- 01 11月, 2015 23 次提交
-
-
由 Christoph Hellwig 提交于
Factor out code to reserve log space. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
This is the only user, and keeping all code initializing the io_unit structure together improves readbility. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Set up bi_sector properly when we allocate an bio instead of updating it at submission time. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Split out a helper to allocate a bio for log writes. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Remove the only partially used local 'io' variable to simplify the code flow. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
For devices without a volatile write cache we don't need to send a FLUSH command to ensure writes are stable on disk, and thus can avoid the whole step of batching up bios for processing by the MD thread. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
After this series we won't nessecarily have flushed the cache for these I/Os, so give the list a more neutral name. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
There is no good reason to keep the I/O unit structures around after the stripe has been written back to the RAID array. The only information we need is the log sequence number, and the checkpoint offset of the highest successfull writeback. Store those in the log structure, and free the IO units from __r5l_stripe_write_finished. Besides simplifying the code this also avoid having to keep the allocation for the I/O unit around for a potentially long time as superblock updates that checkpoint the log do not happen very often. This also fixes the previously incorrect calculation of 'free' in r5l_do_reclaim as a side effect: previous if took the last unit which isn't checkpointed into account. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Move reclaim stop to quiesce handling, where is safer for this stuff. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Journal disk state sysfs entry should indicate it's journal Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
match_mddev_units is used to check whether 2 RAID arrays share same disk(s). Arrays that share disk(s) will not do resync at the same time for better performance (fewer HDD seek). However, this check should not apply to Spare, Faulty, and Journal disks, as they do not paticipate in resync. In this patch, match_mddev_units skips check for disks with flag "Faulty" or "Journal" or raid_disk < 0. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
There is a case a stripe gets delayed forever. 1. a stripe finishes construction 2. a new bio hits the stripe 3. handle_stripe runs for the stripe. The stripe gets DELAYED bit set since construction can't run for new bio (the stripe is locked since step 1) Without log, handle_stripe will call ops_run_io. After IO finishes, the stripe gets unlocked and the stripe will restart and run construction for the new bio. With log, ops_run_io need to run two times. If the DELAYED bit set, the stripe can't enter into the handle_list, so the second ops_run_io doesn't run, which leaves the stripe stalled. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
stripes could finish out of order. Hence r5l_move_io_unit_list() of __r5l_stripe_write_finished might not move any entry and leave stripe_end_ios list empty. This applies on top of http://marc.info/?l=linux-raid&m=144122700510667Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
If a raid array has journal, the journal can guarantee the consistency, we can skip resync after a unclean shutdown. The exception is raid creation or user initiated resync, which we still do a raid resync. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
With log enabled, bio is written to raid disks after the bio is settled down in log disk. The recovery guarantees we can recovery the bio data from log disk, so we we skip FLUSH IO. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Just keep __r5l_set_io_unit_state as a small set the state wrapper, and remove r5l_set_io_unit_state entirely after moving the real functionality to the two callers that need it. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
r5l_compress_stripe_end_list() can free an io_unit. This breaks the assumption only reclaimer can free io_unit. We can add a reference count based io_unit free, but since only reclaim can wait io_unit becoming to STRIPE_END state, we use a simple global wait queue here. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Before we write stripe data to raid disks, we must guarantee stripe data is settled down in log disk. To do this, we flush log disk cache and wait the flush finish. That wait introduces sleep time in raid5d thread and impact performance. This patch moves the log disk cache flush process to the stripe handling state machine, which can remove the wait in raid5d. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Now log is safe to enable for raid array with cache disk Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
If cache(log) support is enabled, don't allow resize/reshape in current stage. In the future, we can flush all data from cache(log) to raid before resize/reshape and then allow resize/reshape. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
With log enabled, r5l_write_stripe will add the stripe to log. With batch, several stripes are linked together. The stripes must be in the same state. While with log, the log/reclaim unit is stripe, we can't guarantee the several stripes are in the same state. Disabling batch for log now. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
crc32c has lower overhead with cpu acceleration. It's a shame I didn't use it in first post, sorry. This changes disk format, but we are still ok in current stage. V2: delete unnecessary type conversion as pointed out by Bart Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com> Reviewed-by: NBart Van Assche <bart.vanassche@sandisk.com>
-
- 24 10月, 2015 13 次提交
-
-
由 Shaohua Li 提交于
This is the log recovery support. The process is quite straightforward. We scan the log and read all valid meta/data/parity into memory. If a stripe's data/parity checksum is correct, the stripe will be recoveried. Otherwise, it's discarded and we don't scan the log further. The reclaim process guarantees stripe which starts to be flushed raid disks has completed data/parity and has correct checksum. To recovery a stripe, we just copy its data/parity to corresponding raid disks. The trick thing is superblock update after recovery. we can't let superblock point to last valid meta block. The log might look like: | meta 1| meta 2| meta 3| meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If superblock points to meta 1, we write a new valid meta 2n. If crash happens again, new recovery will start from meta 1. Since meta 2n is valid, recovery will think meta 3 is valid, which is wrong. The solution is we create a new meta in meta2 with its seq == meta 1's seq + 10 and let superblock points to meta2. recovery will not think meta 3 is a valid meta, because its seq is wrong Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
This is the reclaim support for raid5 log. A stripe write will have following steps: 1. reconstruct the stripe, read data/calculate parity. ops_run_io prepares to write data/parity to raid disks 2. hijack ops_run_io. stripe data/parity is appending to log disk 3. flush log disk cache 4. ops_run_io run again and do normal operation. stripe data/parity is written in raid array disks. raid core can return io to upper layer. 5. flush cache of all raid array disks 6. update super block 7. log disk space used by the stripe can be reused In practice, several stripes consist of an io_unit and we will batch several io_unit in different steps, but the whole process doesn't change. It's possible io return just after data/parity hit log disk, but then read IO will need read from log disk. For simplicity, IO return happens at step 4, where read IO can directly read from raid disks. Currently reclaim run if there is specific reclaimable space (1/4 disk size or 10G) or we are out of space. Reclaim is just to free log disk spaces, it doesn't impact data consistency. The size based force reclaim is to make sure log isn't too big, so recovery doesn't scan log too much. Recovery make sure raid disks and log disk have the same data of a stripe. If crash happens before 4, recovery might/might not recovery stripe's data/parity depending on if data/parity and its checksum matches. In either case, this doesn't change the syntax of an IO write. After step 3, stripe is guaranteed recoverable, because stripe's data/parity is persistent in log disk. In some cases, log disk content and raid disks content of a stripe are the same, but recovery will still copy log disk content to raid disks, this doesn't impact data consistency. space reuse happens after superblock update and cache flush. There is one situation we want to avoid. A broken meta in the middle of a log causes recovery can't find meta at the head of log. If operations require meta at the head persistent in log, we must make sure meta before it persistent in log too. The case is stripe data/parity is in log and we start write stripe to raid disks (before step 4). stripe data/parity must be persistent in log before we do the write to raid disks. The solution is we restrictly maintain io_unit list order. In this case, we only write stripes of an io_unit to raid disks till the io_unit is the first one whose data/parity is in log. The io_unit list order is important for other cases too. For example, some io_unit are reclaimable and others not. They can be mixed in the list, we shouldn't reuse space of an unreclaimable io_unit. Includes fixes to problems which were... Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
This introduces a simple log for raid5. Data/parity writing to raid array first writes to the log, then write to raid array disks. If crash happens, we can recovery data from the log. This can speed up raid resync and fix write hole issue. The log structure is pretty simple. Data/meta data is stored in block unit, which is 4k generally. It has only one type of meta data block. The meta data block can track 3 types of data, stripe data, stripe parity and flush block. MD superblock will point to the last valid meta data block. Each meta data block has checksum/seq number, so recovery can scan the log correctly. We store a checksum of stripe data/parity to the metadata block, so meta data and stripe data/parity can be written to log disk together. otherwise, meta data write must wait till stripe data/parity is finished. For stripe data, meta data block will record stripe data sector and size. Currently the size is always 4k. This meta data record can be made simpler if we just fix write hole (eg, we can record data of a stripe's different disks together), but this format can be extended to support caching in the future, which must record data address/size. For stripe parity, meta data block will record stripe sector. It's size should be 4k (for raid5) or 8k (for raid6). We always store p parity first. This format should work for caching too. flush block indicates a stripe is in raid array disks. Fixing write hole doesn't need this type of meta data, it's for caching extension. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
When a stripe finishes construction, we write the stripe to raid in ops_run_io normally. With log, we do a bunch of other operations before the stripe is written to raid. Mainly write the stripe to log disk, flush disk cache and so on. The operations are still driven by raid5d and run in the stripe state machine. We introduce a new state for such stripe (trapped into log). The stripe is in this state from the time it first enters ops_run_io (finish construction) to the time it is written to raid. Since we know the state is only for log, we bypass other check/operation in handle_stripe. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Next several patches use some raid5 functions, rename them with raid5 prefix and export out. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Journal device stores data in a log structure. We need record the log start. Here we override md superblock recovery_offset for this purpose. This field of a journal device is meaningless otherwise. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
Next patches will use a disk as raid5/6 journaling. We need a new disk role to present the journal device and add MD_FEATURE_JOURNAL to feature_map for backward compability. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
Add the following two macros for special roles: spare and faulty MD_DISK_ROLE_SPARE 0xffff MD_DISK_ROLE_FAULTY 0xfffe Add MD_DISK_ROLE_MAX 0xff00 as the maximal possible regular role, and minimal value of special role. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Goldwyn Rodrigues 提交于
To incorporate --grow feature executed on one node, other nodes need to acknowledge the change in number of disks. Call update_raid_disks() to update internal data structures. This leads to call check_reshape() -> md_allow_write() -> md_update_sb(), this results in a deadlock. This is done so it can safely allocate memory (which might trigger writeback which might write to raid1). This is not required for md with a bitmap. In the clustered case, we don't perform md_update_sb() in md_allow_write(), but in do_md_run(). Also we disable safemode for clustered mode. mddev->recovery_cp need not be set in check_sb_changes() because this is required only when a node reads another node's bitmap. mddev->recovery_cp (which is read from sb->resync_offset), is set only if mddev is in_sync. Since we disabled safemode, in_sync is set to zero. In a clustered environment, the MD may not be in sync because another node could be writing to it. So make sure that in_sync is not set in case of clustered node in __md_stop_writes(). Signed-off-by: NGoldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 NeilBrown 提交于
The arg isn't used, so its presence is only confusing. Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 NeilBrown 提交于
It is common practice in the kernel to leave out this case. It isn't needed and adds little if any value. Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 NeilBrown 提交于
Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Guoqing Jiang 提交于
This patches fixes sparse warnings like incorrect type in assignment (different base types), cast to restricted __le64. Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Signed-off-by: NGuoqing Jiang <gqjiang@suse.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
- 16 10月, 2015 1 次提交
-
-
由 NeilBrown 提交于
As cmsg.raid_slot is le32, comparing for >0 is not meaningful. So introduce cpu-endian 'raid_slot' and only assign to cmsg.raid_slot when we know value is valid. Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
- 14 10月, 2015 1 次提交
-
-
git://github.com/goldwynr/linux由 NeilBrown 提交于
md-cluster: A better way for METADATA_UPDATED processing The processing of METADATA_UPDATED message is too simple and prone to errors. Besides, it would not update the internal data structures as required. This set of patches reads the superblock from one of the device of the MD and checks for changes in the in-memory data structures. If there is a change, it performs the necessary actions to keep the internal data structures as it would be in the primary node. An example is if a devices turns faulty. The algorithm is: 1. The initiator node marks the device as faulty and updates the superblock 2. The initiator node sends METADATA_UPDATED with an advisory device number to the rest of the nodes. 3. The receiving node on receiving the METADATA_UPDATED message 3.1 Reads the superblock 3.2 Detects a device has failed by comparing with memory structure 3.3 Calls the necessary functions to record the failure and get the device out of the active array. 3.4 Acknowledges the message. The patch series also fixes adding the disk which was impacted because of the changes. Patches can also be found at https://github.com/goldwynr/linux branch md-next Changes since V2: - Fix status synchrnoization after --add and --re-add operations - Included Guoqing's patches on endian correctness, zeroing cmsg etc - Restructure add_new_disk() and cancel()
-
- 13 10月, 2015 2 次提交
-
-
由 Guoqing Jiang 提交于
We shouldn't run related funs of md_cluster_ops in case metadata_update_start returned failure. Signed-off-by: NGuoqing Jiang <gqjiang@suse.com>
-
由 Guoqing Jiang 提交于
For cluster raid, we should not kick it from array if the disk can't be remove from array successfully. Signed-off-by: NGuoqing Jiang <gqjiang@suse.com> Signed-off-by: NGoldwyn Rodrigues <rgoldwyn@suse.com>
-