- 15 12月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Currently ocelot_set_rx_mode calls ocelot_mact_learn directly, which has a very nice ocelot_mact_wait_for_completion at the end. Introduced in commit 639c1b26 ("net: mscc: ocelot: Register poll timeout should be wall time not attempts"), this function uses readx_poll_timeout which triggers a lot of lockdep warnings and is also dangerous to use from atomic context, potentially leading to lockups and panics. Steen Hegelund added a poll timeout of 100 ms for checking the MAC table, a duration which is clearly absurd to poll in atomic context. So we need to defer the MAC table access to process context, which we do via a dynamically allocated workqueue which contains all there is to know about the MAC table operation it has to do. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20201212191612.222019-1-vladimir.oltean@nxp.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 06 12月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
The current assumption is that the felix DSA driver has flooding knobs per traffic class, while ocelot switchdev has a single flooding knob. This was correct for felix VSC9959 and ocelot VSC7514, but with the introduction of seville VSC9953, we see a switch driven by felix.c which has a single flooding knob. So it is clear that we must do what should have been done from the beginning, which is not to overwrite the configuration done by ocelot.c in felix, but instead to teach the common ocelot library about the differences in our switches, and set up the flooding PGIDs centrally. The effect that the bogus iteration through FELIX_NUM_TC has upon seville is quite dramatic. ANA_FLOODING is located at 0x00b548, and ANA_FLOODING_IPMC is located at 0x00b54c. So the bogus iteration will actually overwrite ANA_FLOODING_IPMC when attempting to write ANA_FLOODING[1]. There is no ANA_FLOODING[1] in sevile, just ANA_FLOODING. And when ANA_FLOODING_IPMC is overwritten with a bogus value, the effect is that ANA_FLOODING_IPMC gets the value of 0x0003CF7D: MC6_DATA = 61, MC6_CTRL = 61, MC4_DATA = 60, MC4_CTRL = 0. Because MC4_CTRL is zero, this means that IPv4 multicast control packets are not flooded, but dropped. An invalid configuration, and this is how the issue was actually spotted. Reported-by: NEldar Gasanov <eldargasanov2@gmail.com> Reported-by: NMaxim Kochetkov <fido_max@inbox.ru> Tested-by: NEldar Gasanov <eldargasanov2@gmail.com> Fixes: 84705fc1 ("net: dsa: felix: introduce support for Seville VSC9953 switch") Fixes: 3c7b51bd ("net: dsa: felix: allow flooding for all traffic classes") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Link: https://lore.kernel.org/r/20201204175416.1445937-1-vladimir.oltean@nxp.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 03 11月, 2020 6 次提交
-
-
由 Vladimir Oltean 提交于
Put the preparation phase of switchdev VLAN objects to some good use, and move the check we already had, for preventing the existence of more than one egress-untagged VLAN per port, to the preparation phase of the addition. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Currently, the ocelot_port_set_native_vlan() function starts dropping untagged and prio-tagged traffic when the native VLAN is removed? What is the native VLAN? It is the only egress-untagged VLAN that ocelot supports on a port. If the port is a trunk with 100 VLANs, one of those VLANs can be transmitted as egress-untagged, and that's the native VLAN. Is it wrong to drop untagged and prio-tagged traffic if there's no native VLAN? Yes and no. In this case, which is more typical, it's ok to apply that drop configuration: $ bridge vlan add dev swp0 vid 1 pvid untagged <- this is the native VLAN $ bridge vlan add dev swp0 vid 100 $ bridge vlan add dev swp0 vid 101 $ bridge vlan del dev swp0 vid 1 <- delete the native VLAN But only because the pvid and the native VLAN have the same ID. In this case, it isn't: $ bridge vlan add dev swp0 vid 1 pvid $ bridge vlan add dev swp0 vid 100 untagged <- this is the native VLAN $ bridge vlan del dev swp0 vid 101 $ bridge vlan del dev swp0 vid 100 <- delete the native VLAN It's wrong, because the switch will drop untagged and prio-tagged traffic now, despite having a valid pvid of 1. The confusion seems to stem from the fact that the native VLAN is an egress setting, while the PVID is an ingress setting. It would be correct to drop untagged and prio-tagged traffic only if there was no pvid on the port. So let's do just that. Background: https://lore.kernel.org/netdev/CA+h21hrRMrLH-RjBGhEJSTZd6_QPRSd3RkVRQF-wNKkrgKcRSA@mail.gmail.com/#tSigned-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Currently we are checking in some places whether the port has a native VLAN on egress or not, by comparing the ocelot_port->vid value with zero. That works, because VID 0 can never be a native VLAN configured by the bridge, but now we want to make similar checks for the pvid. That won't work, because there are cases when we do have the pvid set to 0 (not by the bridge, by ourselves, but still.. it's confusing). And we can't encode a negative value into an u16, so add a bool to the structure. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
This is a mechanical patch only. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
I have no idea why this code is here, but I have 2 hypotheses: 1. A desperate attempt to keep untagged traffic working when the bridge deletes the pvid on a port. There was a fairly okay discussion here: https://lore.kernel.org/netdev/CA+h21hrRMrLH-RjBGhEJSTZd6_QPRSd3RkVRQF-wNKkrgKcRSA@mail.gmail.com/#t which established that in vlan_filtering=1 mode, the absence of a pvid should denote that the ingress port should drop untagged and priority tagged traffic. While in vlan_filtering=0 mode, nothing should change. So in vlan_filtering=1 mode, we should simply let things happen, and not attempt to save the day. And in vlan_filtering=0 mode, the pvid is 0 anyway, no need to do anything. 2. The driver encodes the native VLAN (ocelot_port->vid) value of 0 as special, meaning "not valid". There are checks based on that. But there are no such checks for the ocelot_port->pvid value of 0. In fact, that's a perfectly valid value, which is used in standalone mode. Maybe there was some confusion and the author thought that 0 means "invalid" here as well. In conclusion, delete the code*. *in fact we'll add it back later, in a slightly different form, but for an entirely different reason than the one for which this exists now. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Currently, mscc_ocelot ports configure pvid=0 in standalone mode, and inherit the pvid from the bridge when one is present. When the bridge has vlan_filtering=0, the software semantics are that packets should be received regardless of whether there's a pvid configured on the ingress port or not. However, ocelot does not observe those semantics today. Moreover, changing the PVID is also a problem with vlan_filtering=0. We are privately remapping the VID of FDB, MDB entries to the port's PVID when those are VLAN-unaware (i.e. when the VID of these entries comes to us as 0). But we have no logic of adjusting that remapping when the user changes the pvid and vlan_filtering is 0. So stale entries would be left behind, and untagged traffic will stop matching on them. And even if we were to solve that, there's an even bigger problem. If swp0 has pvid 1, and swp1 has pvid 2, and both are under a vlan_filtering=0 bridge, they should be able to forward traffic between one another. However, with ocelot they wouldn't do that. The simplest way of fixing this is to never configure the pvid based on what the bridge is asking for, when vlan_filtering is 0. Only if there was a VLAN that the bridge couldn't mangle, that we could use as pvid.... So, turns out, there's 0 just for that. And for a reason: IEEE 802.1Q-2018, page 247, Table 9-2-Reserved VID values says: The null VID. Indicates that the tag header contains only priority information; no VID is present in the frame. This VID value shall not be configured as a PVID or a member ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ of a VID Set, or configured in any FDB entry, or used in any Management operation. So, aren't we doing exactly what 802.1Q says not to? Well, in a way, but what we're doing here is just driver-level bookkeeping, all for the better. The fact that we're using a pvid of 0 is not observable behavior from the outside world: the network stack does not see the classified VLAN that the switch uses, in vlan_filtering=0 mode. And we're also more consistent with the standalone mode now. And now that we use the pvid of 0 in this mode, there's another advantage: we don't need to perform any VID remapping for FDB and MDB entries either, we can just use the VID of 0 that the bridge is passing to us. The only gotcha is that every time we change the vlan_filtering setting, we need to reapply the pvid (either to 0, or to the value from the bridge). A small side-effect visible in the patch is that ocelot_port_set_pvid needs to be moved above ocelot_port_vlan_filtering, so that it can be called from there without forward-declarations. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 31 10月, 2020 5 次提交
-
-
由 Vladimir Oltean 提交于
There is one main difference in mscc_ocelot between IP multicast and L2 multicast. With IP multicast, destination ports are encoded into the upper bytes of the multicast MAC address. Example: to deliver the address 01:00:5E:11:22:33 to ports 3, 8, and 9, one would need to program the address of 00:03:08:11:22:33 into hardware. Whereas for L2 multicast, the MAC table entry points to a Port Group ID (PGID), and that PGID contains the port mask that the packet will be forwarded to. As to why it is this way, no clue. My guess is that not all port combinations can be supported simultaneously with the limited number of PGIDs, and this was somehow an issue for IP multicast but not for L2 multicast. Anyway. Prior to this change, the raw L2 multicast code was bogus, due to the fact that there wasn't really any way to test it using the bridge code. There were 2 issues: - A multicast PGID was allocated for each MDB entry, but it wasn't in fact programmed to hardware. It was dummy. - In fact we don't want to reserve a multicast PGID for every single MDB entry. That would be odd because we can only have ~60 PGIDs, but thousands of MDB entries. So instead, we want to reserve a multicast PGID for every single port combination for multicast traffic. And since we can have 2 (or more) MDB entries delivered to the same port group (and therefore PGID), we need to reference-count the PGIDs. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
This saves a re-classification of the MDB address on deletion. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
It is Not Needed, a comment will suffice. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Since a helper is available for copying Ethernet addresses, let's use it. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
ocelot.h says: /* MAC table entry types. * ENTRYTYPE_NORMAL is subject to aging. * ENTRYTYPE_LOCKED is not subject to aging. * ENTRYTYPE_MACv4 is not subject to aging. For IPv4 multicast. * ENTRYTYPE_MACv6 is not subject to aging. For IPv6 multicast. */ We don't want the permanent entries added with 'bridge mdb' to be subject to aging. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 12 10月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
The VCAP_IS1_ACT_VID_REPLACE_ENA action, from the VCAP IS1 ingress TCAM, changes the classified VLAN. We are only exposing this ability for switch ports that are under VLAN aware bridges. This is because in standalone ports mode and under a bridge with vlan_filtering=0, the ocelot driver configures the switch to operate as VLAN-unaware, so the classified VLAN is not derived from the 802.1Q header from the packet, but instead is always equal to the port-based VLAN ID of the ingress port. We _can_ still change the classified VLAN for packets when operating in this mode, but the end result will most likely be a drop, since both the ingress and the egress port need to be members of the modified VLAN. And even if we install the new classified VLAN into the VLAN table of the switch, the result would still not be as expected: we wouldn't see, on the output port, the modified VLAN tag, but the original one, even though the classified VLAN was indeed modified. This is because of how the hardware works: on egress, what is pushed to the frame is a "port tag", which gives us the following options: - Tag all frames with port tag (derived from the classified VLAN) - Tag all frames with port tag, except if the classified VLAN is 0 or equal to the native VLAN of the egress port - No port tag Needless to say, in VLAN-unaware mode we are disabling the port tag. Otherwise, the existing VLAN tag would be ignored, and a second VLAN tag (the port tag), holding the classified VLAN, would be pushed (instead of replacing the existing 802.1Q tag). This is definitely not what the user wanted when installing a "vlan modify" action. So it is simply not worth bothering with VLAN modify rules under other configurations except when the ports are fully VLAN-aware. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 06 10月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Tail dropping is enabled for a port when: 1. A source port consumes more packet buffers than the watermark encoded in SYS:PORT:ATOP_CFG.ATOP. AND 2. Total memory use exceeds the consumption watermark encoded in SYS:PAUSE_CFG:ATOP_TOT_CFG. The unit of these watermarks is a 60 byte memory cell. That unit is programmed properly into ATOP_TOT_CFG, but not into ATOP. Actually when written into ATOP, it would get truncated and wrap around. Fixes: a556c76a ("net: mscc: Add initial Ocelot switch support") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 10月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
A driver may refuse to enable VLAN filtering for any reason beyond what the DSA framework cares about, such as: - having tc-flower rules that rely on the switch being VLAN-aware - the particular switch does not support VLAN, even if the driver does (the DSA framework just checks for the presence of the .port_vlan_add and .port_vlan_del pointers) - simply not supporting this configuration to be toggled at runtime Currently, when a driver rejects a configuration it cannot support, it does this from the commit phase, which triggers various warnings in switchdev. So propagate the prepare phase to drivers, to give them the ability to refuse invalid configurations cleanly and avoid the warnings. Since we need to modify all function prototypes and check for the prepare phase from within the drivers, take that opportunity and move the existing driver restrictions within the prepare phase where that is possible and easy. Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Cc: Hauke Mehrtens <hauke@hauke-m.de> Cc: Woojung Huh <woojung.huh@microchip.com> Cc: Microchip Linux Driver Support <UNGLinuxDriver@microchip.com> Cc: Sean Wang <sean.wang@mediatek.com> Cc: Landen Chao <Landen.Chao@mediatek.com> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Vivien Didelot <vivien.didelot@gmail.com> Cc: Jonathan McDowell <noodles@earth.li> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 10月, 2020 2 次提交
-
-
由 Xiaoliang Yang 提交于
VCAP ES0 is an egress VCAP operating on all outgoing frames. This patch added ES0 driver to support vlan push action of tc filter. Usage: tc filter add dev swp1 egress protocol 802.1Q flower indev swp0 skip_sw \ vlan_id 1 vlan_prio 1 action vlan push id 2 priority 2 Signed-off-by: NXiaoliang Yang <xiaoliang.yang_1@nxp.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Xiaoliang Yang 提交于
VCAP IS1 is a VCAP module which can filter on the most common L2/L3/L4 Ethernet keys, and modify the results of the basic QoS classification and VLAN classification based on those flow keys. There are 3 VCAP IS1 lookups, mapped over chains 10000, 11000 and 12000. Currently the driver is hardcoded to use IS1_ACTION_TYPE_NORMAL half keys. Note that the VLAN_MANGLE has been omitted for now. In hardware, the VCAP_IS1_ACT_VID_REPLACE_ENA field replaces the classified VLAN (metadata associated with the frame) and not the VLAN from the header itself. There are currently some issues which need to be addressed when operating in standalone, or in bridge with vlan_filtering=0 modes, because in those cases the switch ports have VLAN awareness disabled, and changing the classified VLAN to anything other than the pvid causes the packets to be dropped. Another issue is that on egress, we expect port tagging to push the classified VLAN, but port tagging is disabled in the modes mentioned above, so although the classified VLAN is replaced, it is not visible in the packet transmitted by the switch. Signed-off-by: NXiaoliang Yang <xiaoliang.yang_1@nxp.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 9月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
The numbers in struct vcap_props are not intuitive to derive, because they are not a straightforward copy-and-paste from the reference manual but instead rely on a fairly detailed level of understanding of the layout of an entry in the TCAM and in the action RAM. For this reason, bugs are very easy to introduce here. Ease the work of hardware porters and read from hardware the constants that were exported for this particular purpose. Note that this implies that struct vcap_props can no longer be const. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 9月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Remove the ocelot_configure_cpu() function, which was in fact bringing up 2 ports: the CPU port module, which both switchdev and DSA have, and the NPI port, which only DSA has. The (non-Ethernet) CPU port module is at a fixed index in the analyzer, whereas the NPI port is selected through the "ethernet" property in the device tree. Therefore, the function to set up an NPI port is DSA-specific, so we move it there, simplifying the ocelot switch library a little bit. Cc: Horatiu Vultur <horatiu.vultur@microchip.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: UNGLinuxDriver <UNGLinuxDriver@microchip.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 9月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Currently, ocelot switchdev passes the skb directly to the function that enqueues it to the list of skb's awaiting a TX timestamp. Whereas the felix DSA driver first clones the skb, then passes the clone to this queue. This matters because in the case of felix, the common IRQ handler, which is ocelot_get_txtstamp(), currently clones the clone, and frees the original clone. This is useless and can be simplified by using skb_complete_tx_timestamp() instead of skb_tstamp_tx(). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Acked-by: NRichard Cochran <richardcochran@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 9月, 2020 2 次提交
-
-
由 Vladimir Oltean 提交于
Currently mscc_ocelot_init_ports() will skip initializing a port when it doesn't have a phy-handle, so the ocelot->ports[port] pointer will be NULL. Take this into consideration when tearing down the driver, and add a new function ocelot_deinit_port() to the switch library, mirror of ocelot_init_port(), which needs to be called by the driver for all ports it has initialized. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Tested-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Reviewed-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The ocelot_port->ts_id is used to: (a) populate skb->cb[0] for matching the TX timestamp in the PTP IRQ with an skb. (b) populate the REW_OP from the injection header of the ongoing skb. Only then is ocelot_port->ts_id incremented. This is a problem because, at least theoretically, another timestampable skb might use the same ocelot_port->ts_id before that is incremented. Normally all transmit calls are serialized by the netdev transmit spinlock, but in this case, ocelot_port_add_txtstamp_skb() is also called by DSA, which has started declaring the NETIF_F_LLTX feature since commit 2b86cb82 ("net: dsa: declare lockless TX feature for slave ports"). So the logic of using and incrementing the timestamp id should be atomic per port. The solution is to use the global ocelot_port->ts_id only while protected by the associated ocelot_port->ts_id_lock. That's where we populate skb->cb[0]. Note that for ocelot, ocelot_port_add_txtstamp_skb is called for the actual skb, but for felix, it is called for the skb's clone. That is something which will also be changed in the future. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NHoratiu Vultur <horatiu.vultur@microchip.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Tested-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Reviewed-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 8月, 2020 1 次提交
-
-
由 Gustavo A. R. Silva 提交于
Replace the existing /* fall through */ comments and its variants with the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary fall-through markings when it is the case. [1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-throughSigned-off-by: NGustavo A. R. Silva <gustavoars@kernel.org>
-
- 28 7月, 2020 1 次提交
-
-
由 laurent brando 提交于
The next hw timestamp should be snapshoot to the read registers only once the current timestamp has been read. If none of the pending skbs matches the current HW timestamp just gracefully flush the available timestamp by reading it. Signed-off-by: Nlaurent brando <laurent.brando@nxp.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NYangbo Lu <yangbo.lu@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 7月, 2020 5 次提交
-
-
由 Maxim Kochetkov 提交于
The ocelot_wm_encode function deals with setting thresholds for pause frame start and stop. In Ocelot and Felix the register layout is the same, but for Seville, it isn't. The easiest way to accommodate Seville hardware configuration is to introduce a function pointer for setting this up. Signed-off-by: NMaxim Kochetkov <fido_max@inbox.ru> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Maxim Kochetkov 提交于
Seville has a different bitwise layout than Ocelot and Felix. Signed-off-by: NMaxim Kochetkov <fido_max@inbox.ru> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The Ocelot switches do not support flow control on Ethernet interfaces where a DSA tag must be added. If pause frames are enabled, they will be encapsulated in the DSA tag just like regular frames, and the DSA master will not recognize them. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
We don't want ocelot_port_set_maxlen to enable pause frame TX, just to adjust the pause thresholds. Move the unconditional enabling of pause TX to ocelot_init_port. There is no good place to put such setting because it shouldn't be unconditional. But at the moment it is, we're not changing that. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Currently Felix and Ocelot share the same bit layout in these per-port registers, but Seville does not. So we need reg_fields for that. Actually since these are per-port registers, we need to also specify the number of ports, and register size per port, and use the regmap API for multiple ports. There's a more subtle point to be made about the other 2 register fields: - QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG - QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE which we are not writing any longer, for 2 reasons: - Using the previous API (ocelot_write_rix), we were only writing 1 for Felix and Ocelot, which was their hardware-default value, and which there wasn't any intention in changing. - In the case of SCH_NEXT_CFG, in fact Seville does not have this register field at all, and therefore, if we want to have common code we would be required to not write to it. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 6月, 2020 5 次提交
-
-
由 Vladimir Oltean 提交于
The current procedure for installing a multicast address is hardcoded for IPv4. But, in the ocelot hardware, there are 3 different procedures for IPv4, IPv6 and for regular L2 multicast. For IPv6 (33-33-xx-xx-xx-xx), it's the same as for IPv4 (01-00-5e-xx-xx-xx), except that the destination port mask is stuffed into first 2 bytes of the MAC address except into first 3 bytes. For plain Ethernet multicast, there's no port-in-address stuffing going on, instead the DEST_IDX (pointer to PGID) is used there, just as for unicast. So we have to use one of the nonreserved multicast PGIDs that the hardware has allocated for this purpose. This patch classifies the type of multicast address based on its first bytes, then redirects to one of the 3 different hardware procedures. Note that this gives us a really better way of redirecting PTP frames sent at 01-1b-19-00-00-00 to the CPU. Previously, Yangbo Lu tried to add a trapping rule for PTP EtherType but got a lot of pushback: https://patchwork.ozlabs.org/project/netdev/patch/20190813025214.18601-5-yangbo.lu@nxp.com/ But right now, that isn't needed at all. The application stack (ptp4l) does this for the PTP multicast addresses it's interested in (which are configurable, and include 01-1b-19-00-00-00): memset(&mreq, 0, sizeof(mreq)); mreq.mr_ifindex = index; mreq.mr_type = PACKET_MR_MULTICAST; mreq.mr_alen = MAC_LEN; memcpy(mreq.mr_address, addr1, MAC_LEN); err1 = setsockopt(fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, &mreq, sizeof(mreq)); Into the kernel, this translates into a dev_mc_add on the switch network interfaces, and our drivers know that it means they should translate it into a host MDB address (make the CPU port be the destination). Previously, this was broken because all mdb addresses were treated as IPv4 (which 01-1b-19-00-00-00 obviously is not). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The current iterators are impossible to understand at first glance without switching back and forth between the definitions and their actual use in the for loops. So introduce some convenience names to help readability. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
This adds the mdb hooks in felix and exports the mdb functions from ocelot. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
When used in DSA mode (as seen in Felix), the DEST_IDX in the MAC table should point to the PGID for the CPU port (PGID_CPU) and not for the Ethernet port where the CPU queues are redirected to (also known as Node Processor Interface - NPI). Because for Felix this distinction shouldn't really matter (from DSA perspective, the NPI port _is_ the CPU port), make the ocelot library act upon the CPU port when NPI mode is enabled. This has no effect for the mscc_ocelot driver for VSC7514, because that does not use NPI (and ocelot->npi is -1). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The ocelot hardware designers have made some hacks to support multicast IPv4 and IPv6 addresses. Normally, the MAC table matches on MAC addresses and the destination ports are selected through the DEST_IDX field of the respective MAC table entry. The DEST_IDX points to a Port Group ID (PGID) which contains the bit mask of ports that frames should be forwarded to. But there aren't a lot of PGIDs (only 80 or so) and there are clearly many more IP multicast addresses than that, so it doesn't scale to use this PGID mechanism, so something else was done. Since the first portion of the MAC address is known, the hack they did was to use a single PGID for _flooding_ unknown IPv4 multicast (PGID_MCIPV4 == 62), but for known IP multicast, embed the destination ports into the first 3 bytes of the MAC address recorded in the MAC table. The VSC7514 datasheet explains it like this: 3.9.1.5 IPv4 Multicast Entries MAC table entries with the ENTRY_TYPE = 2 settings are interpreted as IPv4 multicast entries. IPv4 multicasts entries match IPv4 frames, which are classified to the specified VID, and which have DMAC = 0x01005Exxxxxx, where xxxxxx is the lower 24 bits of the MAC address in the entry. Instead of a lookup in the destination mask table (PGID), the destination set is programmed as part of the entry MAC address. This is shown in the following table. Table 78: IPv4 Multicast Destination Mask Destination Ports Record Bit Field --------------------------------------------- Ports 10-0 MAC[34-24] Example: All IPv4 multicast frames in VLAN 12 with MAC 01005E112233 are to be forwarded to ports 3, 8, and 9. This is done by inserting the following entry in the MAC table entry: VALID = 1 VID = 12 MAC = 0x000308112233 ENTRY_TYPE = 2 DEST_IDX = 0 But this procedure is not at all what's going on in the driver. In fact, the code that embeds the ports into the MAC address looks like it hasn't actually been tested. This patch applies the procedure described in the datasheet. Since there are many other fixes to be made around multicast forwarding until it works properly, there is no real reason for this patch to be backported to stable trees, or considered a real fix of something that should have worked. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 6月, 2020 3 次提交
-
-
由 Vladimir Oltean 提交于
Access Control Lists (and their respective Access Control Entries) are specifically entries in the VCAP IS2, the security enforcement block, according to the documentation. Let's rename the structures and functions to something more generic, so that VCAP IS1 structures (which would otherwise have to be called Ingress Classification Entries) can reuse the same code without confusion. Some renaming that was done: struct ocelot_ace_rule -> struct ocelot_vcap_filter struct ocelot_acl_block -> struct ocelot_vcap_block enum ocelot_ace_type -> enum ocelot_vcap_key_type struct ocelot_ace_vlan -> struct ocelot_vcap_key_vlan enum ocelot_ace_action -> enum ocelot_vcap_action struct ocelot_ace_stats -> struct ocelot_vcap_stats enum ocelot_ace_type -> enum ocelot_vcap_key_type struct ocelot_ace_frame_* -> struct ocelot_vcap_key_* No functional change is intended. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Access Control Lists (and their respective Access Control Entries) are specifically entries in the VCAP IS2, the security enforcement block, according to the documentation. Let's rename the files that deal with generic operations on the VCAP TCAM, so that VCAP IS1 and ES0 can reuse the same code without confusion. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The ocelot hardware library shouldn't contain too much net_device specific code, since it is shared with DSA which abstracts that structure away. So much as much of this code as possible into the mscc_ocelot driver and outside of the common library. We're making an exception for MDB and LAG code. That is not yet exported to DSA, but when it will, most of the code that's already in ocelot.c will remain there. So, there's no point in moving code to ocelot_net.c just to move it back later. We could have moved all net_device code to ocelot_vsc7514.c directly, but let's operate under the assumption that if a new switchdev ocelot driver gets added, it'll define its SoC-specific stuff in a new ocelot_vsc*.c file and it'll reuse the rest of the code. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 5月, 2020 2 次提交
-
-
由 Antoine Tenart 提交于
This patch adds support for offloading timestamping operations not only to the Ocelot switch (as already supported) but to compatible PHYs. When both the PHY and the Ocelot switch support timestamping operations, the PHY implementation is chosen as the timestamp will happen closer to the medium. Signed-off-by: NAntoine Tenart <antoine.tenart@bootlin.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Antoine Tenart 提交于
Allow ioctl to be implemented by the PHY, when a PHY is attached to the Ocelot switch. In case the ioctl is a request to set or get the hardware timestamp, use the Ocelot switch implementation for now. Signed-off-by: NAntoine Tenart <antoine.tenart@bootlin.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-