1. 15 2月, 2016 1 次提交
    • A
      powerpc/mm: Fix Multi hit ERAT cause by recent THP update · c777e2a8
      Aneesh Kumar K.V 提交于
      With ppc64 we use the deposited pgtable_t to store the hash pte slot
      information. We should not withdraw the deposited pgtable_t without
      marking the pmd none. This ensure that low level hash fault handling
      will skip this huge pte and we will handle them at upper levels.
      
      Recent change to pmd splitting changed the above in order to handle the
      race between pmd split and exit_mmap. The race is explained below.
      
      Consider following race:
      
      		CPU0				CPU1
      shrink_page_list()
        add_to_swap()
          split_huge_page_to_list()
            __split_huge_pmd_locked()
              pmdp_huge_clear_flush_notify()
      	// pmd_none() == true
      					exit_mmap()
      					  unmap_vmas()
      					    zap_pmd_range()
      					      // no action on pmd since pmd_none() == true
      	pmd_populate()
      
      As result the THP will not be freed. The leak is detected by check_mm():
      
      	BUG: Bad rss-counter state mm:ffff880058d2e580 idx:1 val:512
      
      The above required us to not mark pmd none during a pmd split.
      
      The fix for ppc is to clear the huge pte of _PAGE_USER, so that low
      level fault handling code skip this pte. At higher level we do take ptl
      lock. That should serialze us against the pmd split. Once the lock is
      acquired we do check the pmd again using pmd_same. That should always
      return false for us and hence we should retry the access. We do the
      pmd_same check in all case after taking plt with
      THP (do_huge_pmd_wp_page, do_huge_pmd_numa_page and
      huge_pmd_set_accessed)
      
      Also make sure we wait for irq disable section in other cpus to finish
      before flipping a huge pte entry with a regular pmd entry. Code paths
      like find_linux_pte_or_hugepte depend on irq disable to get
      a stable pte_t pointer. A parallel thp split need to make sure we
      don't convert a pmd pte to a regular pmd entry without waiting for the
      irq disable section to finish.
      
      Fixes: eef1b3ba ("thp: implement split_huge_pmd()")
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      c777e2a8
  2. 21 1月, 2016 1 次提交
  3. 18 1月, 2016 1 次提交
  4. 16 1月, 2016 26 次提交
  5. 15 1月, 2016 1 次提交
    • E
      mm: add tracepoint for scanning pages · 7d2eba05
      Ebru Akagunduz 提交于
      This patch series makes swapin readahead up to a certain number to gain
      more thp performance and adds tracepoint for khugepaged_scan_pmd,
      collapse_huge_page, __collapse_huge_page_isolate.
      
      This patch series was written to deal with programs that access most,
      but not all, of their memory after they get swapped out.  Currently
      these programs do not get their memory collapsed into THPs after the
      system swapped their memory out, while they would get THPs before
      swapping happened.
      
      This patch series was tested with a test program, it allocates 400MB of
      memory, writes to it, and then sleeps.  I force the system to swap out
      all.  Afterwards, the test program touches the area by writing and
      leaves a piece of it without writing.  This shows how much swap in
      readahead made by the patch.
      
      Test results:
      
                              After swapped out
      -------------------------------------------------------------------
                    | Anonymous | AnonHugePages | Swap      | Fraction  |
      -------------------------------------------------------------------
      With patch    | 90076 kB    | 88064 kB    | 309928 kB |    %99    |
      -------------------------------------------------------------------
      Without patch | 194068 kB | 192512 kB     | 205936 kB |    %99    |
      -------------------------------------------------------------------
      
                              After swapped in
      -------------------------------------------------------------------
                    | Anonymous | AnonHugePages | Swap      | Fraction  |
      -------------------------------------------------------------------
      With patch    | 201408 kB | 198656 kB     | 198596 kB |    %98    |
      -------------------------------------------------------------------
      Without patch | 292624 kB | 192512 kB     | 107380 kB |    %65    |
      -------------------------------------------------------------------
      
      This patch (of 3):
      
      Using static tracepoints, data of functions is recorded.  It is good to
      automatize debugging without doing a lot of changes in the source code.
      
      This patch adds tracepoint for khugepaged_scan_pmd, collapse_huge_page
      and __collapse_huge_page_isolate.
      
      [dan.carpenter@oracle.com: add a missing tab]
      Signed-off-by: NEbru Akagunduz <ebru.akagunduz@gmail.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Xie XiuQi <xiexiuqi@huawei.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7d2eba05
  6. 21 11月, 2015 1 次提交
  7. 07 11月, 2015 4 次提交
    • K
      mm: make compound_head() robust · 1d798ca3
      Kirill A. Shutemov 提交于
      Hugh has pointed that compound_head() call can be unsafe in some
      context. There's one example:
      
      	CPU0					CPU1
      
      isolate_migratepages_block()
        page_count()
          compound_head()
            !!PageTail() == true
      					put_page()
      					  tail->first_page = NULL
            head = tail->first_page
      					alloc_pages(__GFP_COMP)
      					   prep_compound_page()
      					     tail->first_page = head
      					     __SetPageTail(p);
            !!PageTail() == true
          <head == NULL dereferencing>
      
      The race is pure theoretical. I don't it's possible to trigger it in
      practice. But who knows.
      
      We can fix the race by changing how encode PageTail() and compound_head()
      within struct page to be able to update them in one shot.
      
      The patch introduces page->compound_head into third double word block in
      front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
      the rest bits are pointer to head page if bit zero is set.
      
      The patch moves page->pmd_huge_pte out of word, just in case if an
      architecture defines pgtable_t into something what can have the bit 0
      set.
      
      hugetlb_cgroup uses page->lru.next in the second tail page to store
      pointer struct hugetlb_cgroup. The patch switch it to use page->private
      in the second tail page instead. The space is free since ->first_page is
      removed from the union.
      
      The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
      limitation, since there's now space in first tail page to store struct
      hugetlb_cgroup pointer. But that's out of scope of the patch.
      
      That means page->compound_head shares storage space with:
      
       - page->lru.next;
       - page->next;
       - page->rcu_head.next;
      
      That's too long list to be absolutely sure, but looks like nobody uses
      bit 0 of the word.
      
      page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
      call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
      call_rcu_lazy() is not allowed as it makes use of the bit and we can
      get false positive PageTail().
      
      [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Andi Kleen <ak@linux.intel.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1d798ca3
    • A
      thp: remove unused vma parameter from khugepaged_alloc_page · d6669d68
      Aaron Tomlin 提交于
      The "vma" parameter to khugepaged_alloc_page() is unused.  It has to
      remain unused or the drop read lock 'map_sem' optimisation introduce by
      commit 8b164568 ("mm, THP: don't hold mmap_sem in khugepaged when
      allocating THP") wouldn't be safe.  So let's remove it.
      Signed-off-by: NAaron Tomlin <atomlin@redhat.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d6669d68
    • M
      mm, page_alloc: remove MIGRATE_RESERVE · 974a786e
      Mel Gorman 提交于
      MIGRATE_RESERVE preserves an old property of the buddy allocator that
      existed prior to fragmentation avoidance -- min_free_kbytes worth of pages
      tended to remain contiguous until the only alternative was to fail the
      allocation.  At the time it was discovered that high-order atomic
      allocations relied on this property so MIGRATE_RESERVE was introduced.  A
      later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch
      deletes MIGRATE_RESERVE and supporting code so it'll be easier to review.
      Note that this patch in isolation may look like a false regression if
      someone was bisecting high-order atomic allocation failures.
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      974a786e
    • M
      mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM · 71baba4b
      Mel Gorman 提交于
      __GFP_WAIT was used to signal that the caller was in atomic context and
      could not sleep.  Now it is possible to distinguish between true atomic
      context and callers that are not willing to sleep.  The latter should
      clear __GFP_DIRECT_RECLAIM so kswapd will still wake.  As clearing
      __GFP_WAIT behaves differently, there is a risk that people will clear the
      wrong flags.  This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
      indicate what it does -- setting it allows all reclaim activity, clearing
      them prevents it.
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Christoph Lameter <cl@linux.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Vitaly Wool <vitalywool@gmail.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71baba4b
  8. 06 11月, 2015 1 次提交
    • E
      mm: introduce VM_LOCKONFAULT · de60f5f1
      Eric B Munson 提交于
      The cost of faulting in all memory to be locked can be very high when
      working with large mappings.  If only portions of the mapping will be used
      this can incur a high penalty for locking.
      
      For the example of a large file, this is the usage pattern for a large
      statical language model (probably applies to other statical or graphical
      models as well).  For the security example, any application transacting in
      data that cannot be swapped out (credit card data, medical records, etc).
      
      This patch introduces the ability to request that pages are not
      pre-faulted, but are placed on the unevictable LRU when they are finally
      faulted in.  The VM_LOCKONFAULT flag will be used together with VM_LOCKED
      and has no effect when set without VM_LOCKED.  Setting the VM_LOCKONFAULT
      flag for a VMA will cause pages faulted into that VMA to be added to the
      unevictable LRU when they are faulted or if they are already present, but
      will not cause any missing pages to be faulted in.
      
      Exposing this new lock state means that we cannot overload the meaning of
      the FOLL_POPULATE flag any longer.  Prior to this patch it was used to
      mean that the VMA for a fault was locked.  This means we need the new
      FOLL_MLOCK flag to communicate the locked state of a VMA.  FOLL_POPULATE
      will now only control if the VMA should be populated and in the case of
      VM_LOCKONFAULT, it will not be set.
      Signed-off-by: NEric B Munson <emunson@akamai.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Guenter Roeck <linux@roeck-us.net>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Shuah Khan <shuahkh@osg.samsung.com>
      Cc: Stephen Rothwell <sfr@canb.auug.org.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      de60f5f1
  9. 23 10月, 2015 1 次提交
  10. 17 10月, 2015 1 次提交
  11. 29 9月, 2015 1 次提交
  12. 11 9月, 2015 1 次提交
    • V
      mm: introduce idle page tracking · 33c3fc71
      Vladimir Davydov 提交于
      Knowing the portion of memory that is not used by a certain application or
      memory cgroup (idle memory) can be useful for partitioning the system
      efficiently, e.g.  by setting memory cgroup limits appropriately.
      Currently, the only means to estimate the amount of idle memory provided
      by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
      access bit for all pages mapped to a particular process by writing 1 to
      clear_refs, wait for some time, and then count smaps:Referenced.  However,
      this method has two serious shortcomings:
      
       - it does not count unmapped file pages
       - it affects the reclaimer logic
      
      To overcome these drawbacks, this patch introduces two new page flags,
      Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
      A page's Idle flag can only be set from userspace by setting bit in
      /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
      and it is cleared whenever the page is accessed either through page tables
      (it is cleared in page_referenced() in this case) or using the read(2)
      system call (mark_page_accessed()). Thus by setting the Idle flag for
      pages of a particular workload, which can be found e.g.  by reading
      /proc/PID/pagemap, waiting for some time to let the workload access its
      working set, and then reading the bitmap file, one can estimate the amount
      of pages that are not used by the workload.
      
      The Young page flag is used to avoid interference with the memory
      reclaimer.  A page's Young flag is set whenever the Access bit of a page
      table entry pointing to the page is cleared by writing to the bitmap file.
      If page_referenced() is called on a Young page, it will add 1 to its
      return value, therefore concealing the fact that the Access bit was
      cleared.
      
      Note, since there is no room for extra page flags on 32 bit, this feature
      uses extended page flags when compiled on 32 bit.
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: kpageidle requires an MMU]
      [akpm@linux-foundation.org: decouple from page-flags rework]
      Signed-off-by: NVladimir Davydov <vdavydov@parallels.com>
      Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Michal Hocko <mhocko@suse.cz>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Cc: Cyrill Gorcunov <gorcunov@openvz.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      33c3fc71