internals(). The second thing this patch does, is to introduce free_area_init_core_hotplug(), the memhotplug version of free_area_init_core(): Currently, we call free_area_init_node() from the memhotplug path. In there, we set some pgdat's fields, and call calculate_node_totalpages(). calculate_node_totalpages() calculates the # of pages the node has. Since the node is either new, or we are re-using it, the zones belonging to this node should not have any pages, so there is no point to calculate this now. Actually, we re-set these values to 0 later on with the calls to: reset_node_managed_pages() reset_node_present_pages() The # of pages per node and the # of pages per zone will be calculated when onlining the pages: online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range() online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range() Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace __paginginit with __init, so their code gets freed up. [osalvador@techadventures.net: fix section usage] Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net [osalvador@suse.de: v6] Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.netSigned-off-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NPavel Tatashin <pasha.tatashin@oracle.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oscar Salvador 提交于
Let us move the code between CONFIG_DEFERRED_STRUCT_PAGE_INIT to an inline function. Not having an ifdef in the function makes the code more readable. Link: http://lkml.kernel.org/r/20180730101757.28058-4-osalvador@techadventures.netSigned-off-by: NOscar Salvador <osalvador@suse.de> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NPavel Tatashin <pasha.tatashin@oracle.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-