1. 30 4月, 2008 2 次提交
  2. 29 4月, 2008 21 次提交
  3. 28 4月, 2008 17 次提交
    • M
      mm/nommu.c: return 0 from kobjsize with invalid objects · 4016a139
      Michael Hennerich 提交于
      Don't perform kobjsize operations on objects the kernel doesn't manage.
      
      On Blackfin, drivers can get dma coherent memory by calling a function
      dma_alloc_coherent(). We do this in nommu by configuring a chunk of uncached
      memory at the top of memory.
      
      Since we don't want the kernel to use the uncached memory, we lie to the
      kernel, and tell it that it's max memory is between 0, and the start of the
      uncached dma coherent section.
      
      this all works well, until this memory gets exposed into userspace (with a
      frame buffer), when you look at the process's maps, it shows the framebuf:
      
      root:/proc> cat maps
      [snip]
      03f0ef00-03f34700 rw-p 00000000 1f:00 192        /dev/fb0
      root:/proc>
      
      This is outside the "normal" range for the kernel. When the kernel tries to
      find the size of this object (when you run ps), it dies in nommu.c in
      kobjsize.
      
      BUG_ON(page->index >= MAX_ORDER);
      
      since the page we are referring to is outside what the kernel thinks is it's
      max valid memory.
      
      root:~> while [ 1 ]; ps > /dev/null; done
      kernel BUG at mm/nommu.c:119!
      Kernel panic - not syncing: BUG!
      
      We fixed this by adding a check to reject out of range object pointers as it
      already does that for NULL pointers.
      Signed-off-by: NMichael Hennerich <Michael.Hennerich@analog.com>
      Signed-off-by: NRobin Getz <rgetz@blackfin.uclinux.org>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4016a139
    • D
      vmstats: add cond_resched() to refresh_cpu_vm_stats() · 468fd62e
      Dimitri Sivanich 提交于
      We've found that it can take quite a bit of time (100's of usec) to get
      through the zone loop in refresh_cpu_vm_stats().
      
      Adding a cond_resched() to allow other threads to run in the non-preemptive
      case.
      Signed-off-by: NDimitri Sivanich <sivanich@sgi.com>
      Acked-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      468fd62e
    • P
      mm/page_alloc.c: remove hand-coded get_order() · 2309f9e6
      Pavel Machek 提交于
      Remove hand-coded get_order() from page_alloc.c.
      Signed-off-by: NPavel Machek <pavel@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2309f9e6
    • L
      oom_kill: remove unused parameter in badness() · 97d87c97
      Li Zefan 提交于
      In commit 4c4a2214, we moved the
      memcontroller-related code from badness() to select_bad_process(), so the
      parameter 'mem' in badness() is unused now.
      Signed-off-by: NLi Zefan <lizf@cn.fujitsu.com>
      Acked-by: NBalbir Singh <balbir@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      97d87c97
    • Y
      memory hotplug: free memmaps allocated by bootmem · 0c0a4a51
      Yasunori Goto 提交于
      This patch is to free memmaps which is allocated by bootmem.
      
      Freeing usemap is not necessary.  The pages of usemap may be necessary for
      other sections.
      
      If removing section is last section on the node, its section is the final user
      of usemap page.  (usemaps are allocated on its section by previous patch.) But
      it shouldn't be freed too, because the section must be logical offline state
      which all pages are isolated against page allocater.  If it is freed, page
      alloctor may use it which will be removed physically soon.  It will be
      disaster.  So, this patch keeps it as it is.
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Yinghai Lu <yhlu.kernel@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0c0a4a51
    • Y
      memory hotplug: allocate usemap on the section with pgdat · 86f6dae1
      Yasunori Goto 提交于
      Usemaps are allocated on the section which has pgdat by this.
      
      Because usemap size is very small, many other sections usemaps are allocated
      on only one page.  If a section has usemap, it can't be removed until removing
      other sections.  This dependency is not desirable for memory removing.
      
      Pgdat has similar feature.  When a section has pgdat area, it must be the last
      section for removing on the node.  So, if section A has pgdat and section B
      has usemap for section A, Both sections can't be removed due to dependency
      each other.
      
      To solve this issue, this patch collects usemap on same section with pgdat.
      If other sections doesn't have any dependency, this section will be able to be
      removed finally.
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Yinghai Lu <yhlu.kernel@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      86f6dae1
    • Y
      memory hotplug: make alloc_bootmem_section() · e70260aa
      Yasunori Goto 提交于
      alloc_bootmem_section() can allocate specified section's area.  This is used
      for usemap to keep same section with pgdat by later patch.
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Yinghai Lu <yhlu.kernel@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e70260aa
    • Y
      memory hotplug: align memmap to page size · 9d99217a
      Yasunori Goto 提交于
      To free memmap easier, this patch aligns it to page size.  Bootmem allocater
      may mix some objects in one pages.  It's not good for freeing memmap of memory
      hot-remove.
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Yinghai Lu <yhlu.kernel@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9d99217a
    • Y
      memory hotplug: register section/node id to free · 04753278
      Yasunori Goto 提交于
      This patch set is to free pages which is allocated by bootmem for
      memory-hotremove.  Some structures of memory management are allocated by
      bootmem.  ex) memmap, etc.
      
      To remove memory physically, some of them must be freed according to
      circumstance.  This patch set makes basis to free those pages, and free
      memmaps.
      
      Basic my idea is using remain members of struct page to remember information
      of users of bootmem (section number or node id).  When the section is
      removing, kernel can confirm it.  By this information, some issues can be
      solved.
      
        1) When the memmap of removing section is allocated on other
           section by bootmem, it should/can be free.
        2) When the memmap of removing section is allocated on the
           same section, it shouldn't be freed. Because the section has to be
           logical memory offlined already and all pages must be isolated against
           page allocater. If it is freed, page allocator may use it which will
           be removed physically soon.
        3) When removing section has other section's memmap,
           kernel will be able to show easily which section should be removed
           before it for user. (Not implemented yet)
        4) When the above case 2), the page isolation will be able to check and skip
           memmap's page when logical memory offline (offline_pages()).
           Current page isolation code fails in this case because this page is
           just reserved page and it can't distinguish this pages can be
           removed or not. But, it will be able to do by this patch.
           (Not implemented yet.)
        5) The node information like pgdat has similar issues. But, this
           will be able to be solved too by this.
           (Not implemented yet, but, remembering node id in the pages.)
      
      Fortunately, current bootmem allocator just keeps PageReserved flags,
      and doesn't use any other members of page struct. The users of
      bootmem doesn't use them too.
      
      This patch:
      
      This is to register information which is node or section's id.  Kernel can
      distinguish which node/section uses the pages allcated by bootmem.  This is
      basis for hot-remove sections or nodes.
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Yinghai Lu <yhlu.kernel@gmail.com>
      Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      04753278
    • G
      hugetlbfs: common code update for s390 · 7f2e9525
      Gerald Schaefer 提交于
      Huge ptes have a special type on s390 and cannot be handled with the standard
      pte functions in certain cases, e.g.  because of a different location of the
      invalid bit.  This patch adds some new architecture- specific functions to
      hugetlb common code, as a prerequisite for the s390 large page support.
      
      This won't affect other architectures in functionality, but I need to add some
      new dummy inline functions to the headers.
      Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "David S. Miller" <davem@davemloft.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7f2e9525
    • G
      hugetlbfs: add missing TLB flush to hugetlb_cow() · 8fe627ec
      Gerald Schaefer 提交于
      A cow break on a hugetlbfs page with page_count > 1 will set a new pte with
      set_huge_pte_at(), w/o any tlb flush operation.  The old pte will remain in
      the tlb and subsequent write access to the page will result in a page fault
      loop, for as long as it may take until the tlb is flushed from somewhere else.
       This patch introduces an architecture-specific huge_ptep_clear_flush()
      function, which is called before the the set_huge_pte_at() in hugetlb_cow().
      
      ATTENTION: This is just a nop on all architectures for now, the s390
      implementation will come with our large page patch later.  Other architectures
      should define their own huge_ptep_clear_flush() if needed.
      Acked-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "David S. Miller" <davem@davemloft.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8fe627ec
    • L
      mempolicy: use struct mempolicy pointer in shmem_sb_info · 71fe804b
      Lee Schermerhorn 提交于
      This patch replaces the mempolicy mode, mode_flags, and nodemask in the
      shmem_sb_info struct with a struct mempolicy pointer, initialized to NULL.
      This removes dependency on the details of mempolicy from shmem.c and hugetlbfs
      inode.c and simplifies the interfaces.
      
      mpol_parse_str() in mempolicy.c is changed to return, via a pointer to a
      pointer arg, a struct mempolicy pointer on success.  For MPOL_DEFAULT, the
      returned pointer is NULL.  Further, mpol_parse_str() now takes a 'no_context'
      argument that causes the input nodemask to be stored in the w.user_nodemask of
      the created mempolicy for use when the mempolicy is installed in a tmpfs inode
      shared policy tree.  At that time, any cpuset contextualization is applied to
      the original input nodemask.  This preserves the previous behavior where the
      input nodemask was stored in the superblock.  We can think of the returned
      mempolicy as "context free".
      
      Because mpol_parse_str() is now calling mpol_new(), we can remove from
      mpol_to_str() the semantic checks that mpol_new() already performs.
      
      Add 'no_context' parameter to mpol_to_str() to specify that it should format
      the nodemask in w.user_nodemask for 'bind' and 'interleave' policies.
      
      Change mpol_shared_policy_init() to take a pointer to a "context free" struct
      mempolicy and to create a new, "contextualized" mempolicy using the mode,
      mode_flags and user_nodemask from the input mempolicy.
      
        Note: we know that the mempolicy passed to mpol_to_str() or
        mpol_shared_policy_init() from a tmpfs superblock is "context free".  This
        is currently the only instance thereof.  However, if we found more uses for
        this concept, and introduced any ambiguity as to whether a mempolicy was
        context free or not, we could add another internal mode flag to identify
        context free mempolicies.  Then, we could remove the 'no_context' argument
        from mpol_to_str().
      
      Added shmem_get_sbmpol() to return a reference counted superblock mempolicy,
      if one exists, to pass to mpol_shared_policy_init().  We must add the
      reference under the sb stat_lock to prevent races with replacement of the mpol
      by remount.  This reference is removed in mpol_shared_policy_init().
      
      [akpm@linux-foundation.org: build fix]
      [akpm@linux-foundation.org: another build fix]
      [akpm@linux-foundation.org: yet another build fix]
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71fe804b
    • L
      mempolicy: support mpol=local tmpfs mount option · 3f226aa1
      Lee Schermerhorn 提交于
      For tmpfs/shmem shared policies, MPOL_DEFAULT is not necessarily equivalent to
      "local allocation".  Because shared policies are at the same "scope" level
      [see Documentation/vm/numa_memory_policy.txt], as vma policies MPOL_DEFAULT
      means "fall back to current task policy".
      
      This patch extends the memory policy string parsing function to display
      "local" for MPOL_PREFERRED + MPOL_F_LOCAL.  This allows one to specify local
      allocation as the default policy for shared memory areas via the tmpfs mpol
      mount option, regardless of the current task's policy.
      
      Also, "local" is now displayed for this policy.  This patch allows us to
      accept the same input format as the display.
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3f226aa1
    • L
      mempolicy: rework shmem mpol parsing and display · 095f1fc4
      Lee Schermerhorn 提交于
      mm/shmem.c currently contains functions to parse and display memory policy
      strings for the tmpfs 'mpol' mount option.  Move this to mm/mempolicy.c with
      the rest of the mempolicy support.  With subsequent patches, we'll be able to
      remove knowledge of the details [mode, flags, policy, ...] completely from
      shmem.c
      
      1) replace shmem_parse_mpol() in mm/shmem.c with mpol_parse_str() in
         mm/mempolicy.c.  Rework to use the policy_types[] array [used by
         mpol_to_str()] to look up mode by name.
      
      2) use mpol_to_str() to format policy for shmem_show_mpol().  mpol_to_str()
         expects a pointer to a struct mempolicy, so temporarily construct one.
         This will be replaced with a reference to a struct mempolicy in the tmpfs
         superblock in a subsequent patch.
      
         NOTE 1: I changed mpol_to_str() to use a colon ':' rather than an equal
         sign '=' as the nodemask delimiter to match mpol_parse_str() and the
         tmpfs/shmem mpol mount option formatting that now uses mpol_to_str().  This
         is a user visible change to numa_maps, but then the addition of the mode
         flags already changed the display.  It makes sense to me to have the mounts
         and numa_maps display the policy in the same format.  However, if anyone
         objects strongly, I can pass the desired nodemask delimeter as an arg to
         mpol_to_str().
      
         Note 2: Like show_numa_map(), I don't check the return code from
         mpol_to_str().  I do use a longer buffer than the one provided by
         show_numa_map(), which seems to have sufficed so far.
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      095f1fc4
    • L
      mempolicy: clean-up mpol-to-str() mempolicy formatting · 2291990a
      Lee Schermerhorn 提交于
      mpol-to-str() formats memory policies into printable strings.  Currently this
      is only used to display "numa_maps".  A subsequent patch will use
      mpol_to_str() for formatting tmpfs [shmem] mpol mount options, allowing us to
      remove essentially duplicate code in mm/shmem.c.  This patch cleans up
      mpol_to_str() generally and in preparation for that patch.
      
      1) show_numa_maps() is not checking the return code from mpol_to_str().
         There's not a lot we can do in this context if mpol_to_str() did return the
         error [insufficient space in buffer].  Proposed "solution": just check,
         under DEBUG_VM, that callers are providing sufficient buffer space for the
         policy, flags, and a few nodes.  This way, we'll get some display.
         show_numa_maps() is providing a 50-byte buffer, so it won't trip this
         check.  50-bytes should be sufficient unless one has a large number of
         nodes in a very sparse nodemask.
      
      2) The display of the new mode flags ["static" & "relative"] was set up to
         display multiple flags, separated by a "bar" '|'.  However, this support is
         incomplete--e.g., need_bar was never incremented; and currently, these two
         flags are mutually exclusive.  So remove the "bar" support, for now, and
         only display one flag.
      
      3) Use snprint() to format flags, so as not to overflow the buffer.  Not
         that it's ever happed, AFAIK.
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2291990a
    • L
      mempolicy: use MPOL_F_LOCAL to Indicate Preferred Local Policy · fc36b8d3
      Lee Schermerhorn 提交于
      Now that we're using "preferred local" policy for system default, we need to
      make this as fast as possible.  Because of the variable size of the mempolicy
      structure [based on size of nodemasks], the preferred_node may be in a
      different cacheline from the mode.  This can result in accessing an extra
      cacheline in the normal case of system default policy.  Suspect this is the
      cause of an observed 2-3% slowdown in page fault testing relative to kernel
      without this patch series.
      
      To alleviate this, use an internal mode flag, MPOL_F_LOCAL in the mempolicy
      flags member which is guaranteed [?] to be in the same cacheline as the mode
      itself.
      
      Verified that reworked mempolicy now performs slightly better on 25-rc8-mm1
      for both anon and shmem segments with system default and vma [preferred local]
      policy.
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fc36b8d3
    • L
      mempolicy: mPOL_PREFERRED cleanups for "local allocation" · 53f2556b
      Lee Schermerhorn 提交于
      Here are a couple of "cleanups" for MPOL_PREFERRED behavior when
      v.preferred_node < 0 -- i.e., "local allocation":
      
      1)  [do_]get_mempolicy() calls the now renamed get_policy_nodemask()
          to fetch the nodemask associated with a policy.  Currently,
          get_policy_nodemask() returns the set of nodes with memory, when
          the policy 'mode' is 'PREFERRED, and the preferred_node is < 0.
          Change to return an empty nodemask, as this is what was specified
          to achieve "local allocation".
      
      2)  When a task is moved into a [new] cpuset, mpol_rebind_policy() is
          called to adjust any task and vma policy nodes to be valid in the
          new cpuset.  However, when the policy is MPOL_PREFERRED, and the
          preferred_node is <0, no rebind is necessary.  The "local allocation"
          indication is valid in any cpuset.  Existing code will "do the right
          thing" because node_remap() will just return the argument node when
          it is outside of the valid range of node ids.  However, I think it is
          clearer and cleaner to skip the remap explicitly in this case.
      
      3)  mpol_to_str() produces a printable, "human readable" string from a
          struct mempolicy.  For MPOL_PREFERRED with preferred_node <0,  show
          "local", as this indicates local allocation, as the task migrates
          among nodes.  Note that this matches the usage of "local allocation"
          in libnuma() and numactl.  Without this change, I believe that node_set()
          [via set_bit()] will set bit 31, resulting in a misleading display.
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Cc: Christoph Lameter <clameter@sgi.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andi Kleen <ak@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      53f2556b
新手
引导
客服 返回
顶部