1. 22 5月, 2010 1 次提交
    • A
      AFS: Don't put struct file on the stack · f6d335c0
      Al Viro 提交于
      Don't put struct file on the stack as it takes up quite a lot of space
      and violates lifetime rules for struct file.
      
      Rather than calling afs_readpage() indirectly from the directory routines by
      way of read_mapping_page(), split afs_readpage() to have afs_page_filler()
      that's given a key instead of a file and call read_cache_page(), specifying the
      new function directly.  Use it in afs_readpages() as well.
      
      Also make use of this in afs_mntpt_check_symlink() too for the same reason.
      Reported-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      f6d335c0
  2. 22 4月, 2010 2 次提交
  3. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  4. 23 3月, 2010 1 次提交
  5. 06 3月, 2010 1 次提交
    • C
      make sure data is on disk before calling ->write_inode · 26821ed4
      Christoph Hellwig 提交于
      Similar to the fsync issue fixed a while ago in commit
      2daea67e we need to write for data to
      actually hit the disk before writing out the metadata to guarantee
      data integrity for filesystems that modify the inode in the data I/O
      completion path.  Currently XFS and NFS handle this manually, and AFS
      has a write_inode method that does nothing but waiting for data, while
      others are possibly missing out on this.
      
      Fortunately this change has a lot less impact than the fsync change
      as none of the write_inode methods starts data writeout of any form
      by itself.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      26821ed4
  6. 10 12月, 2009 2 次提交
    • C
      afs: remove manual O_SYNC handling · 027cf316
      Christoph Hellwig 提交于
      generic_file_aio_write already calls into ->fsync to handle O_SYNC/O_DSYNC.
      Remove the duplicate manual invocation.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJan Kara <jack@suse.cz>
      027cf316
    • C
      vfs: Implement proper O_SYNC semantics · 6b2f3d1f
      Christoph Hellwig 提交于
      While Linux provided an O_SYNC flag basically since day 1, it took until
      Linux 2.4.0-test12pre2 to actually get it implemented for filesystems,
      since that day we had generic_osync_around with only minor changes and the
      great "For now, when the user asks for O_SYNC, we'll actually give
      O_DSYNC" comment.  This patch intends to actually give us real O_SYNC
      semantics in addition to the O_DSYNC semantics.  After Jan's O_SYNC
      patches which are required before this patch it's actually surprisingly
      simple, we just need to figure out when to set the datasync flag to
      vfs_fsync_range and when not.
      
      This patch renames the existing O_SYNC flag to O_DSYNC while keeping it's
      numerical value to keep binary compatibility, and adds a new real O_SYNC
      flag.  To guarantee backwards compatiblity it is defined as expanding to
      both the O_DSYNC and the new additional binary flag (__O_SYNC) to make
      sure we are backwards-compatible when compiled against the new headers.
      
      This also means that all places that don't care about the differences can
      just check O_DSYNC and get the right behaviour for O_SYNC, too - only
      places that actuall care need to check __O_SYNC in addition.  Drivers and
      network filesystems have been updated in a fail safe way to always do the
      full sync magic if O_DSYNC is set.  The few places setting O_SYNC for
      lower layers are kept that way for now to stay failsafe.
      
      We enforce that O_DSYNC is set when __O_SYNC is set early in the open path
      to make sure we always get these sane options.
      
      Note that parisc really screwed up their headers as they already define a
      O_DSYNC that has always been a no-op.  We try to repair it by using it for
      the new O_DSYNC and redefinining O_SYNC to send both the traditional
      O_SYNC numerical value _and_ the O_DSYNC one.
      
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Grant Grundler <grundler@parisc-linux.org>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: Andreas Dilger <adilger@sun.com>
      Acked-by: NTrond Myklebust <Trond.Myklebust@netapp.com>
      Acked-by: NKyle McMartin <kyle@mcmartin.ca>
      Acked-by: NUlrich Drepper <drepper@redhat.com>
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NJan Kara <jack@suse.cz>
      6b2f3d1f
  7. 20 11月, 2009 1 次提交
    • D
      FS-Cache: Handle pages pending storage that get evicted under OOM conditions · 201a1542
      David Howells 提交于
      Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
      under OOM conditions, but that are waiting for write to the cache.  Under these
      conditions, vmscan calls the releasepage() function of the netfs, asking if a
      page can be discarded.
      
      The problem is typified by the following trace of a stuck process:
      
      	kslowd005     D 0000000000000000     0  4253      2 0x00000080
      	 ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
      	 0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
      	 000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
      	Call Trace:
      	 [<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
      	 [<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
      	 [<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
      	 [<ffffffff810885d3>] try_to_release_page+0x32/0x3b
      	 [<ffffffff81093203>] shrink_page_list+0x316/0x4ac
      	 [<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
      	 [<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
      	 [<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
      	 [<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
      	 [<ffffffff81093aa2>] shrink_list+0x8d/0x8f
      	 [<ffffffff81093d1c>] shrink_zone+0x278/0x33c
      	 [<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
      	 [<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
      	 [<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
      	 [<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
      	 [<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
      	 [<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
      	 [<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
      	 [<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
      	 [<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
      	 [<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
      	 [<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
      	 [<ffffffff810b2e82>] do_sync_write+0xe3/0x120
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
      	 [<ffffffff810b1a76>] ? dentry_open+0x82/0x89
      	 [<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
      	 [<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
      	 [<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
      	 [<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
      	 [<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
      	 [<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
      	 [<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
      	 [<ffffffff8104be91>] kthread+0x7a/0x82
      	 [<ffffffff8100beda>] child_rip+0xa/0x20
      	 [<ffffffff8100b87c>] ? restore_args+0x0/0x30
      	 [<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
      	 [<ffffffff8104be17>] ? kthread+0x0/0x82
      	 [<ffffffff8100bed0>] ? child_rip+0x0/0x20
      
      In the above backtrace, the following is happening:
      
       (1) A page storage operation is being executed by a slow-work thread
           (fscache_write_op()).
      
       (2) FS-Cache farms the operation out to the cache to perform
           (cachefiles_write_page()).
      
       (3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
           standard write (do_sync_write()) under KERNEL_DS directly from the netfs
           page.
      
       (4) However, for Ext3 to perform the write, it must allocate some memory, in
           particular, it must allocate at least one page cache page into which it
           can copy the data from the netfs page.
      
       (5) Under OOM conditions, the memory allocator can't immediately come up with
           a page, so it uses vmscan to find something to discard
           (try_to_free_pages()).
      
       (6) vmscan finds a clean netfs page it might be able to discard (possibly the
           one it's trying to write out).
      
       (7) The netfs is called to throw the page away (nfs_release_page()) - but it's
           called with __GFP_WAIT, so the netfs decides to wait for the store to
           complete (__fscache_wait_on_page_write()).
      
       (8) This blocks a slow-work processing thread - possibly against itself.
      
      The system ends up stuck because it can't write out any netfs pages to the
      cache without allocating more memory.
      
      To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
      actually being performed.  This means that some data won't make it into the
      cache this time.  To support this, a new FS-Cache function is added
      fscache_maybe_release_page() that replaces what the netfs releasepage()
      functions used to do with respect to the cache.
      
      The decisions fscache_maybe_release_page() makes are counted and displayed
      through /proc/fs/fscache/stats on a line labelled "VmScan".  There are four
      counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
      pages that were pending storage when we first looked, but weren't by the time
      we got the object lock; "bsy=N" - pages that we ignored as they were actively
      being written when we looked; and "can=N" - pages that we cancelled the storage
      of.
      
      What I'd really like to do is alter the behaviour of the cancellation
      heuristics, depending on how necessary it is to expel pages.  If there are
      plenty of other pages that aren't waiting to be written to the cache that
      could be ejected first, then it would be nice to hold up on immediate
      cancellation of cache writes - but I don't see a way of doing that.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      201a1542
  8. 02 10月, 2009 1 次提交
  9. 23 9月, 2009 1 次提交
  10. 22 9月, 2009 1 次提交
  11. 16 9月, 2009 1 次提交
  12. 28 8月, 2009 1 次提交
  13. 13 7月, 2009 2 次提交
  14. 09 7月, 2009 1 次提交
  15. 01 7月, 2009 1 次提交
  16. 17 6月, 2009 1 次提交
  17. 12 6月, 2009 2 次提交
    • C
      push BKL down into ->put_super · 6cfd0148
      Christoph Hellwig 提交于
      Move BKL into ->put_super from the only caller.  A couple of
      filesystems had trivial enough ->put_super (only kfree and NULLing of
      s_fs_info + stuff in there) to not get any locking: coda, cramfs, efs,
      hugetlbfs, omfs, qnx4, shmem, all others got the full treatment.  Most
      of them probably don't need it, but I'd rather sort that out individually.
      Preferably after all the other BKL pushdowns in that area.
      
      [AV: original used to move lock_super() down as well; these changes are
      removed since we don't do lock_super() at all in generic_shutdown_super()
      now]
      [AV: fuse, btrfs and xfs are known to need no damn BKL, exempt]
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      6cfd0148
    • A
      switch follow_down() · 9393bd07
      Al Viro 提交于
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      9393bd07
  18. 09 5月, 2009 2 次提交
  19. 18 4月, 2009 1 次提交
  20. 10 4月, 2009 1 次提交
  21. 03 4月, 2009 1 次提交
  22. 31 3月, 2009 1 次提交
    • A
      proc 2/2: remove struct proc_dir_entry::owner · 99b76233
      Alexey Dobriyan 提交于
      Setting ->owner as done currently (pde->owner = THIS_MODULE) is racy
      as correctly noted at bug #12454. Someone can lookup entry with NULL
      ->owner, thus not pinning enything, and release it later resulting
      in module refcount underflow.
      
      We can keep ->owner and supply it at registration time like ->proc_fops
      and ->data.
      
      But this leaves ->owner as easy-manipulative field (just one C assignment)
      and somebody will forget to unpin previous/pin current module when
      switching ->owner. ->proc_fops is declared as "const" which should give
      some thoughts.
      
      ->read_proc/->write_proc were just fixed to not require ->owner for
      protection.
      
      rmmod'ed directories will be empty and return "." and ".." -- no harm.
      And directories with tricky enough readdir and lookup shouldn't be modular.
      We definitely don't want such modular code.
      
      Removing ->owner will also make PDE smaller.
      
      So, let's nuke it.
      
      Kudos to Jeff Layton for reminding about this, let's say, oversight.
      
      http://bugzilla.kernel.org/show_bug.cgi?id=12454Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com>
      99b76233
  23. 28 3月, 2009 1 次提交
  24. 22 1月, 2009 1 次提交
  25. 05 1月, 2009 1 次提交
    • N
      fs: symlink write_begin allocation context fix · 54566b2c
      Nick Piggin 提交于
      With the write_begin/write_end aops, page_symlink was broken because it
      could no longer pass a GFP_NOFS type mask into the point where the
      allocations happened.  They are done in write_begin, which would always
      assume that the filesystem can be entered from reclaim.  This bug could
      cause filesystem deadlocks.
      
      The funny thing with having a gfp_t mask there is that it doesn't really
      allow the caller to arbitrarily tinker with the context in which it can be
      called.  It couldn't ever be GFP_ATOMIC, for example, because it needs to
      take the page lock.  The only thing any callers care about is __GFP_FS
      anyway, so turn that into a single flag.
      
      Add a new flag for write_begin, AOP_FLAG_NOFS.  Filesystems can now act on
      this flag in their write_begin function.  Change __grab_cache_page to
      accept a nofs argument as well, to honour that flag (while we're there,
      change the name to grab_cache_page_write_begin which is more instructive
      and does away with random leading underscores).
      
      This is really a more flexible way to go in the end anyway -- if a
      filesystem happens to want any extra allocations aside from the pagecache
      ones in ints write_begin function, it may now use GFP_KERNEL (rather than
      GFP_NOFS) for common case allocations (eg.  ocfs2_alloc_write_ctxt, for a
      random example).
      
      [kosaki.motohiro@jp.fujitsu.com: fix ubifs]
      [kosaki.motohiro@jp.fujitsu.com: fix fuse]
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: <stable@kernel.org>		[2.6.28.x]
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      [ Cleaned up the calling convention: just pass in the AOP flags
        untouched to the grab_cache_page_write_begin() function.  That
        just simplifies everybody, and may even allow future expansion of the
        logic.   - Linus ]
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      54566b2c
  26. 31 10月, 2008 1 次提交
  27. 23 10月, 2008 1 次提交
  28. 17 10月, 2008 1 次提交
  29. 14 10月, 2008 1 次提交
  30. 05 8月, 2008 1 次提交
  31. 01 8月, 2008 1 次提交
  32. 27 7月, 2008 2 次提交
  33. 07 6月, 2008 1 次提交
  34. 30 4月, 2008 1 次提交