- 16 8月, 2012 4 次提交
-
-
由 Archit Taneja 提交于
The DPI driver currently relies on the omap_dss_device struct to configure the number of data lines as specified by the panel. This makes the DPI interface driver dependent on the omap_dss_device struct. Make the DPI driver data maintain it's own data lines field. A panel driver is expected to call omapdss_dpi_set_data_lines() before enabling the interface. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The RFBI driver currently relies on the omap_dss_device struct to configure the number of data lines as specified by the panel. This makes the RFBI interface driver dependent on the omap_dss_device struct. Make the RFBI driver data maintain it's own data lines field. A panel driver is expected to call omapdss_rfbi_set_data_lines() to configure the pixel format before enabling the interface or calling omap_rfbi_configure(). Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The RFBI driver currently relies on the omap_dss_device struct to receive the desired pixel size of the panel. This makes the RFBI interface driver dependent on the omap_dss_device struct. Make the RFBI driver data maintain it's own pixel format field. A panel driver is expected to call omapdss_rfbi_set_pixel_size() to configure the pixel format before enabling the interface or calling omap_rfbi_configure(). Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the omap_dss_device struct to receive the desired pixel format of the panel. This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own pixel format field. The panel driver is expected to call omapdss_dsi_set_pixel_format() to configure the pixel format before the interface is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
- 15 8月, 2012 3 次提交
-
-
由 Archit Taneja 提交于
RFBI drivers requires configuration of the update area. Since we don't support partial updates, the size to be configures is the panel size itself. Add a timings field in RFBI's driver data. Apart from x_res and y_res, all the other fields are configured to an initial value when RFBI is enabled. A panel driver is expected to call omapdss_rfbi_set_size() configure the size of the panel. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Partial update suppport was removed from DISPC and DSI sometime back. The RFBI driver still tries to support partial update without the underlying support in DISPC. Remove partial update support from RFBI, only support updates which span acros the whole panel size. This also helps in DSI and RFBI having similar update ops. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Create function omapdss_sdi_set_timings(). Configuring new timings is done the same way as before, SDI is disabled, and re-enabled with the new timings in dssdev. This just moves the code from the panel drivers to the SDI driver. The panel drivers shouldn't be aware of how SDI manages to configure a new set of timings. This should be taken care of by the SDI driver itself. Signed-off-by: NArchit Taneja <archit@ti.com>
-
- 13 8月, 2012 3 次提交
-
-
由 Archit Taneja 提交于
DSI command mode panels don't need to configure a full set of timings to configure DSI, they only require the width and the height of the panel in pixels. Use omapdss_dsi_set_size for command mode panels, omapdss_dsi_set_timings is meant for video mode panels. When performing rotation via chaning the address mode of the panel, we would need to swap width and height when doing 90 or 270 rotation. Make sure that omapdss_dsi_set_size() makes the new width and height visible to DSI. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DSI driver currently relies on the timings in omap_dss_device struct to configure the DISPC and DSI blocks accordingly. This makes the DSI interface driver dependent on the omap_dss_device struct. Make the DSI driver data maintain it's own timings field. A DSI video mode panel driver is expected to call omapdss_dsi_set_timings() to set these timings before the panel is enabled. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
The DPI driver currently relies on the timings in omap_dss_device struct to configure the DISPC accordingly. This makes the DPI interface driver dependent on the omap_dss_device struct. Make the DPI driver data maintain it's own timings field. The panel driver is expected to call dpi_set_timings()(renamed to omapdss_dpi_set_timings) to set these timings before the panel is enabled. In the set_timings() op, we still ensure that the omap_dss_device timings (dssdev->panel.timings) are configured. This will later be configured only by the DPI panel drivers. Signed-off-by: NArchit Taneja <archit@ti.com>
-
- 29 6月, 2012 8 次提交
-
-
由 Archit Taneja 提交于
For DSI operation in videomode, DISPC logic levels for the signals HSYNC, VSYNC and DE need to be specified to DSI via the fields VP_HSYNC_POL, VP_VSYNC_POL and VP_DE_POL in DSI_CTRL registers. This information is completely internal to DSS as logic levels for the above signals hold no meaning on the DSI bus. Hence a DSI panel driver should be totally oblivious of these fields. Fix the logic levels/polarities in the DISPC and DSI registers to a default value. This is done by overriding these fields in omap_video_timings struct filled by the panel driver for DISPC, and use the equivalent default values when programming DSI_CTRL registers. Also, remove the redundant polarity related fields in omap_dss_dsi_videomode_data. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Add a parameter called interlace which tells whether the timings are in interlaced or progressive mode. This aligns the omap_video_timings struct with the Xorg modeline configuration. It also removes the hack needed to write to divide the manager height by 2 if the connected interface is VENC. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
omap_panel_config contains fields which are finally written to DISPC_POL_FREQo registers. These are now held by omap_video_timings and are set when the manager timings are applied. Remove the omap_panel_config enum, and remove all it's references from panel or interface drivers. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Some panel timing related fields are contained in omap_panel_config in the form of flags. The fields are: - Hsync logic level - Vsync logic level - Data driven on rising/falling edge of pixel clock - Output enable/Data enable logic level - HSYNC/VSYNC driven on rising/falling edge of pixel clock Out of these parameters, Hsync and Vsync logic levels are a part of the timings in the Xorg modeline configuration. So it makes sense to move the to omap_video_timings. The rest aren't a part of modeline, but it still makes sense to move these since they are related to panel timings. These fields stored in omap_panel_config in dssdev are configured for LCD panels, and the corresponding LCD managers in the DISPC_POL_FREQo registers. Add the above fields in omap_video_timings. Represent their state via new enums. Add these parameters to the omap_video_timings instances in the panel drivers. Keep the corresponding IVS, IHS, IPC, IEO, RF and ONOFF flags in omap_panel_config for now. The struct will be removed later. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Remove omap_lcd_display_type enum The enum omap_lcd_display_type is used to configure the lcd display type in DISPC. Remove this enum and always set display type to TFT by creating function dss_mgr_set_lcd_type_tft(). Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Archit Taneja 提交于
Remove OMAP_DSS_LCD_TFT as a omap_panel_config flag. We don't support passive matrix displays any more. Remove this flag from all the panel drivers. Force the display_type to OMAP_DSS_LCD_DISPLAY_TFT in the interface drivers. Signed-off-by: NArchit Taneja <archit@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
The support for LCD3 manager has been added into the manager module. LCD3 panel has registers as DISPC_CONTROL3 and DISPC_CONFIG3 just like those in LCD and LCD2 panels. These registers control the Display Controller (DISPC) module for LCD3 output. The three LCDs support Display Serial Interface (DSI), Remote Frame Buffer Interface (RFBI) and Parallel CMOS Output Interface (DPI). These LCDs can be connected through parallel output interface using DISPC and RFBI or DPI. For serial interface DSS uses DSI. The LCD3 panel, just like LCD and LCD2 panels, has a clock switch in DSS_CTRL register which has been enabled. The clock switch chooses between DSS_CLK and DPLL_DSI1_C_CLK1 as source for LCD3_CLK. New IRQs as DISPC_IRQ_VSYNC3, DISPC_IRQ_FRAMEDONE3, DISPC_IRQ_ACBIAS_COUNT_STAT3 and DISPC_IRQ_SYNC_LOST3 have been added specific to the new manager. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Chandrabhanu Mahapatra 提交于
OMAP5 Display Subsystem (DSS) architecture comes with a additional LCD3 channel with its own dedicated overlay manager. The current patch adds LCD3 channel and basic register support for LCD3 channel. It adds register addresses for various Display Controller (DISPC) registers like DISPC_DEFAULT_COLOR, DISPC_TIMING_H, DISPC_DIVISORo, etc. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 28 6月, 2012 1 次提交
-
-
由 Tomi Valkeinen 提交于
We have two almost the same enums: omap_channel and omap_dss_overlay_managers. omap_channel is used almost everywhere, and omap_channel assigns explicit values to the enum values which are needed for proper operation. omap_dss_overlay_managers is only used in one place, so it's easy to remove it, which is what this patch does. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 22 5月, 2012 1 次提交
-
-
由 Chandrabhanu Mahapatra 提交于
TILER is a block in OMAP4's DMM which lets DSS fetch frames in a rotated manner. Physical memory can be mapped to a portion of OMAP's system address space called TILER address space. The TILER address space is split into 8 views. Each view represents a rotated or mirrored form of the mapped physical memory. When a DISPC overlay's base address is programmed to one of these views, the TILER fetches the pixels according to the orientation of the view. A view is further split into 4 containers, each container holds elements of a particular size. Rotation can be achieved at the granularity of elements in the container. For more information on TILER, refer to the Memory Subsytem section in OMAP4 TRM. Rotation type TILER has been added which is used to exploit the capabilities of these 8 views for performing various rotations. When fetching from addresses mapped to TILER space, the DISPC DMA can fetch pixels in either 1D or 2D bursts. The fetch depends on which TILER container we are accessing. Accessing 8, 16 and 32 bit sized containers requires 2D bursts, and page mode sized containers require 1D bursts. The DSS2 user is expected to provide the Tiler address of the view that it is interested in. This is passed to the paddr and p_uv_addr parameters in omap_overlay_info. It is also expected to provide the stride value based on the view's orientation and container type, this should be passed to the screen_width parameter of omap_overlay_info. In calc_tiler_rotation_offset screen_width is used to calculate the required row_inc for DISPC. x_predecim and y_predecim are also used to calculate row_inc and pix_inc thereby adding predecimation support for TILER. Signed-off-by: NChandrabhanu Mahapatra <cmahapatra@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 11 5月, 2012 2 次提交
-
-
由 Ricardo Neri 提交于
There exist several display technologies and standards that support audio as well. Hence, it is relevant to update the DSS device driver to provide an audio interface that may be used by an audio driver or any other driver interested in the functionality. The audio_enable function is intended to prepare the relevant IP for playback (e.g., enabling an audio FIFO, taking in/out of reset some IP, enabling companion chips, etc). It is intended to be called before audio_start. The audio_disable function performs the reverse operation and is intended to be called after audio_stop. While a given DSS device driver may support audio, it is possible that for certain configurations audio is not supported (e.g., an HDMI display using a VESA video timing). The audio_supported function is intended to query whether the current configuration of the display supports audio. The audio_config function is intended to configure all the relevant audio parameters of the display. In order to make the function independent of any specific DSS device driver, a struct omap_dss_audio is defined. Its purpose is to contain all the required parameters for audio configuration. At the moment, such structure contains pointers to IEC-60958 channel status word and CEA-861 audio infoframe structures. This should be enough to support HDMI and DisplayPort, as both are based on CEA-861 and IEC-60958. The omap_dss_audio structure may be extended in the future if required. The audio_enable/disable, audio_config and audio_supported functions could be implemented as functions that may sleep. Hence, they should not be called while holding a spinlock or a readlock. The audio_start/audio_stop function is intended to effectively start/stop audio playback after the configuration has taken place. These functions are designed to be used in an atomic context. Hence, audio_start should return quickly and be called only after all the needed resources for audio playback (audio FIFOs, DMA channels, companion chips, etc) have been enabled to begin data transfers. audio_stop is designed to only stop the audio transfers. The resources used for playback are released using audio_disable. A new enum omap_dss_audio_state is introduced to help the implementations of the interface to keep track of the audio state. The initial state is _DISABLED; then, the state transitions to _CONFIGURED, and then, when it is ready to play audio, to _ENABLED. The state _PLAYING is used when the audio is being rendered. Signed-off-by: NRicardo Neri <ricardo.neri@ti.com>
-
由 Tomi Valkeinen 提交于
The omapdss pdata handling is a mess. This is more evident when trying to use device tree for DSS, as we don't have platform data anymore in that case. This patch cleans the pdata handling by: - Remove struct omap_display_platform_data. It was used just as a wrapper for struct omap_dss_board_info. - Pass the platform data only to omapdss device. The drivers for omap dss hwmods do not need the platform data. This should also work better for DT, as we can create omapdss device programmatically in generic omap boot code, and thus we can pass the pdata to it. - Create dss functions for get_ctx_loss_count and dsi_enable/disable_pads that the dss hwmod drivers can call. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 09 5月, 2012 1 次提交
-
-
由 Tomi Valkeinen 提交于
In preparation for device tree, this patch changes how the DSI pins are configured. The current configuration method is only doable with board files and the configuration data is OMAP specific. This patch moves the configuration data to the panel's platform data, and the data can easily be given via DT in the future. The configuration data format is also changed to a generic one which should be suitable for all platforms. The new format is an array of pin numbers, where the array items start from clock + and -, then data1 + and -, and so on. For example: { 0, // pin num for clock lane + 1, // pin num for clock lane - 2, // pin num for data1 lane + 3, // pin num for data1 lane - ... } The pin numbers are translated by the DSI driver and used to configure the hardware appropriately. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com> Acked-by: NTony Lindgren <tony@atomide.com>
-
- 23 4月, 2012 2 次提交
-
-
由 Grazvydas Ignotas 提交于
With this we can eliminate some duplicate code in panel drivers. Also lgphilips-lb035q02, nec-nl8048hl11-01b, picodlp and tpo-td043mtea1 gain support of reading timings over sysfs. Signed-off-by: NGrazvydas Ignotas <notasas@gmail.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
omapdss driver needs to use the omap_pm_set_min_bus_tput(), so add a new entry for that in omapdss's platform data, and set it. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com> Cc: Paul Walmsley <paul@pwsan.com> Acked-by: NKevin Hilman <khilman@ti.com>
-
- 26 1月, 2012 1 次提交
-
-
由 Tomi Valkeinen 提交于
A hardware bug in the OMAP4 HDMI PHY causes physical damage to the board if the HDMI PHY is kept powered on when the cable is not connected. This patch solves the problem by adding hot-plug-detection into the HDMI IP driver. This is not a real HPD support in the sense that nobody else than the IP driver gets to know about the HPD events, but is only meant to fix the HW bug. The strategy is simple: If the display device is turned off by the user, the PHY power is set to OFF. When the display device is turned on by the user, the PHY power is set either to LDOON or TXON, depending on whether the HDMI cable is connected. The reason to avoid PHY OFF when the display device is on, but the cable is disconnected, is that when the PHY is turned OFF, the HDMI IP is not "ticking" and thus the DISPC does not receive pixel clock from the HDMI IP. This would, for example, prevent any VSYNCs from happening, and would thus affect the users of omapdss. By using LDOON when the cable is disconnected we'll avoid the HW bug, but keep the HDMI working as usual from the user's point of view. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 05 1月, 2012 2 次提交
-
-
由 Mythri P K 提交于
Disables the internal pull resistor for SDA and SCL which are enabled by default, as there are external pull up's in 4460 and 4430 ES2.3 SDP, Blaze and Panda Boards, It is done to avoid the EDID read failure. Signed-off-by: NRicardo Salveti de Araujo <ricardo.salveti@linaro.org> Signed-off-by: NMythri P K <mythripk@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Mythri P K 提交于
Move duplicate HDMI mux_init code from omap4 and panda board file to display file. Signed-off-by: NMythri P K <mythripk@ti.com> Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
- 02 12月, 2011 12 次提交
-
-
由 Tomi Valkeinen 提交于
Add comments specifying what ovl/mgr functions may block. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
omap_overlay_manager contains device_changed field, which no longer has any use. So remove the field and the few places where it is touched. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Setting overlay's output channel is currently handled at the same time as other overlay attributes. This is not right, as the normal attributes should only affect one overlay and manager, but changing the channel affects two managers. This patch moves the channel field into the "extra_info" set, handled together with enabled-status. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
struct omap_overlayr contains info and info_dirty fields, both of which should be internal to apply.c. This patch moves those fields into ovl_priv data, and names them user_info and user_info_dirty. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
struct omap_overlay_manager contains info and info_dirty fields, both of which should be internal to apply.c. This patch moves those fields into mgr_priv data, and names them user_info and user_info_dirty. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Overlays are currently enabled and disabled with a boolean in the struct omap_overlay_info. The overlay info is set with ovl->set_overlay_info(), and made into use with mgr->apply(). This doesn't work properly, as the enable/disable status may affect also other overlays, for example when using fifo-merge. Thus the enabling and disabling of the overlay needs to be done outside the normal overlay configuration. This patch achieves that by doing the following things: 1) Add function pointers to struct omap_overlay: enable(), disable() and is_enabled(). These are used to do the obvious. The functions may block. 2) Move the "enabled" field from struct omap_overlay to ovl_priv_data. 3) Add a new route for settings to be applied to the HW, called "extra_info". The status of the normal info and extra_info are tracked separately. The point here is to allow the normal info to be changed and applied in non-blocking matter, whereas the extra_info can only be changed when holding the mutex. This makes it possible to, for example, set the overlay enable flag, apply it, and wait until the HW has taken the flag into use. This is not possible if the enable flag would be in the normal info, as a new value for the flag could be set at any time from the users of omapdss. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
struct omap_overlay_manager contains "enabled"-field, used to track if the manager is enabled or not. This field should be internal to apply.c. This patch moves the field to mgr_priv_data, and applies the necessary locking when accessing the field. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
The current code uses dsi_video_mode_enable/disable functions to enable/disable DISPC output for video mode displays. For command mode displays we have no notion in the DISPC side of whether the panel is enabled, except when a dss_mgr_start_update() call is made. However, to properly maintain the DISPC state in apply.c, we need to know if a manager used for a manual update display is currently in use. This patch achieves that by changing dsi_video_mode_enable/disable to dsi_enable/disable_video_output, which is called by both video and command mode displays. For video mode displays it starts the actual pixel stream, as it did before. For command mode displays it doesn't do anything else than mark that the manager is currently in use. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Current way of handling overlay-manager links is a bit strange: each manager has a static array, containing pointers to all the overlays (even those used by other managers). The overlays contain a pointer to the manager being used. This patch makes the system a bit saner: each manager has a linked list of overlays, and only the overlays linked to that manager are in the list. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Overlay managers are stored in a linked list. There's no need for this list, as an array would do just as fine. This patch changes the code to use an array for overlay managers. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
Add "enabled" field to struct omap_overlay_manager, which tells if the output is enabled or not. This will be used in apply.c in the following patches. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-
由 Tomi Valkeinen 提交于
omap_overlay_manager struct contains enable() and disable() functions. However, these are only meant to be used from inside omapdss, and thus it's bad to expose the functions. This patch adds dss_mgr_enable() and dss_mgr_disable() functions to apply.c, which handle enabling and disabling the output. Signed-off-by: NTomi Valkeinen <tomi.valkeinen@ti.com>
-