- 19 4月, 2023 1 次提交
-
-
由 Eric Sandeen 提交于
mainline inclusion from mainline-v6.0-rc1 commit 70b589a3 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=70b589a37e1aba892c1e5d41957b0042f9eb031b -------------------------------- We got a report that "renameat2() with flags=RENAME_WHITEOUT doesn't apply an SELinux label on xfs" as it does on other filesystems (for example, ext4 and tmpfs.) While I'm not quite sure how labels may interact w/ whiteout files, leaving them as unlabeled seems inconsistent at best. Now that xfs_init_security is not static, rename it to xfs_inode_init_security per dchinner's suggestion. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Conflicts: fs/xfs/xfs_inode.c fs/xfs/xfs_iops.h Signed-off-by: Nyangerkun <yangerkun@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
- 12 4月, 2023 4 次提交
-
-
由 Darrick J. Wong 提交于
mainline inclusion from mainline-v5.19-rc5 commit 932b42c6 category: bugfix bugzilla: 187164, https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=932b42c66cb5d0ca9800b128415b4ad6b1952b3e -------------------------------- Replace this shouty macro with a real C function that has a more descriptive name. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> conflicts: fs/xfs/libxfs/xfs_attr.h fs/xfs/libxfs/xfs_inode_fork.c fs/xfs/scrub/btree.c fs/xfs/xfs_inode.c Signed-off-by: NLong Li <leo.lilong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
由 Darrick J. Wong 提交于
mainline inclusion from mainline-v5.19-rc5 commit e45d7cb2 category: bugfix bugzilla: 187164, https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e45d7cb2356e6b59fe64da28324025cc6fcd3fbd -------------------------------- Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the attribute fork but i_forkoff is zero. This eliminates the ambiguity between i_forkoff and i_af.if_present, which should make it easier to understand the lifetime of attr forks. While we're at it, remove the if_present checks around calls to xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr forks that have already been torn down. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> conflicts: fs/xfs/libxfs/xfs_attr.h fs/xfs/libxfs/xfs_inode_fork.c fs/xfs/libxfs/xfs_inode_fork.h fs/xfs/xfs_icache.c fs/xfs/xfs_inode.c Signed-off-by: NLong Li <leo.lilong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
由 Darrick J. Wong 提交于
mainline inclusion from mainline-v5.19-rc5 commit 2ed5b09b category: bugfix bugzilla: 187164, https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2ed5b09b3e8fc274ae8fecd6ab7c5106a364bed1 -------------------------------- Syzkaller reported a UAF bug a while back: ================================================================== BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958 CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted 5.15.0-0.30.3-20220406_1406 #3 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908 do_truncate+0xc3/0x1e0 fs/open.c:56 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 RIP: 0033:0x7f7ef4bb753d Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0 RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0 </TASK> Allocated by task 2953: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:254 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3213 [inline] slab_alloc mm/slub.c:3221 [inline] kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226 kmem_cache_zalloc include/linux/slab.h:711 [inline] xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275 vfs_setxattr+0x154/0x33d fs/xattr.c:301 setxattr+0x216/0x29f fs/xattr.c:575 __do_sys_fsetxattr fs/xattr.c:632 [inline] __se_sys_fsetxattr fs/xattr.c:621 [inline] __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 Freed by task 2949: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:1700 [inline] slab_free_freelist_hook mm/slub.c:1726 [inline] slab_free mm/slub.c:3492 [inline] kmem_cache_free+0xdc/0x3ce mm/slub.c:3508 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_removexattr+0x106/0x16a fs/xattr.c:468 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324 security_inode_killpriv+0x54/0xa1 security/security.c:1414 setattr_prepare+0x1a6/0x897 fs/attr.c:146 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093 notify_change+0xae5/0x10a1 fs/attr.c:410 do_truncate+0x134/0x1e0 fs/open.c:64 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 The buggy address belongs to the object at ffff88802cec9188 which belongs to the cache xfs_ifork of size 40 The buggy address is located 20 bytes inside of 40-byte region [ffff88802cec9188, ffff88802cec91b0) The buggy address belongs to the page: page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2cec9 flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80 raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc >ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb ^ ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb ================================================================== The root cause of this bug is the unlocked access to xfs_inode.i_afp from the getxattr code paths while trying to determine which ILOCK mode to use to stabilize the xattr data. Unfortunately, the VFS does not acquire i_rwsem when vfs_getxattr (or listxattr) call into the filesystem, which means that getxattr can race with a removexattr that's tearing down the attr fork and crash: xfs_attr_set: xfs_attr_get: xfs_attr_fork_remove: xfs_ilock_attr_map_shared: xfs_idestroy_fork(ip->i_afp); kmem_cache_free(xfs_ifork_cache, ip->i_afp); if (ip->i_afp && ip->i_afp = NULL; xfs_need_iread_extents(ip->i_afp)) <KABOOM> ip->i_forkoff = 0; Regrettably, the VFS is much more lax about i_rwsem and getxattr than is immediately obvious -- not only does it not guarantee that we hold i_rwsem, it actually doesn't guarantee that we *don't* hold it either. The getxattr system call won't acquire the lock before calling XFS, but the file capabilities code calls getxattr with and without i_rwsem held to determine if the "security.capabilities" xattr is set on the file. Fixing the VFS locking requires a treewide investigation into every code path that could touch an xattr and what i_rwsem state it expects or sets up. That could take years or even prove impossible; fortunately, we can fix this UAF problem inside XFS. An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to ensure that i_forkoff is always zeroed before i_afp is set to null and changed the read paths to use smp_rmb before accessing i_forkoff and i_afp, which avoided these UAF problems. However, the patch author was too busy dealing with other problems in the meantime, and by the time he came back to this issue, the situation had changed a bit. On a modern system with selinux, each inode will always have at least one xattr for the selinux label, so it doesn't make much sense to keep incurring the extra pointer dereference. Furthermore, Allison's upcoming parent pointer patchset will also cause nearly every inode in the filesystem to have extended attributes. Therefore, make the inode attribute fork structure part of struct xfs_inode, at a cost of 40 more bytes. This patch adds a clunky if_present field where necessary to maintain the existing logic of xattr fork null pointer testing in the existing codebase. The next patch switches the logic over to XFS_IFORK_Q and it all goes away. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> conflicts: fs/xfs/libxfs/xfs_attr.c fs/xfs/libxfs/xfs_attr.h fs/xfs/libxfs/xfs_attr_leaf.c fs/xfs/libxfs/xfs_bmap.c fs/xfs/libxfs/xfs_inode_buf.c fs/xfs/libxfs/xfs_inode_fork.c fs/xfs/libxfs/xfs_inode_fork.h fs/xfs/xfs_attr_inactive.c fs/xfs/xfs_attr_list.c fs/xfs/xfs_icache.c fs/xfs/xfs_inode.c fs/xfs/xfs_inode.h fs/xfs/xfs_inode_item.c fs/xfs/xfs_itable.c Signed-off-by: NLong Li <leo.lilong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
由 Darrick J. Wong 提交于
mainline inclusion from mainline-v5.19-rc5 commit 732436ef category: bugfix bugzilla: 187164, https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=732436ef916b4f338d672ea56accfdb11e8d0732 -------------------------------- We're about to make this logic do a bit more, so convert the macro to a static inline function for better typechecking and fewer shouty macros. No functional changes here. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> conflicts: fs/xfs/libxfs/xfs_bmap.c fs/xfs/libxfs/xfs_bmap_btree.c fs/xfs/libxfs/xfs_inode_fork.c fs/xfs/libxfs/xfs_inode_fork.h fs/xfs/scrub/bmap.c fs/xfs/scrub/symlink.c fs/xfs/xfs_inode.c fs/xfs/xfs_ioctl.c fs/xfs/xfs_qm.c fs/xfs/xfs_reflink.c Signed-off-by: NLong Li <leo.lilong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
- 15 3月, 2023 1 次提交
-
-
由 Dave Chinner 提交于
mainline inclusion from mainline-v5.17-rc6 commit d2d7c047 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d2d7c0473586d2f22e85d615275f34cf19f94447 -------------------------------- Most buffer io list operations are run with the bp->b_lock held, but xfs_iflush_abort() can be called without the buffer lock being held resulting in inodes being removed from the buffer list while other list operations are occurring. This causes problems with corrupted bp->b_io_list inode lists during filesystem shutdown, leading to traversals that never end, double removals from the AIL, etc. Fix this by passing the buffer to xfs_iflush_abort() if we have it locked. If the inode is attached to the buffer, we're going to have to remove it from the buffer list and we'd have to get the buffer off the inode log item to do that anyway. If we don't have a buffer passed in (e.g. from xfs_reclaim_inode()) then we can determine if the inode has a log item and if it is attached to a buffer before we do anything else. If it does have an attached buffer, we can lock it safely (because the inode has a reference to it) and then perform the inode abort. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> conflicts: fs/xfs/xfs_icache.c Signed-off-by: NLong Li <leo.lilong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Reviewed-by: NYang Erkun <yangerkun@huawei.com> Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
-
- 07 12月, 2022 2 次提交
-
-
由 Chandan Babu R 提交于
mainline inclusion from mainline-v5.12-rc1 commit 02092a2f category: bugfix bugzilla: 187510,https://gitee.com/openeuler/kernel/issues/I4KIAO Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=02092a2f034fdeabab524ae39c2de86ba9ffa15a -------------------------------- A rename operation is essentially a directory entry remove operation from the perspective of parent directory (i.e. src_dp) of rename's source. Hence the only place where we check for extent count overflow for src_dp is in xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns -ENOSPC when it detects a possible extent count overflow and in response, the higher layers of directory handling code do the following: 1. Data/Free blocks: XFS lets these blocks linger until a future remove operation removes them. 2. Dabtree blocks: XFS swaps the blocks with the last block in the Leaf space and unmaps the last block. For target_dp, there are two cases depending on whether the destination directory entry exists or not. When destination directory entry does not exist (i.e. target_ip == NULL), extent count overflow check is performed only when transaction has a non-zero sized space reservation associated with it. With a zero-sized space reservation, XFS allows a rename operation to continue only when the directory has sufficient free space in its data/leaf/free space blocks to hold the new entry. When destination directory entry exists (i.e. target_ip != NULL), all we need to do is change the inode number associated with the already existing entry. Hence there is no need to perform an extent count overflow check. Signed-off-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NYu Kuai <yukuai3@huawei.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Chandan Babu R 提交于
mainline inclusion from mainline-v5.12-rc1 commit f5d92749 category: bugfix bugzilla: 187510,https://gitee.com/openeuler/kernel/issues/I4KIAO Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5d92749191402c50e32ac83dd9da3b910f5680f -------------------------------- Directory entry addition can cause the following, 1. Data block can be added/removed. A new extent can cause extent count to increase by 1. 2. Free disk block can be added/removed. Same behaviour as described above for Data block. 3. Dabtree blocks. XFS_DA_NODE_MAXDEPTH blocks can be added. Each of these can be new extents. Hence extent count can increase by XFS_DA_NODE_MAXDEPTH. Signed-off-by: NChandan Babu R <chandanrlinux@gmail.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Conflict: commit 3a1af6c3 ("xfs: refactor common transaction/inode/quota allocation idiom") is backported, which introduce some conflicts on code context. Signed-off-by: NYu Kuai <yukuai3@huawei.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 02 11月, 2022 1 次提交
-
-
由 Eric Sandeen 提交于
stable inclusion from stable-v5.10.130 commit e14930e9f9c657cf109326752871d3c701b12326 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I5YRJO Reference: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e14930e9f9c657cf109326752871d3c701b12326 -------------------------------- commit e4459765 upstream. This ASSERT in xfs_rename is a) incorrect, because (RENAME_WHITEOUT|RENAME_NOREPLACE) is a valid combination, and b) unnecessary, because actual invalid flag combinations are already handled at the vfs level in do_renameat2() before we get called. So, remove it. Reported-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Fixes: 7dcf5c3e ("xfs: add RENAME_WHITEOUT support") Signed-off-by: NKuniyuki Iwashima <kuniyu@amazon.com> Acked-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com> Acked-by: NXie XiuQi <xiexiuqi@huawei.com>
-
- 09 3月, 2022 1 次提交
-
-
由 Darrick J. Wong 提交于
mainline inclusion from mainline-v5.11-rc4 commit 6da1b4b1 category: bugfix bugzilla: 185867 https://gitee.com/openeuler/kernel/issues/I4KIAO Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6da1b4b1ab36d80a3994fd4811c8381de10af604 -------------------------------- When overlayfs is running on top of xfs and the user unlinks a file in the overlay, overlayfs will create a whiteout inode and ask xfs to "rename" the whiteout file atop the one being unlinked. If the file being unlinked loses its one nlink, we then have to put the inode on the unlinked list. This requires us to grab the AGI buffer of the whiteout inode to take it off the unlinked list (which is where whiteouts are created) and to grab the AGI buffer of the file being deleted. If the whiteout was created in a higher numbered AG than the file being deleted, we'll lock the AGIs in the wrong order and deadlock. Therefore, grab all the AGI locks we think we'll need ahead of time, and in order of increasing AG number per the locking rules. Reported-by: Nwenli xie <wlxie7296@gmail.com> Fixes: 93597ae8 ("xfs: Fix deadlock between AGI and AGF when target_ip exists in xfs_rename()") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 14 1月, 2022 1 次提交
-
-
由 Christoph Hellwig 提交于
mainline inclusion from mainline-v5.11-rc4 commit 01ea173e category: bugfix bugzilla: 185881 https://gitee.com/openeuler/kernel/issues/I4DDEL CVE: CVE-2021-4037 Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01ea173e103edd5ec41acec65b9261b87e123fc2 ------------------------------------------------- XFS always inherits the SGID bit if it is set on the parent inode, while the generic inode_init_owner does not do this in a few cases where it can create a possible security problem, see commit 0fa3ecd8 ("Fix up non-directory creation in SGID directories") for details. Switch XFS to use the generic helper for the normal path to fix this, just keeping the simple field inheritance open coded for the case of the non-sgid case with the bsdgrpid mount option. Fixes: 1da177e4 ("Linux-2.6.12-rc2") Reported-by: NChristian Brauner <christian.brauner@ubuntu.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> conflicts: fs/xfs/xfs_inode.c Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Reviewed-by: NXiu Jianfeng <xiujianfeng@huawei.com> Signed-off-by: NChen Jun <chenjun102@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 07 1月, 2022 5 次提交
-
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc4 commit 62af7d54 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=62af7d54a0ec0b6f99d7d55ebeb9ecbb3371bc67 ------------------------------------------------- If we don't need to inactivate an inode, we can detach the dquots and move on to reclamation. This isn't strictly required here; it's a preparation patch for deferred inactivation per reviewer request[1] to move the creation of xfs_inode_needs_inactivation into a separate change. Eventually this !need_inactive chunk will turn into the code path for inodes that skip xfs_inactive and go straight to memory reclaim. [1] https://lore.kernel.org/linux-xfs/20210609012838.GW2945738@locust/T/#mca6d958521cb88bbc1bfe1a30767203328d410b5Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 3ea06d73 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3ea06d73e3c02ee2952a62bf92abc18f9c98aba1 ------------------------------------------------- Once we're done with inactivating an inode, we're finished updating metadata for that inode. This means that we can detach the dquots at the end and not have to wait for reclaim to do it for us. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.12-rc4 commit 383e32b0 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=383e32b0d0db464dc53052a97bf7f9ee3a1937cc ------------------------------------------------- Files containing metadata (quota records, rt bitmap and summary info) are fully managed by the filesystem, which means that all resource cleanup must be explicit, not automatic. This means that they should never be subjected automatic to post-eof truncation, nor should they be freed automatically even if the link count drops to zero. In other words, xfs_inactive() should leave these files alone. Add the necessary predicate functions to make this happen. This adds a second layer of prevention for the kinds of fs corruption that was fixed by commit f4c32e87. If we ever decide to support removing metadata files, we should make all those metadata updates explicit. Rearrange the order of #includes to fix compiler errors, since xfs_mount.h is supposed to be included before xfs_inode.h Followup-to: f4c32e87 ("xfs: fix realtime bitmap/summary file truncation when growing rt volume") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.11-rc4 commit f2f7b9ff category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2f7b9ff62a28928f6fe2bd55cdb4d4b02ab7477 ------------------------------------------------- For file creation, create a new helper xfs_trans_alloc_icreate that allocates a transaction and reserves the appropriate amount of quota against that transction. Replace all the open-coded idioms with a single call to this helper so that we can contain the retry loops in the next patchset. This changes the locking behavior for non-tempfile creation slightly, in that we now make the quota reservation without holding the directory ILOCK. While the dquots chosen for inode creation are based on the directory state at a given point in time, the directory ILOCK was released as soon as the dquot references are picked up. Hence it was never necessary to hold the directory ILOCK for the quota reservation. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.11-rc4 commit ad4a7473 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ad4a74739708e193c21245dae908ff50f72ff207 ------------------------------------------------- Create a proper helper so that inode creation calls can reserve quota with a dedicated function. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 27 12月, 2021 3 次提交
-
-
由 Darrick J. Wong 提交于
mainline-inclusion from mainline-v5.14-rc1 commit 5838d035 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5838d0356bb3c320867c393f12b169c01a870bda ------------------------------------------------- While running xfs/168, I noticed a second source of post-shrink corruption errors causing shutdowns. Let's say that directory B has a low inode number and is a child of directory A, which has a high number. If B is empty but open, and unlinked from A, B's dotdot link continues to point to A. If A is then unlinked and the filesystem shrunk so that A is no longer a valid inode, a subsequent AIL push of B will trip the inode verifiers because the dotdot entry points outside of the filesystem. To avoid this problem, reset B's dotdot entry to the root directory when unlinking directories, since the root directory cannot be removed. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NGao Xiang <hsiangkao@linux.alibaba.com> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Dave Chinner 提交于
mainline-inclusion from mainline-v5.13-rc4 commit 5f9b4b0d category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5f9b4b0de8dc2fb8eb655463b438001c111570fe ------------------------------------------------- In doing an investigation into AIL push stalls, I was looking at the log force code to see if an async CIL push could be done instead. This lead me to xfs_log_force_lsn() and looking at how it works. xfs_log_force_lsn() is only called from inode synchronisation contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn value as the LSN to sync the log to. This gets passed to xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the journal, and then used by xfs_log_force_lsn() to flush the iclogs to the journal. The problem is that ip->i_itemp->ili_last_lsn does not store a log sequence number. What it stores is passed to it from the ->iop_committing method, which is called by xfs_log_commit_cil(). The value this passes to the iop_committing method is the CIL context sequence number that the item was committed to. As it turns out, xlog_cil_force_lsn() converts the sequence to an actual commit LSN for the related context and returns that to xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn" variable that contained a sequence with an actual LSN and then uses that to sync the iclogs. This caused me some confusion for a while, even though I originally wrote all this code a decade ago. ->iop_committing is only used by a couple of log item types, and only inode items use the sequence number it is passed. Let's clean up the API, CIL structures and inode log item to call it a sequence number, and make it clear that the high level code is using CIL sequence numbers and not on-disk LSNs for integrity synchronisation purposes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
由 Gustavo A. R. Silva 提交于
mainline-inclusion from mainline-v5.13-rc2 commit 53004ee7 category: bugfix bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO CVE: NA Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=53004ee78d6273c994534ccf79d993098ac89769 ------------------------------------------------- In preparation to enable -Wimplicit-fallthrough for Clang, fix the following warnings by replacing /* fall through */ comments, and its variants, with the new pseudo-keyword macro fallthrough: fs/xfs/libxfs/xfs_alloc.c:3167:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_da_btree.c:286:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_ag_resv.c:346:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_ag_resv.c:388:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_bmap_util.c:246:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_export.c:88:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_export.c:96:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_file.c:867:3: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_ioctl.c:562:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_ioctl.c:1548:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_iomap.c:1040:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_inode.c:852:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_log.c:2627:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/xfs_trans_buf.c:298:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/bmap.c:275:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/btree.c:48:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:85:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:138:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/common.c:698:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/dabtree.c:51:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/repair.c:951:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/scrub/agheader.c:89:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] Notice that Clang doesn't recognize /* fall through */ comments as implicit fall-through markings, so in order to globally enable -Wimplicit-fallthrough for Clang, these comments need to be replaced with fallthrough; in the whole codebase. Link: https://github.com/KSPP/linux/issues/115Signed-off-by: NGustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: NGuo Xuenan <guoxuenan@huawei.com> Reviewed-by: NLihong Kou <koulihong@huawei.com> Reviewed-by: NZhang Yi <yi.zhang@huawei.com> Signed-off-by: NZheng Zengkai <zhengzengkai@huawei.com>
-
- 22 9月, 2020 1 次提交
-
-
由 Brian Foster 提交于
The inode extent truncate path unmaps extents from the inode block mapping, finishes deferred ops to free the associated extents and then explicitly rolls the transaction before processing the next extent. The latter extent roll is spurious as xfs_defer_finish() always returns a clean transaction and automatically relogs inodes attached to the transaction (with lock_flags == 0). This can unnecessarily increase the number of log ticket regrants that occur during a long running truncate operation. Remove the explicit transaction roll. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 16 9月, 2020 4 次提交
-
-
由 Darrick J. Wong 提交于
While running generic/042 with -drtinherit=1 set in MKFS_OPTIONS, I observed that the kernel will gladly set the realtime flag on any file created on the loopback filesystem even though that filesystem doesn't actually have a realtime device attached. This leads to verifier failures and doesn't make any sense, so be smarter about this. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Hoist the code that propagates di_flags and di_flags2 from a parent to a new child into separate functions. No functional changes. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Redesign the ondisk inode timestamps to be a simple unsigned 64-bit counter of nanoseconds since 14 Dec 1901 (i.e. the minimum time in the 32-bit unix time epoch). This enables us to handle dates up to 2486, which solves the y2038 problem. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NGao Xiang <hsiangkao@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
Move the buffer retry state machine logic to xfs_buf.c and call it once from xfs_ioend instead of duplicating it three times for the three kinds of buffers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 9月, 2020 1 次提交
-
-
由 Dave Chinner 提交于
With the recent rework of the inode cluster flushing, we no longer ever wait on the the inode flush "lock". It was never a lock in the first place, just a completion to allow callers to wait for inode IO to complete. We now never wait for flush completion as all inode flushing is non-blocking. Hence we can get rid of all the iflock infrastructure and instead just set and check a state flag. Rename the XFS_IFLOCK flag to XFS_IFLUSHING, convert all the xfs_iflock_nowait() test-and-set operations on that flag, and replace all the xfs_ifunlock() calls to clear operations. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 05 8月, 2020 1 次提交
-
-
由 Randy Dunlap 提交于
Delete repeated words in fs/xfs/. {we, that, the, a, to, fork} Change "it it" to "it is" in one location. Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> To: linux-fsdevel@vger.kernel.org Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: linux-xfs@vger.kernel.org Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 14 7月, 2020 1 次提交
-
-
由 Gao Xiang 提交于
In the course of some operations, we look up the perag from the mount multiple times to get or change perag information. These are often very short pieces of code, so while the lookup cost is generally low, the cost of the lookup is far higher than the cost of the operation we are doing on the perag. Since we changed buffers to hold references to the perag they are cached in, many modification contexts already hold active references to the perag that are held across these operations. This is especially true for any operation that is serialised by an allocation group header buffer. In these cases, we can just use the buffer's reference to the perag to avoid needing to do lookups to access the perag. This means that many operations don't need to do perag lookups at all to access the perag because they've already looked up objects that own persistent references and hence can use that reference instead. Cc: Dave Chinner <dchinner@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Signed-off-by: NGao Xiang <hsiangkao@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 7月, 2020 13 次提交
-
-
由 Dave Chinner 提交于
This debug code is called on every xfs_iflush() call, which then checks every inode in the buffer for non-zero unlinked list field. Hence it checks every inode in the cluster buffer every time a single inode on that cluster it flushed. This is resulting in: - 38.91% 5.33% [kernel] [k] xfs_iflush - 17.70% xfs_iflush - 9.93% xfs_inobp_check 4.36% xfs_buf_offset 10% of the CPU time spent flushing inodes is repeatedly checking unlinked fields in the buffer. We don't need to do this. The other place we call xfs_inobp_check() is xfs_iunlink_update_dinode(), and this is after we've done this assert for the agino we are about to write into that inode: ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino)); which means we've already checked that the agino we are about to write is not 0 on debug kernels. The inode buffer verifiers do everything else we need, so let's just remove this debug code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> -
由 Dave Chinner 提交于
Now that we have all the dirty inodes attached to the cluster buffer, we don't actually have to do radix tree lookups to find them. Sure, the radix tree is efficient, but walking a linked list of just the dirty inodes attached to the buffer is much better. We are also no longer dependent on having a locked inode passed into the function to determine where to start the lookup. This means we can drop it from the function call and treat all inodes the same. We also make xfs_iflush_cluster skip inodes marked with XFS_IRECLAIM. This we avoid races with inodes that reclaim is actively referencing or are being re-initialised by inode lookup. If they are actually dirty, they'll get written by a future cluster flush.... We also add a shutdown check after obtaining the flush lock so that we catch inodes that are dirty in memory and may have inconsistent state due to the shutdown in progress. We abort these inodes directly and so they remove themselves directly from the buffer list and the AIL rather than having to wait for the buffer to be failed and callbacks run to be processed correctly. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
with xfs_iflush() gone, we can rename xfs_iflush_int() back to xfs_iflush(). Also move it up above xfs_iflush_cluster() so we don't need the forward definition any more. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAmir Goldstein <amir73il@gmail.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Now we have a cached buffer on inode log items, we don't need to do buffer lookups when flushing inodes anymore - all we need to do is lock the buffer and we are ready to go. This largely gets rid of the need for xfs_iflush(), which is essentially just a mechanism to look up the buffer and flush the inode to it. Instead, we can just call xfs_iflush_cluster() with a few modifications to ensure it also flushes the inode we already hold locked. This allows the AIL inode item pushing to be almost entirely non-blocking in XFS - we won't block unless memory allocation for the cluster inode lookup blocks or the block device queues are full. Writeback during inode reclaim becomes a little more complex because we now have to lock the buffer ourselves, but otherwise this change is largely a functional no-op that removes a whole lot of code. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Rather than attach inodes to the cluster buffer just when we are doing IO, attach the inodes to the cluster buffer when they are dirtied. The means the buffer always carries a list of dirty inodes that reference it, and we can use that list to make more fundamental changes to inode writeback that aren't otherwise possible. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Once we have inodes pinning the cluster buffer and attached whenever they are dirty, we no longer have a guarantee that the items are flush locked when we lock the cluster buffer. Hence we cannot just walk the buffer log item list and modify the attached inodes. If the inode is not flush locked, we have to ILOCK it first and then flush lock it to do all the prerequisite checks needed to avoid races with other code. This is already handled by xfs_ifree_get_one_inode(), so rework the inode iteration loop and function to update all inodes in cache whether they are attached to the buffer or not. Note: we also remove the copying of the log item lsn to the ili_flush_lsn as xfs_iflush_done() now uses the XFS_ISTALE flag to trigger aborts and so flush lsn matching is not needed in IO completion for processing freed inodes. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
They are not used anymore, so remove them from the log item and the buffer iodone attachment interfaces. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Having different io completion callbacks for different inode states makes things complex. We can detect if the inode is stale via the XFS_ISTALE flag in IO completion, so we don't need a special callback just for this. This means inodes only have a single iodone callback, and inode IO completion is entirely buffer centric at this point. Hence we no longer need to use a log item callback at all as we can just call xfs_iflush_done() directly from the buffer completions and walk the buffer log item list to complete the all inodes under IO. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
Inode buffers always have write IO callbacks, so by marking them directly we can avoid needing to attach ->b_iodone functions to them. This avoids an indirect call, and makes future modifications much simpler. While this is largely a refactor of existing functionality, we broaden the scope of the flag to beyond where inodes are explicitly attached because future changes need to know what type of log items are attached to the buffer. Adding this buffer flag may invoke the inode iodone callback in cases where it wouldn't have been previously, but this is not a functional change because the callback is identical to the normal buffer write iodone callback when inodes are not attached. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
The inode log item is kind of special in that it can be aggregating new changes in memory at the same time time existing changes are being written back to disk. This means there are fields in the log item that are accessed concurrently from contexts that don't share any locking at all. e.g. updating ili_last_fields occurs at flush time under the ILOCK_EXCL and flush lock at flush time, under the flush lock at IO completion time, and is read under the ILOCK_EXCL when the inode is logged. Hence there is no actual serialisation between reading the field during logging of the inode in transactions vs clearing the field in IO completion. We currently get away with this by the fact that we are only clearing fields in IO completion, and nothing bad happens if we accidentally log more of the inode than we actually modify. Worst case is we consume a tiny bit more memory and log bandwidth. However, if we want to do more complex state manipulations on the log item that requires updates at all three of these potential locations, we need to have some mechanism of serialising those operations. To do this, introduce a spinlock into the log item to serialise internal state. This could be done via the xfs_inode i_flags_lock, but this then leads to potential lock inversion issues where inode flag updates need to occur inside locks that best nest inside the inode log item locks (e.g. marking inodes stale during inode cluster freeing). Using a separate spinlock avoids these sorts of problems and simplifies future code. This does not touch the use of ili_fields in the item formatting code - that is entirely protected by the ILOCK_EXCL at this point in time, so it remains untouched. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
This was used to track if the item had logged fields being flushed to disk. We log everything in the inode these days, so this logic is no longer needed. Remove it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Dave Chinner 提交于
In tracking down a problem in this patchset, I discovered we are reclaiming dirty stale inodes. This wasn't discovered until inodes were always attached to the cluster buffer and then the rcu callback that freed inodes was assert failing because the inode still had an active pointer to the cluster buffer after it had been reclaimed. Debugging the issue indicated that this was a pre-existing issue resulting from the way the inodes are handled in xfs_inactive_ifree. When we free a cluster buffer from xfs_ifree_cluster, all the inodes in cache are marked XFS_ISTALE. Those that are clean have nothing else done to them and so eventually get cleaned up by background reclaim. i.e. it is assumed we'll never dirty/relog an inode marked XFS_ISTALE. On journal commit dirty stale inodes as are handled by both buffer and inode log items to run though xfs_istale_done() and removed from the AIL (buffer log item commit) or the log item will simply unpin it because the buffer log item will clean it. What happens to any specific inode is entirely dependent on which log item wins the commit race, but the result is the same - stale inodes are clean, not attached to the cluster buffer, and not in the AIL. Hence inode reclaim can just free these inodes without further care. However, if the stale inode is relogged, it gets dirtied again and relogged into the CIL. Most of the time this isn't an issue, because relogging simply changes the inode's location in the current checkpoint. Problems arise, however, when the CIL checkpoints between two transactions in the xfs_inactive_ifree() deferops processing. This results in the XFS_ISTALE inode being redirtied and inserted into the CIL without any of the other stale cluster buffer infrastructure being in place. Hence on journal commit, it simply gets unpinned, so it remains dirty in memory. Everything in inode writeback avoids XFS_ISTALE inodes so it can't be written back, and it is not tracked in the AIL so there's not even a trigger to attempt to clean the inode. Hence the inode just sits dirty in memory until inode reclaim comes along, sees that it is XFS_ISTALE, and goes to reclaim it. This reclaiming of a dirty inode caused use after free, list corruptions and other nasty issues later in this patchset. Hence this patch addresses a violation of the "never log XFS_ISTALE inodes" caused by the deferops processing rolling a transaction and relogging a stale inode in xfs_inactive_free. It also adds a bunch of asserts to catch this problem in debug kernels so that we don't reintroduce this problem in future. Reproducer for this issue was generic/558 on a v4 filesystem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Darrick J. Wong 提交于
Move the double-inode locking helpers to xfs_inode.c since they're not specific to reflink. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-