- 20 2月, 2019 14 次提交
-
-
由 Shaokun Zhang 提交于
The 'gpa_end' local variable is never used and let's remove it. Cc: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: NShaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Colin Ian King 提交于
There is a spelling mistake in a kvm_err error message. Fix it. Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Masahiro Yamada 提交于
As the comment block in include/trace/define_trace.h says, TRACE_INCLUDE_PATH should be a relative path to the define_trace.h ../../virt/kvm/arm is the correct relative path. ../../../virt/kvm/arm is working by coincidence because the top Makefile adds -I$(srctree)/arch/$(SRCARCH)/include as a header search path, but we should not rely on it. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
When a guest gets scheduled, KVM performs a "load" operation, which for the timer includes evaluating the virtual "active" state of the interrupt, and replicating it on the physical side. This ensures that the deactivation in the guest will also take place in the physical GIC distributor. If the interrupt is not yet active, we flag it as inactive on the physical side. This means that on restoring the timer registers, if the timer has expired, we'll immediately take an interrupt. That's absolutely fine, as the interrupt will then be flagged as active on the physical side. What this assumes though is that we'll enter the guest right after having taken the interrupt, and that the guest will quickly ACK the interrupt, making it active at on the virtual side. It turns out that quite often, this assumption doesn't really hold. The guest may be preempted on the back on this interrupt, either from kernel space or whilst running at EL1 when a host interrupt fires. When this happens, we repeat the whole sequence on the next load (interrupt marked as inactive, timer registers restored, interrupt fires). And if it takes a really long time for a guest to activate the interrupt (as it does with nested virt), we end-up with many such events in quick succession, leading to the guest only making very slow progress. This can also be seen with the number of virtual timer interrupt on the host being far greater than the same number in the guest. An easy way to fix this is to evaluate the timer state when performing the "load" operation, just like we do when the interrupt actually fires. If the timer has a pending virtual interrupt at this stage, then we can safely flag the physical interrupt as being active, which prevents spurious exits. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
Move this little function to the header files for arm/arm64 so other code can make use of it directly. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We are currently emulating two timers in two different ways. When we add support for nested virtualization in the future, we are going to be emulating either two timers in two diffferent ways, or four timers in a single way. We need a unified data structure to keep track of how we map virtual state to physical state and we need to cleanup some of the timer code to operate more independently on a struct arch_timer_context instead of trying to consider the global state of the VCPU and recomputing all state. Co-written with Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Christoffer Dall 提交于
VHE systems don't have to emulate the physical timer, we can simply assign the EL1 physical timer directly to the VM as the host always uses the EL2 timers. In order to minimize the amount of cruft, AArch32 gets definitions for the physical timer too, but is should be generally unused on this architecture. Co-written with Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Christoffer Dall 提交于
Prepare for having 4 timer data structures (2 for now). Move loaded to the cpu data structure and not the individual timer structure, in preparation for assigning the EL1 phys timer as well. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Andre Przywara 提交于
At the moment we have separate system register emulation handlers for each timer register. Actually they are quite similar, and we rely on kvm_arm_timer_[gs]et_reg() for the actual emulation anyways, so let's just merge all of those handlers into one function, which just marshalls the arguments and then hands off to a set of common accessors. This makes extending the emulation to include EL2 timers much easier. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> [Fixed 32-bit VM breakage and reduced to reworking existing code] Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> [Fixed 32bit host, general cleanup] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We previously incorrectly named the define for this system register. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Christoffer Dall 提交于
Instead of calling into kvm_timer_[un]schedule from the main kvm blocking path, test if the VCPU is on the wait queue from the load/put path and perform the background timer setup/cancel in this path. This has the distinct advantage that we no longer race between load/put and schedule/unschedule and programming and canceling of the bg_timer always happens when the timer state is not loaded. Note that we must now remove the checks in kvm_timer_blocking that do not schedule a background timer if one of the timers can fire, because we no longer have a guarantee that kvm_vcpu_check_block() will be called before kvm_timer_blocking. Reported-by: NAndre Przywara <andre.przywara@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
In preparation for nested virtualization where we are going to have more than a single VMID per VM, let's factor out the VMID data into a separate VMID data structure and change the VMID allocator to operate on this new structure instead of using a struct kvm. This also means that udate_vttbr now becomes update_vmid, and that the vttbr itself is generated on the fly based on the stage 2 page table base address and the vmid. We cache the physical address of the pgd when allocating the pgd to avoid doing the calculation on every entry to the guest and to avoid calling into potentially non-hyp-mapped code from hyp/EL2. If we wanted to merge the VMID allocator with the arm64 ASID allocator at some point in the future, it should actually become easier to do that after this patch. Note that to avoid mapping the kvm_vmid_bits variable into hyp, we simply forego the masking of the vmid value in kvm_get_vttbr and rely on update_vmid to always assign a valid vmid value (within the supported range). Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> [maz: minor cleanups] Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We currently eagerly save/restore MPIDR. It turns out to be slightly pointless: - On the host, this value is known as soon as we're scheduled on a physical CPU - In the guest, this value cannot change, as it is set by KVM (and this is a read-only register) The result of the above is that we can perfectly avoid the eager saving of MPIDR_EL1, and only keep the restore. We just have to setup the host contexts appropriately at boot time. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
由 Marc Zyngier 提交于
Until now, we haven't differentiated between HYP calls that have a return value and those who don't. As we're about to change this, introduce kvm_call_hyp_ret(), and change all call sites that actually make use of a return value. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com>
-
- 05 1月, 2019 1 次提交
-
-
由 Joel Fernandes (Google) 提交于
Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.comSigned-off-by: NJoel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: NKirill A. Shutemov <kirill@shutemov.name> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 12月, 2018 1 次提交
-
-
由 Lan Tianyu 提交于
The patch is to make kvm_set_spte_hva() return int and caller can check return value to determine flush tlb or not. Signed-off-by: NLan Tianyu <Tianyu.Lan@microsoft.com> Acked-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 12月, 2018 8 次提交
-
-
由 Marc Zyngier 提交于
32 and 64bit use different symbols to identify the traps. 32bit has a fine grained approach (prefetch abort, data abort and HVC), while 64bit is pretty happy with just "trap". This has been fine so far, except that we now need to decode some of that in tracepoints that are common to both architectures. Introduce ARM_EXCEPTION_IS_TRAP which abstracts the trap symbols and make the tracepoint use it. Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
There are two things we need to take care of when we create block mappings in the stage 2 page tables: (1) The alignment within a PMD between the host address range and the guest IPA range must be the same, since otherwise we end up mapping pages with the wrong offset. (2) The head and tail of a memory slot may not cover a full block size, and we have to take care to not map those with block descriptors, since we could expose memory to the guest that the host did not intend to expose. So far, we have been taking care of (1), but not (2), and our commentary describing (1) was somewhat confusing. This commit attempts to factor out the checks of both into a common function, and if we don't pass the check, we won't attempt any PMD mappings for neither hugetlbfs nor THP. Note that we used to only check the alignment for THP, not for hugetlbfs, but as far as I can tell the check needs to be applied to both scenarios. Cc: Ralph Palutke <ralph.palutke@fau.de> Cc: Lukas Braun <koomi@moshbit.net> Reported-by: NLukas Braun <koomi@moshbit.net> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Marc Zyngier 提交于
We currently only halt the guest when a vCPU messes with the active state of an SPI. This is perfectly fine for GICv2, but isn't enough for GICv3, where all vCPUs can access the state of any other vCPU. Let's broaden the condition to include any GICv3 interrupt that has an active state (i.e. all but LPIs). Cc: stable@vger.kernel.org Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
kvm_timer_vcpu_terminate can only be called in two scenarios: 1. As part of cleanup during a failed VCPU create 2. As part of freeing the whole VM (struct kvm refcount == 0) In the first case, we cannot have programmed any timers or mapped any IRQs, and therefore we do not have to cancel anything or unmap anything. In the second case, the VCPU will have gone through kvm_timer_vcpu_put, which will have canceled the emulated physical timer's hrtimer, and we do not need to that here as well. We also do not care if the irq is recorded as mapped or not in the VGIC data structure, because the whole VM is going away. That leaves us only with having to ensure that we cancel the bg_timer if we were blocking the last time we called kvm_timer_vcpu_put(). Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The use of a work queue in the hrtimer expire function for the bg_timer is a leftover from the time when we would inject interrupts when the bg_timer expired. Since we are no longer doing that, we can instead call kvm_vcpu_wake_up() directly from the hrtimer function and remove all workqueue functionality from the arch timer code. Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
The kvm_exit tracepoint strangely always reported exits as being IRQs. This seems to be because either the __print_symbolic or the tracepoint macros use a variable named idx. Take this chance to update the fields in the tracepoint to reflect the concepts in the arm64 architecture that we pass to the tracepoint and move the exception type table to the same location and header files as the exits code. We also clear out the exception code to 0 for IRQ exits (which translates to UNKNOWN in text) to make it slighyly less confusing to parse the trace output. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
When checking if there are any pending IRQs for the VM, consider the active state and priority of the IRQs as well. Otherwise we could be continuously scheduling a guest hypervisor without it seeing an IRQ. Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Gustavo A. R. Silva 提交于
When using the nospec API, it should be taken into account that: "...if the CPU speculates past the bounds check then * array_index_nospec() will clamp the index within the range of [0, * size)." The above is part of the header for macro array_index_nospec() in linux/nospec.h Now, in this particular case, if intid evaluates to exactly VGIC_MAX_SPI or to exaclty VGIC_MAX_PRIVATE, the array_index_nospec() macro ends up returning VGIC_MAX_SPI - 1 or VGIC_MAX_PRIVATE - 1 respectively, instead of VGIC_MAX_SPI or VGIC_MAX_PRIVATE, which, based on the original logic: /* SGIs and PPIs */ if (intid <= VGIC_MAX_PRIVATE) return &vcpu->arch.vgic_cpu.private_irqs[intid]; /* SPIs */ if (intid <= VGIC_MAX_SPI) return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; are valid values for intid. Fix this by calling array_index_nospec() macro with VGIC_MAX_PRIVATE + 1 and VGIC_MAX_SPI + 1 as arguments for its parameter size. Fixes: 41b87599 ("KVM: arm/arm64: vgic: fix possible spectre-v1 in vgic_get_irq()") Cc: stable@vger.kernel.org Signed-off-by: NGustavo A. R. Silva <gustavo@embeddedor.com> [dropped the SPI part which was fixed separately] Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 18 12月, 2018 15 次提交
-
-
由 Marc Zyngier 提交于
SPIs should be checked against the VMs specific configuration, and not the architectural maximum. Cc: stable@vger.kernel.org Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
In attempting to re-construct the logic for our stage 2 page table layout I found the reasoning in the comment explaining how we calculate the number of levels used for stage 2 page tables a bit backwards. This commit attempts to clarify the comment, to make it slightly easier to read without having the Arm ARM open on the right page. While we're at it, fixup a typo in a comment that was recently changed. Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Julien Thierry 提交于
To change the active state of an MMIO, halt is requested for all vcpus of the affected guest before modifying the IRQ state. This is done by calling cond_resched_lock() in vgic_mmio_change_active(). However interrupts are disabled at this point and we cannot reschedule a vcpu. We actually don't need any of this, as kvm_arm_halt_guest ensures that all the other vcpus are out of the guest. Let's just drop that useless code. Signed-off-by: NJulien Thierry <julien.thierry@arm.com> Suggested-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: stable@vger.kernel.org Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
KVM only supports PMD hugepages at stage 2. Now that the various page handling routines are updated, extend the stage 2 fault handling to map in PUD hugepages. Addition of PUD hugepage support enables additional page sizes (e.g., 1G with 4K granule) which can be useful on cores that support mapping larger block sizes in the TLB entries. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [ Replace BUG() => WARN_ON(1) for arm32 PUD helpers ] Signed-off-by: NSuzuki Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
In preparation for creating larger hugepages at Stage 2, add support to the age handling notifiers for PUD hugepages when encountered. Provide trivial helpers for arm32 to allow sharing code. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [ Replaced BUG() => WARN_ON(1) for arm32 PUD helpers ] Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
In preparation for creating larger hugepages at Stage 2, extend the access fault handling at Stage 2 to support PUD hugepages when encountered. Provide trivial helpers for arm32 to allow sharing of code. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [ Replaced BUG() => WARN_ON(1) in PUD helpers ] Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
In preparation for creating PUD hugepages at stage 2, add support for detecting execute permissions on PUD page table entries. Faults due to lack of execute permissions on page table entries is used to perform i-cache invalidation on first execute. Provide trivial implementations of arm32 helpers to allow sharing of code. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [ Replaced BUG() => WARN_ON(1) in arm32 PUD helpers ] Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
In preparation for creating PUD hugepages at stage 2, add support for write protecting PUD hugepages when they are encountered. Write protecting guest tables is used to track dirty pages when migrating VMs. Also, provide trivial implementations of required kvm_s2pud_* helpers to allow sharing of code with arm32. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> [ Replaced BUG() => WARN_ON() in arm32 pud helpers ] Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
Introduce helpers to abstract architectural handling of the conversion of pfn to page table entries and marking a PMD page table entry as a block entry. The helpers are introduced in preparation for supporting PUD hugepages at stage 2 - which are supported on arm64 but do not exist on arm. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
Stage 2 fault handler marks a page as executable if it is handling an execution fault or if it was a permission fault in which case the executable bit needs to be preserved. The logic to decide if the page should be marked executable is duplicated for PMD and PTE entries. To avoid creating another copy when support for PUD hugepages is introduced refactor the code to share the checks needed to mark a page table entry as executable. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Punit Agrawal 提交于
The code for operations such as marking the pfn as dirty, and dcache/icache maintenance during stage 2 fault handling is duplicated between normal pages and PMD hugepages. Instead of creating another copy of the operations when we introduce PUD hugepages, let's share them across the different pagesizes. Signed-off-by: NPunit Agrawal <punit.agrawal@arm.com> Reviewed-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NSuzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
When restoring the active state from userspace, we don't know which CPU was the source for the active state, and this is not architecturally exposed in any of the register state. Set the active_source to 0 in this case. In the future, we can expand on this and exposse the information as additional information to userspace for GICv2 if anyone cares. Cc: stable@vger.kernel.org Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Christoffer Dall 提交于
We recently addressed a VMID generation race by introducing a read/write lock around accesses and updates to the vmid generation values. However, kvm_arch_vcpu_ioctl_run() also calls need_new_vmid_gen() but does so without taking the read lock. As far as I can tell, this can lead to the same kind of race: VM 0, VCPU 0 VM 0, VCPU 1 ------------ ------------ update_vttbr (vmid 254) update_vttbr (vmid 1) // roll over read_lock(kvm_vmid_lock); force_vm_exit() local_irq_disable need_new_vmid_gen == false //because vmid gen matches enter_guest (vmid 254) kvm_arch.vttbr = <PGD>:<VMID 1> read_unlock(kvm_vmid_lock); enter_guest (vmid 1) Which results in running two VCPUs in the same VM with different VMIDs and (even worse) other VCPUs from other VMs could now allocate clashing VMID 254 from the new generation as long as VCPU 0 is not exiting. Attempt to solve this by making sure vttbr is updated before another CPU can observe the updated VMID generation. Cc: stable@vger.kernel.org Fixes: f0cf47d9 "KVM: arm/arm64: Close VMID generation race" Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Mark Rutland 提交于
When we emulate a guest instruction, we don't advance the hardware singlestep state machine, and thus the guest will receive a software step exception after a next instruction which is not emulated by the host. We bodge around this in an ad-hoc fashion. Sometimes we explicitly check whether userspace requested a single step, and fake a debug exception from within the kernel. Other times, we advance the HW singlestep state rely on the HW to generate the exception for us. Thus, the observed step behaviour differs for host and guest. Let's make this simpler and consistent by always advancing the HW singlestep state machine when we skip an instruction. Thus we can rely on the hardware to generate the singlestep exception for us, and never need to explicitly check for an active-pending step, nor do we need to fake a debug exception from the guest. Cc: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Mark Rutland 提交于
When we emulate an MMIO instruction, we advance the CPU state within decode_hsr(), before emulating the instruction effects. Having this logic in decode_hsr() is opaque, and advancing the state before emulation is problematic. It gets in the way of applying consistent single-step logic, and it prevents us from being able to fail an MMIO instruction with a synchronous exception. Clean this up by only advancing the CPU state *after* the effects of the instruction are emulated. Cc: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: NAlex Bennée <alex.bennee@linaro.org> Reviewed-by: NChristoffer Dall <christoffer.dall@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 14 12月, 2018 1 次提交
-
-
由 Paolo Bonzini 提交于
There are two problems with KVM_GET_DIRTY_LOG. First, and less important, it can take kvm->mmu_lock for an extended period of time. Second, its user can actually see many false positives in some cases. The latter is due to a benign race like this: 1. KVM_GET_DIRTY_LOG returns a set of dirty pages and write protects them. 2. The guest modifies the pages, causing them to be marked ditry. 3. Userspace actually copies the pages. 4. KVM_GET_DIRTY_LOG returns those pages as dirty again, even though they were not written to since (3). This is especially a problem for large guests, where the time between (1) and (3) can be substantial. This patch introduces a new capability which, when enabled, makes KVM_GET_DIRTY_LOG not write-protect the pages it returns. Instead, userspace has to explicitly clear the dirty log bits just before using the content of the page. The new KVM_CLEAR_DIRTY_LOG ioctl can also operate on a 64-page granularity rather than requiring to sync a full memslot; this way, the mmu_lock is taken for small amounts of time, and only a small amount of time will pass between write protection of pages and the sending of their content. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-