- 13 7月, 2022 2 次提交
-
-
由 Darrick J. Wong 提交于
Replace the shouty macros here with typechecked helper functions. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Replace this shouty macro with a real C function that has a more descriptive name. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 10 7月, 2022 3 次提交
-
-
由 Darrick J. Wong 提交于
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the attribute fork but i_forkoff is zero. This eliminates the ambiguity between i_forkoff and i_af.if_present, which should make it easier to understand the lifetime of attr forks. While we're at it, remove the if_present checks around calls to xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr forks that have already been torn down. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Syzkaller reported a UAF bug a while back: ================================================================== BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958 CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted 5.15.0-0.30.3-20220406_1406 #3 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908 do_truncate+0xc3/0x1e0 fs/open.c:56 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 RIP: 0033:0x7f7ef4bb753d Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0 RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0 </TASK> Allocated by task 2953: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:254 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3213 [inline] slab_alloc mm/slub.c:3221 [inline] kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226 kmem_cache_zalloc include/linux/slab.h:711 [inline] xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275 vfs_setxattr+0x154/0x33d fs/xattr.c:301 setxattr+0x216/0x29f fs/xattr.c:575 __do_sys_fsetxattr fs/xattr.c:632 [inline] __se_sys_fsetxattr fs/xattr.c:621 [inline] __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 Freed by task 2949: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:1700 [inline] slab_free_freelist_hook mm/slub.c:1726 [inline] slab_free mm/slub.c:3492 [inline] kmem_cache_free+0xdc/0x3ce mm/slub.c:3508 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_removexattr+0x106/0x16a fs/xattr.c:468 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324 security_inode_killpriv+0x54/0xa1 security/security.c:1414 setattr_prepare+0x1a6/0x897 fs/attr.c:146 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093 notify_change+0xae5/0x10a1 fs/attr.c:410 do_truncate+0x134/0x1e0 fs/open.c:64 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 The buggy address belongs to the object at ffff88802cec9188 which belongs to the cache xfs_ifork of size 40 The buggy address is located 20 bytes inside of 40-byte region [ffff88802cec9188, ffff88802cec91b0) The buggy address belongs to the page: page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2cec9 flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80 raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc >ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb ^ ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb ================================================================== The root cause of this bug is the unlocked access to xfs_inode.i_afp from the getxattr code paths while trying to determine which ILOCK mode to use to stabilize the xattr data. Unfortunately, the VFS does not acquire i_rwsem when vfs_getxattr (or listxattr) call into the filesystem, which means that getxattr can race with a removexattr that's tearing down the attr fork and crash: xfs_attr_set: xfs_attr_get: xfs_attr_fork_remove: xfs_ilock_attr_map_shared: xfs_idestroy_fork(ip->i_afp); kmem_cache_free(xfs_ifork_cache, ip->i_afp); if (ip->i_afp && ip->i_afp = NULL; xfs_need_iread_extents(ip->i_afp)) <KABOOM> ip->i_forkoff = 0; Regrettably, the VFS is much more lax about i_rwsem and getxattr than is immediately obvious -- not only does it not guarantee that we hold i_rwsem, it actually doesn't guarantee that we *don't* hold it either. The getxattr system call won't acquire the lock before calling XFS, but the file capabilities code calls getxattr with and without i_rwsem held to determine if the "security.capabilities" xattr is set on the file. Fixing the VFS locking requires a treewide investigation into every code path that could touch an xattr and what i_rwsem state it expects or sets up. That could take years or even prove impossible; fortunately, we can fix this UAF problem inside XFS. An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to ensure that i_forkoff is always zeroed before i_afp is set to null and changed the read paths to use smp_rmb before accessing i_forkoff and i_afp, which avoided these UAF problems. However, the patch author was too busy dealing with other problems in the meantime, and by the time he came back to this issue, the situation had changed a bit. On a modern system with selinux, each inode will always have at least one xattr for the selinux label, so it doesn't make much sense to keep incurring the extra pointer dereference. Furthermore, Allison's upcoming parent pointer patchset will also cause nearly every inode in the filesystem to have extended attributes. Therefore, make the inode attribute fork structure part of struct xfs_inode, at a cost of 40 more bytes. This patch adds a clunky if_present field where necessary to maintain the existing logic of xattr fork null pointer testing in the existing codebase. The next patch switches the logic over to XFS_IFORK_Q and it all goes away. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
We're about to make this logic do a bit more, so convert the macro to a static inline function for better typechecking and fewer shouty macros. No functional changes here. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 07 7月, 2022 2 次提交
-
-
由 Dave Chinner 提交于
xfs_alloc_read_agf() initialises the perag if it hasn't been done yet, so it makes sense to pass it the perag rather than pull a reference from the buffer. This allows callers to be per-ag centric rather than passing mount/agno pairs everywhere. Whilst modifying the xfs_reflink_find_shared() function definition, declare it static and remove the extern declaration as it is an internal function only these days. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Trivial wrapper around xfs_alloc_read_agf(), can be easily replaced by passing a NULL agfbp to xfs_alloc_read_agf(). Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org>
-
- 29 4月, 2022 1 次提交
-
-
由 Darrick J. Wong 提交于
In commit e1a4e37c, we clamped the length of bunmapi calls on the data forks of shared files to avoid two failure scenarios: one where the extent being unmapped is so sparsely shared that we exceed the transaction reservation with the sheer number of refcount btree updates and EFI intent items; and the other where we attach so many deferred updates to the transaction that we pin the log tail and later the log head meets the tail, causing the log to livelock. We avoid triggering the first problem by tracking the number of ops in the refcount btree cursor and forcing a requeue of the refcount intent item any time we think that we might be close to overflowing. This has been baked into XFS since before the original e1a4 patch. A recent patchset fixed the second problem by changing the deferred ops code to finish all the work items created by each round of trying to complete a refcount intent item, which eliminates the long chains of deferred items (27dad); and causing long-running transactions to relog their intent log items when space in the log gets low (74f4d). Because this clamp affects /any/ unmapping request regardless of the sharing factors of the component blocks, it degrades the performance of all large unmapping requests -- whereas with an unshared file we can unmap millions of blocks in one go, shared files are limited to unmapping a few thousand blocks at a time, which causes the upper level code to spin in a bunmapi loop even if it wasn't needed. This also eliminates one more place where log recovery behavior can differ from online behavior, because bunmapi operations no longer need to requeue. The fstest generic/447 was created to test the old fix, and it still passes with this applied. Partial-revert-of: e1a4e37c ("xfs: try to avoid blowing out the transaction reservation when bunmaping a shared extent") Depends: 27dada07 ("xfs: change the order in which child and parent defer ops ar finished") Depends: 74f4d6a1 ("xfs: only relog deferred intent items if free space in the log gets low") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 21 4月, 2022 2 次提交
-
-
由 Dave Chinner 提交于
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned fields to be unsigned. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Dave Chinner 提交于
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned fields to be unsigned. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 13 4月, 2022 2 次提交
-
-
由 Chandan Babu R 提交于
This commit enables upgrading existing inodes to use large extent counters provided that underlying filesystem's superblock has large extent counter feature enabled. Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
The maximum file size that can be represented by the data fork extent counter in the worst case occurs when all extents are 1 block in length and each block is 1KB in size. With XFS_MAX_EXTCNT_DATA_FORK_SMALL representing maximum extent count and with 1KB sized blocks, a file can reach upto, (2^31) * 1KB = 2TB This is much larger than the theoretical maximum size of a directory i.e. XFS_DIR2_SPACE_SIZE * 3 = ~96GB. Since a directory's inode can never overflow its data fork extent counter, this commit removes all the overflow checks associated with it. xfs_dinode_verify() now performs a rough check to verify if a diretory's data fork is larger than 96GB. Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
- 11 4月, 2022 6 次提交
-
-
由 Chandan Babu R 提交于
This commit defines new macros to represent maximum extent counts allowed by filesystems which have support for large per-inode extent counters. Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
A future commit will introduce a 64-bit on-disk data extent counter and a 32-bit on-disk attr extent counter. This commit promotes xfs_extnum_t and xfs_aextnum_t to 64 and 32-bits in order to correctly handle in-core versions of these quantities. Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
xfs_extnum_t is the type to use to declare variables which have values obtained from xfs_dinode->di_[a]nextents. This commit replaces basic types (e.g. uint32_t) with xfs_extnum_t for such variables. Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
xfs_iext_max_nextents() returns the maximum number of extents possible for one of data, cow or attribute fork. This helper will be extended further in a future commit when maximum extent counts associated with data/attribute forks are increased. Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Chandan Babu R 提交于
The maximum extent length depends on maximum block count that can be stored in a BMBT record. Hence this commit defines MAXEXTLEN based on BMBT_BLOCKCOUNT_BITLEN. While at it, the commit also renames MAXEXTLEN to XFS_MAX_BMBT_EXTLEN. Suggested-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChandan Babu R <chandan.babu@oracle.com>
-
- 05 12月, 2021 1 次提交
-
-
由 Christoph Hellwig 提交于
To prepare for looking at the IOMAP_DAX flag in xfs_bmbt_to_iomap pass in the input mapping flags to xfs_bmbt_to_iomap. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Link: https://lore.kernel.org/r/20211129102203.2243509-24-hch@lst.deSigned-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 23 10月, 2021 4 次提交
-
-
由 Darrick J. Wong 提交于
xfs_bmap_add_free isn't a block mapping function; it schedules deferred freeing operations for a later point in a compound transaction chain. While it's primarily used by bunmapi, its use has expanded beyond that. Move it to xfs_alloc.c and rename the function since it's now general freeing functionality. Bring the slab cache bits in line with the way we handle the other intent items. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Darrick J. Wong 提交于
Create slab caches for the high-level structures that coordinate deferred intent items, since they're used fairly heavily. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Darrick J. Wong 提交于
Now that we've gotten rid of the kmem_zone_t typedef, rename the variables to _cache since that's what they are. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com>
-
由 Darrick J. Wong 提交于
Remove these typedefs by referencing kmem_cache directly. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com>
-
- 20 10月, 2021 3 次提交
-
-
由 Darrick J. Wong 提交于
Add code for all five btree types so that we can compute the absolute maximum possible btree height for each btree type. This is a setup for the next patch, which makes every btree type have its own cursor cache. The functions are exported so that we can have xfs_db report the absolute maximum btree heights for each btree type, rather than making everyone run their own ad-hoc computations. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Encode the maximum btree height in the cursor, since we're soon going to allow smaller cursors for AG btrees and larger cursors for file btrees. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Split out the btree level information into a separate struct and put it at the end of the cursor structure as a VLA. Files with huge data forks (and in the future, the realtime rmap btree) will require the ability to support many more levels than a per-AG btree cursor, which means that we're going to create per-btree type cursor caches to conserve memory for the more common case. Note that a subsequent patch actually introduces dynamic cursor heights. This one merely rearranges the structure to prepare for that. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 15 10月, 2021 1 次提交
-
-
由 Darrick J. Wong 提交于
Get rid of this old typedef before we start changing other things. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChandan Babu R <chandan.babu@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 20 8月, 2021 5 次提交
-
-
由 Dave Chinner 提交于
Stop directly referencing b_bn in code outside the buffer cache, as b_bn is supposed to be used only as an internal cache index. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Introduce a helper function xfs_buf_daddr() to extract the disk address of the buffer from the struct xfs_buf. This will replace direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as the XFS_BUF_ADDR() macro. This patch introduces the helper function and replaces all uses of XFS_BUF_ADDR() as this is just a simple sed replacement. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Remove the shouty macro and instead use the inline function that matches other state/feature check wrapper naming. This conversion was done with sed. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Replace m_flags feature checks with xfs_has_<feature>() calls and rework the setup code to set flags in m_features. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Convert the xfs_sb_version_hasfoo() to checks against mp->m_features. Checks of the superblock itself during disk operations (e.g. in the read/write verifiers and the to/from disk formatters) are not converted - they operate purely on the superblock state. Everything else should use the mount features. Large parts of this conversion were done with sed with commands like this: for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f done With manual cleanups for things like "xfs_has_extflgbit" and other little inconsistencies in naming. The result is ia lot less typing to check features and an XFS binary size reduced by a bit over 3kB: $ size -t fs/xfs/built-in.a text data bss dec hex filenam before 1130866 311352 484 1442702 16038e (TOTALS) after 1127727 311352 484 1439563 15f74b (TOTALS) Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
- 03 6月, 2021 1 次提交
-
-
由 Christoph Hellwig 提交于
xfs_bmap_set_attrforkoff is only used inside of xfs_bmap.c, so mark it static. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
- 02 6月, 2021 1 次提交
-
-
由 Dave Chinner 提交于
They are AG functions, not superblock functions, so move them to the appropriate location. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org>
-
- 27 5月, 2021 2 次提交
-
-
由 Dave Chinner 提交于
large directory block size operations are assert failing because xfs_bunmapi() is not completely removing fragmented directory blocks like so: XFS: Assertion failed: done, file: fs/xfs/libxfs/xfs_dir2.c, line: 677 .... Call Trace: xfs_dir2_shrink_inode+0x1a8/0x210 xfs_dir2_block_to_sf+0x2ae/0x410 xfs_dir2_block_removename+0x21a/0x280 xfs_dir_removename+0x195/0x1d0 xfs_rename+0xb79/0xc50 ? avc_has_perm+0x8d/0x1a0 ? avc_has_perm_noaudit+0x9a/0x120 xfs_vn_rename+0xdb/0x150 vfs_rename+0x719/0xb50 ? __lookup_hash+0x6a/0xa0 do_renameat2+0x413/0x5e0 __x64_sys_rename+0x45/0x50 do_syscall_64+0x3a/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae We are aborting the bunmapi() pass because of this specific chunk of code: /* * Make sure we don't touch multiple AGF headers out of order * in a single transaction, as that could cause AB-BA deadlocks. */ if (!wasdel && !isrt) { agno = XFS_FSB_TO_AGNO(mp, del.br_startblock); if (prev_agno != NULLAGNUMBER && prev_agno > agno) break; prev_agno = agno; } This is designed to prevent deadlocks in AGF locking when freeing multiple extents by ensuring that we only ever lock in increasing AG number order. Unfortunately, this also violates the "bunmapi will always succeed" semantic that some high level callers depend on, such as xfs_dir2_shrink_inode(), xfs_da_shrink_inode() and xfs_inactive_symlink_rmt(). This AG lock ordering was introduced back in 2017 to fix deadlocks triggered by generic/299 as reported here: https://lore.kernel.org/linux-xfs/800468eb-3ded-9166-20a4-047de8018582@gmail.com/ This codebase is old enough that it was before we were defering all AG based extent freeing from within xfs_bunmapi(). THat is, we never actually lock AGs in xfs_bunmapi() any more - every non-rt based extent free is added to the defer ops list, as is all BMBT block freeing. And RT extents are not RT based, so there's no lock ordering issues associated with them. Hence this AGF lock ordering code is both broken and dead. Let's just remove it so that the large directory block code works reliably again. Tested against xfs/538 and generic/299 which is the original test that exposed the deadlocks that this code fixed. Fixes: 5b094d6d ("xfs: fix multi-AG deadlock in xfs_bunmapi") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
xfs/538 is assert failing with this trace when testing with directory block sizes of 64kB: XFS: Assertion failed: !xfs_need_iread_extents(ifp), file: fs/xfs/libxfs/xfs_bmap.c, line: 608 .... Call Trace: xfs_bmap_btree_to_extents+0x2a9/0x470 ? kmem_cache_alloc+0xe7/0x220 __xfs_bunmapi+0x4ca/0xdf0 xfs_bunmapi+0x1a/0x30 xfs_dir2_shrink_inode+0x71/0x210 xfs_dir2_block_to_sf+0x2ae/0x410 xfs_dir2_block_removename+0x21a/0x280 xfs_dir_removename+0x195/0x1d0 xfs_remove+0x244/0x460 xfs_vn_unlink+0x53/0xa0 ? selinux_inode_unlink+0x13/0x20 vfs_unlink+0x117/0x220 do_unlinkat+0x1a2/0x2d0 __x64_sys_unlink+0x42/0x60 do_syscall_64+0x3a/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae This is a check to ensure that the extents have been read into memory before we are doing a ifork btree manipulation. This assert is bogus in the above case. We have a fragmented directory block that has more extents in it than can fit in extent format, so the inode data fork is in btree format. xfs_dir2_shrink_inode() asks to remove all remaining 16 filesystem blocks from the inode so it can convert to short form, and __xfs_bunmapi() removes all the extents. We now have a data fork in btree format but have zero extents in the fork. This incorrectly trips the xfs_need_iread_extents() assert because it assumes that an empty extent btree means the extent tree has not been read into memory yet. This is clearly not the case with xfs_bunmapi(), as it has an explicit call to xfs_iread_extents() in it to pull the extents into memory before it starts unmapping. Also, the assert directly after this bogus one is: ASSERT(ifp->if_format == XFS_DINODE_FMT_BTREE); Which covers the context in which it is legal to call xfs_bmap_btree_to_extents just fine. Hence we should just remove the bogus assert as it is clearly wrong and causes a regression. The returns the test behaviour to the pre-existing assert failure in xfs_dir2_shrink_inode() that indicates xfs_bunmapi() has failed to remove all the extents in the range it was asked to unmap. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
- 16 4月, 2021 4 次提交
-
-
由 Christoph Hellwig 提交于
The in-memory XFS_IFEXTENTS is now only used to check if an inode with extents still needs the extents to be read into memory before doing operations that need the extent map. Add a new xfs_need_iread_extents helper that returns true for btree format forks that do not have any entries in the in-memory extent btree, and use that instead of checking the XFS_IFEXTENTS flag. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
Just check for an inline format fork instead of the using the equivalent in-memory XFS_IFINLINE flag. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
Just check for a btree format fork instead of the using the equivalent in-memory XFS_IFBROOT flag. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
xfs_bmap_one_block is only called for the attribute fork. Move it to xfs_attr.c, drop the unused whichfork argument and code only executed for the data fork and rename the result to xfs_attr_is_leaf. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-