- 23 11月, 2017 4 次提交
-
-
由 Paul Mackerras 提交于
This corrects the test that determines whether a vcpu that has just become able to run in the guest (e.g. it has just finished handling a hypercall or hypervisor page fault) and whose virtual core is already running somewhere as a "piggybacked" vcore can start immediately or not. (A piggybacked vcore is one which is executing along with another vcore as a result of dynamic micro-threading.) Previously the test tried to lock the piggybacked vcore using spin_trylock, which would always fail because the vcore was already locked, and so the vcpu would have to wait until its vcore exited the guest before it could enter. In fact the vcpu can enter if its vcore is in VCORE_PIGGYBACK state and not already exiting (or exited) the guest, so the test in VCORE_PIGGYBACK state is basically the same as for VCORE_RUNNING state. Coverity detected this as a double unlock issue, which it isn't because the spin_trylock would always fail. This will fix the apparent double unlock as well. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This removes a statement that has no effect. It should have been removed in commit 898b25b2 ("KVM: PPC: Book3S HV: Simplify dynamic micro-threading code", 2017-06-22) along with the loop over the piggy-backed virtual cores. This issue was reported by Coverity. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This fixes a typo where the intent was to assign to 'j' in order to skip some number of bits in the dirty bitmap for a guest. The effect of the typo is benign since it means we just iterate through all the bits rather than skipping bits which we know will be zero. This issue was found by Coverity. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This fixes two errors that prevent a guest using the HPT MMU from successfully migrating to a POWER9 host in radix MMU mode, or resizing its HPT when running on a radix host. The first bug was that commit 8dc6cca5 ("KVM: PPC: Book3S HV: Don't rely on host's page size information", 2017-09-11) missed two uses of hpte_base_page_size(), one in the HPT rehashing code and one in kvm_htab_write() (which is used on the destination side in migrating a HPT guest). Instead we use kvmppc_hpte_base_page_shift(). Having the shift count means that we can use left and right shifts instead of multiplication and division in a few places. Along the way, this adds a check in kvm_htab_write() to ensure that the page size encoding in the incoming HPTEs is recognized, and if not return an EINVAL error to userspace. The second bug was that kvm_htab_write was performing some but not all of the functions of kvmhv_setup_mmu(), resulting in the destination VM being left in radix mode as far as the hardware is concerned. The simplest fix for now is make kvm_htab_write() call kvmppc_setup_partition_table() like kvmppc_hv_setup_htab_rma() does. In future it would be better to refactor the code more extensively to remove the duplication. Fixes: 8dc6cca5 ("KVM: PPC: Book3S HV: Don't rely on host's page size information") Fixes: 7a84084c ("KVM: PPC: Book3S HV: Set partition table rather than SDR1 on POWER9") Reported-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Tested-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 09 11月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
This rearranges the code in kvmppc_run_vcpu() and kvmppc_run_vcpu_hv() to be neater and clearer. Deeply indented code in kvmppc_run_vcpu() is moved out to a helper function, kvmhv_setup_mmu(). In kvmppc_vcpu_run_hv(), make use of the existing variable 'kvm' in place of 'vcpu->kvm'. No functional change. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 08 11月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
Commit 5e985969 ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation", 2016-12-20) added code that tries to exclude any use or update of the hashed page table (HPT) while the HPT resizing code is iterating through all the entries in the HPT. It does this by taking the kvm->lock mutex, clearing the kvm->arch.hpte_setup_done flag and then sending an IPI to all CPUs in the host. The idea is that any VCPU task that tries to enter the guest will see that the hpte_setup_done flag is clear and therefore call kvmppc_hv_setup_htab_rma, which also takes the kvm->lock mutex and will therefore block until we release kvm->lock. However, any VCPU that is already in the guest, or is handling a hypervisor page fault or hypercall, can re-enter the guest without rechecking the hpte_setup_done flag. The IPI will cause a guest exit of any VCPUs that are currently in the guest, but does not prevent those VCPU tasks from immediately re-entering the guest. The result is that after resize_hpt_rehash_hpte() has made a HPTE absent, a hypervisor page fault can occur and make that HPTE present again. This includes updating the rmap array for the guest real page, meaning that we now have a pointer in the rmap array which connects with pointers in the old rev array but not the new rev array. In fact, if the HPT is being reduced in size, the pointer in the rmap array could point outside the bounds of the new rev array. If that happens, we can get a host crash later on such as this one: [91652.628516] Unable to handle kernel paging request for data at address 0xd0000000157fb10c [91652.628668] Faulting instruction address: 0xc0000000000e2640 [91652.628736] Oops: Kernel access of bad area, sig: 11 [#1] [91652.628789] LE SMP NR_CPUS=1024 NUMA PowerNV [91652.628847] Modules linked in: binfmt_misc vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack libcrc32c iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables ses enclosure scsi_transport_sas i2c_opal ipmi_powernv ipmi_devintf i2c_core ipmi_msghandler powernv_op_panel nfsd auth_rpcgss oid_registry nfs_acl lockd grace sunrpc kvm_hv kvm_pr kvm scsi_dh_alua dm_service_time dm_multipath tg3 ptp pps_core [last unloaded: stap_552b612747aec2da355051e464fa72a1_14259] [91652.629566] CPU: 136 PID: 41315 Comm: CPU 21/KVM Tainted: G O 4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le #1 [91652.629684] task: c0000007a419e400 task.stack: c0000000028d8000 [91652.629750] NIP: c0000000000e2640 LR: d00000000c36e498 CTR: c0000000000e25f0 [91652.629829] REGS: c0000000028db5d0 TRAP: 0300 Tainted: G O (4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le) [91652.629932] MSR: 900000010280b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 44022422 XER: 00000000 [91652.630034] CFAR: d00000000c373f84 DAR: d0000000157fb10c DSISR: 40000000 SOFTE: 1 [91652.630034] GPR00: d00000000c36e498 c0000000028db850 c000000001403900 c0000007b7960000 [91652.630034] GPR04: d0000000117fb100 d000000007ab00d8 000000000033bb10 0000000000000000 [91652.630034] GPR08: fffffffffffffe7f 801001810073bb10 d00000000e440000 d00000000c373f70 [91652.630034] GPR12: c0000000000e25f0 c00000000fdb9400 f000000003b24680 0000000000000000 [91652.630034] GPR16: 00000000000004fb 00007ff7081a0000 00000000000ec91a 000000000033bb10 [91652.630034] GPR20: 0000000000010000 00000000001b1190 0000000000000001 0000000000010000 [91652.630034] GPR24: c0000007b7ab8038 d0000000117fb100 0000000ec91a1190 c000001e6a000000 [91652.630034] GPR28: 00000000033bb100 000000000073bb10 c0000007b7960000 d0000000157fb100 [91652.630735] NIP [c0000000000e2640] kvmppc_add_revmap_chain+0x50/0x120 [91652.630806] LR [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv] [91652.630884] Call Trace: [91652.630913] [c0000000028db850] [c0000000028db8b0] 0xc0000000028db8b0 (unreliable) [91652.630996] [c0000000028db8b0] [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv] [91652.631091] [c0000000028db9e0] [d00000000c36a078] kvmppc_vcpu_run_hv+0xdf8/0x1300 [kvm_hv] [91652.631179] [c0000000028dbb30] [d00000000c2248c4] kvmppc_vcpu_run+0x34/0x50 [kvm] [91652.631266] [c0000000028dbb50] [d00000000c220d54] kvm_arch_vcpu_ioctl_run+0x114/0x2a0 [kvm] [91652.631351] [c0000000028dbbd0] [d00000000c2139d8] kvm_vcpu_ioctl+0x598/0x7a0 [kvm] [91652.631433] [c0000000028dbd40] [c0000000003832e0] do_vfs_ioctl+0xd0/0x8c0 [91652.631501] [c0000000028dbde0] [c000000000383ba4] SyS_ioctl+0xd4/0x130 [91652.631569] [c0000000028dbe30] [c00000000000b8e0] system_call+0x58/0x6c [91652.631635] Instruction dump: [91652.631676] fba1ffe8 fbc1fff0 fbe1fff8 f8010010 f821ffa1 2fa70000 793d0020 e9432110 [91652.631814] 7bbf26e4 7c7e1b78 7feafa14 409e0094 <807f000c> 786326e4 7c6a1a14 93a40008 [91652.631959] ---[ end trace ac85ba6db72e5b2e ]--- To fix this, we tighten up the way that the hpte_setup_done flag is checked to ensure that it does provide the guarantee that the resizing code needs. In kvmppc_run_core(), we check the hpte_setup_done flag after disabling interrupts and refuse to enter the guest if it is clear (for a HPT guest). The code that checks hpte_setup_done and calls kvmppc_hv_setup_htab_rma() is moved from kvmppc_vcpu_run_hv() to a point inside the main loop in kvmppc_run_vcpu(), ensuring that we don't just spin endlessly calling kvmppc_run_core() while hpte_setup_done is clear, but instead have a chance to block on the kvm->lock mutex. Finally we also check hpte_setup_done inside the region in kvmppc_book3s_hv_page_fault() where the HPTE is locked and we are about to update the HPTE, and bail out if it is clear. If another CPU is inside kvm_vm_ioctl_resize_hpt_commit) and has cleared hpte_setup_done, then we know that either we are looking at a HPTE that resize_hpt_rehash_hpte() has not yet processed, which is OK, or else we will see hpte_setup_done clear and refuse to update it, because of the full barrier formed by the unlock of the HPTE in resize_hpt_rehash_hpte() combined with the locking of the HPTE in kvmppc_book3s_hv_page_fault(). Fixes: 5e985969 ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation") Cc: stable@vger.kernel.org # v4.10+ Reported-by: NSatheesh Rajendran <satheera@in.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 06 11月, 2017 1 次提交
-
-
由 Nicholas Piggin 提交于
If the host takes a system reset interrupt while a guest is running, the CPU must exit the guest before processing the host exception handler. After this patch, taking a sysrq+x with a CPU running in a guest gives a trace like this: cpu 0x27: Vector: 100 (System Reset) at [c000000fdf5776f0] pc: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv] lr: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv] sp: c000000fdf577850 msr: 9000000002803033 current = 0xc000000fdf4b1e00 paca = 0xc00000000fd4d680 softe: 3 irq_happened: 0x01 pid = 6608, comm = qemu-system-ppc Linux version 4.14.0-rc7-01489-g47e1893a404a-dirty #26 SMP [c000000fdf577a00] c008000010159dd4 kvmppc_vcpu_run_hv+0x3dc/0x12d0 [kvm_hv] [c000000fdf577b30] c0080000100a537c kvmppc_vcpu_run+0x44/0x60 [kvm] [c000000fdf577b60] c0080000100a1ae0 kvm_arch_vcpu_ioctl_run+0x118/0x310 [kvm] [c000000fdf577c00] c008000010093e98 kvm_vcpu_ioctl+0x530/0x7c0 [kvm] [c000000fdf577d50] c000000000357bf8 do_vfs_ioctl+0xd8/0x8c0 [c000000fdf577df0] c000000000358448 SyS_ioctl+0x68/0x100 [c000000fdf577e30] c00000000000b220 system_call+0x58/0x6c --- Exception: c01 (System Call) at 00007fff76868df0 SP (7fff7069baf0) is in userspace Fixes: e36d0a2e ("powerpc/powernv: Implement NMI IPI with OPAL_SIGNAL_SYSTEM_RESET") Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 11月, 2017 9 次提交
-
-
由 Paul Mackerras 提交于
This patch removes the restriction that a radix host can only run radix guests, allowing us to run HPT (hashed page table) guests as well. This is useful because it provides a way to run old guest kernels that know about POWER8 but not POWER9. Unfortunately, POWER9 currently has a restriction that all threads in a given code must either all be in HPT mode, or all in radix mode. This means that when entering a HPT guest, we have to obtain control of all 4 threads in the core and get them to switch their LPIDR and LPCR registers, even if they are not going to run a guest. On guest exit we also have to get all threads to switch LPIDR and LPCR back to host values. To make this feasible, we require that KVM not be in the "independent threads" mode, and that the CPU cores be in single-threaded mode from the host kernel's perspective (only thread 0 online; threads 1, 2 and 3 offline). That allows us to use the same code as on POWER8 for obtaining control of the secondary threads. To manage the LPCR/LPIDR changes required, we extend the kvm_split_info struct to contain the information needed by the secondary threads. All threads perform a barrier synchronization (where all threads wait for every other thread to reach the synchronization point) on guest entry, both before and after loading LPCR and LPIDR. On guest exit, they all once again perform a barrier synchronization both before and after loading host values into LPCR and LPIDR. Finally, it is also currently necessary to flush the entire TLB every time we enter a HPT guest on a radix host. We do this on thread 0 with a loop of tlbiel instructions. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This patch allows for a mode on POWER9 hosts where we control all the threads of a core, much as we do on POWER8. The mode is controlled by a module parameter on the kvm_hv module, called "indep_threads_mode". The normal mode on POWER9 is the "independent threads" mode, with indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any desired SMT mode) and each thread independently enters and exits from KVM guests without reference to what other threads in the core are doing. If indep_threads_mode is set to N at the point when a VM is started, KVM will expect every core that the guest runs on to be in single threaded mode (that is, threads 1, 2 and 3 offline), and will set the flag that prevents secondary threads from coming online. We can still use all four threads; the code that implements dynamic micro-threading on POWER8 will become active in over-commit situations and will allow up to three other VCPUs to be run on the secondary threads of the core whenever a VCPU is run. The reason for wanting this mode is that this will allow us to run HPT guests on a radix host on a POWER9 machine that does not support "mixed mode", that is, having some threads in a core be in HPT mode while other threads are in radix mode. It will also make it possible to implement a "strict threads" mode in future, if desired. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This sets up the machinery for switching a guest between HPT (hashed page table) and radix MMU modes, so that in future we can run a HPT guest on a radix host on POWER9 machines. * The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or radix mode, on a radix host. * The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9 with HV KVM on a radix host. * The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a radix host. * The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the guest to HPT mode and allocate a HPT. * For simplicity, we now allocate the rmap array for each memslot, even on a radix host, since it will be needed if the guest switches to HPT mode. * Since we cannot yet run a HPT guest on a radix host, the KVM_RUN ioctl will return an EINVAL error in that case. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
Currently, the HPT code in HV KVM maintains a dirty bit per guest page in the rmap array, whether or not dirty page tracking has been enabled for the memory slot. In contrast, the radix code maintains a dirty bit per guest page in memslot->dirty_bitmap, and only does so when dirty page tracking has been enabled. This changes the HPT code to maintain the dirty bits in the memslot dirty_bitmap like radix does. This results in slightly less code overall, and will mean that we do not lose the dirty bits when transitioning between HPT and radix mode in future. There is one minor change to behaviour as a result. With HPT, when dirty tracking was enabled for a memslot, we would previously clear all the dirty bits at that point (both in the HPT entries and in the rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately following would show no pages as dirty (assuming no vcpus have run in the meantime). With this change, the dirty bits on HPT entries are not cleared at the point where dirty tracking is enabled, so KVM_GET_DIRTY_LOG would show as dirty any guest pages that are resident in the HPT and dirty. This is consistent with what happens on radix. This also fixes a bug in the mark_pages_dirty() function for radix (in the sense that the function no longer exists). In the case where a large page of 64 normal pages or more is marked dirty, the addressing of the dirty bitmap was incorrect and could write past the end of the bitmap. Fortunately this case was never hit in practice because a 2MB large page is only 32 x 64kB pages, and we don't support backing the guest with 1GB huge pages at this point. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This renames the kvm->arch.hpte_setup_done field to mmu_ready because we will want to use it for radix guests too -- both for setting things up before vcpu execution, and for excluding vcpus from executing while MMU-related things get changed, such as in future switching the MMU from radix to HPT mode or vice-versa. This also moves the call to kvmppc_setup_partition_table() that was done in kvmppc_hv_setup_htab_rma() for HPT guests, and the setting of mmu_ready, into the caller in kvmppc_vcpu_run_hv(). Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This removes the dependence of KVM on the mmu_psize_defs array (which stores information about hardware support for various page sizes) and the things derived from it, chiefly hpte_page_sizes[], hpte_page_size(), hpte_actual_page_size() and get_sllp_encoding(). We also no longer rely on the mmu_slb_size variable or the MMU_FTR_1T_SEGMENTS feature bit. The reason for doing this is so we can support a HPT guest on a radix host. In a radix host, the mmu_psize_defs array contains information about page sizes supported by the MMU in radix mode rather than the page sizes supported by the MMU in HPT mode. Similarly, mmu_slb_size and the MMU_FTR_1T_SEGMENTS bit are not set. Instead we hard-code knowledge of the behaviour of the HPT MMU in the POWER7, POWER8 and POWER9 processors (which are the only processors supported by HV KVM) - specifically the encoding of the LP fields in the HPT and SLB entries, and the fact that they have 32 SLB entries and support 1TB segments. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Nicholas Piggin 提交于
This fixes the message: arch/powerpc/kvm/book3s_segment.S: Assembler messages: arch/powerpc/kvm/book3s_segment.S:330: Warning: invalid register expression Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Greg Kurz 提交于
Userland passes an array of 64 SLB descriptors to KVM_SET_SREGS, some of which are valid (ie, SLB_ESID_V is set) and the rest are likely all-zeroes (with QEMU at least). Each of them is then passed to kvmppc_mmu_book3s_64_slbmte(), which assumes to find the SLB index in the 3 lower bits of its rb argument. When passed zeroed arguments, it happily overwrites the 0th SLB entry with zeroes. This is exactly what happens while doing live migration with QEMU when the destination pushes the incoming SLB descriptors to KVM PR. When reloading the SLBs at the next synchronization, QEMU first clears its SLB array and only restore valid ones, but the 0th one is now gone and we cannot access the corresponding memory anymore: (qemu) x/x $pc c0000000000b742c: Cannot access memory To avoid this, let's filter out non-valid SLB entries. While here, we also force a full SLB flush before installing new entries. Since SLB is for 64-bit only, we now build this path conditionally to avoid a build break on 32-bit, which doesn't define SLB_ESID_V. Signed-off-by: NGreg Kurz <groug@kaod.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
When running a guest on a POWER9 system with the in-kernel XICS emulation disabled (for example by running QEMU with the parameter "-machine pseries,kernel_irqchip=off"), the kernel does not pass the XICS-related hypercalls such as H_CPPR up to userspace for emulation there as it should. The reason for this is that the real-mode handlers for these hypercalls don't check whether a XICS device has been instantiated before calling the xics-on-xive code. That code doesn't check either, leading to potential NULL pointer dereferences because vcpu->arch.xive_vcpu is NULL. Those dereferences won't cause an exception in real mode but will lead to kernel memory corruption. This fixes it by adding kvmppc_xics_enabled() checks before calling the XICS functions. Cc: stable@vger.kernel.org # v4.11+ Fixes: 5af50993 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller") Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 20 10月, 2017 1 次提交
-
-
由 Michael Ellerman 提交于
Currently we use CPU_FTR_TM to decide if the CPU/kernel can support TM (Transactional Memory), and if it's true we advertise that to Qemu (or similar) via KVM_CAP_PPC_HTM. PPC_FEATURE2_HTM is the user-visible feature bit, which indicates that the CPU and kernel can support TM. Currently CPU_FTR_TM and PPC_FEATURE2_HTM always have the same value, either true or false, so using the former for KVM_CAP_PPC_HTM is correct. However some Power9 CPUs can operate in a mode where TM is enabled but TM suspended state is disabled. In this mode CPU_FTR_TM is true, but PPC_FEATURE2_HTM is false. Instead a different PPC_FEATURE2 bit is set, to indicate that this different mode of TM is available. It is not safe to let guests use TM as-is, when the CPU is in this mode. So to prevent that from happening, use PPC_FEATURE2_HTM to determine the value of KVM_CAP_PPC_HTM. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 19 10月, 2017 1 次提交
-
-
由 Paul Mackerras 提交于
This reverts commit 94a04bc2. In order to run HPT guests on a radix POWER9 host, we will have to run the host in single-threaded mode, because POWER9 processors do not currently support running some threads of a core in HPT mode while others are in radix mode ("mixed mode"). That means that we will need the same mechanisms that are used on POWER8 to make the secondary threads available to KVM, which were disabled on POWER9 by commit 94a04bc2. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 10月, 2017 2 次提交
-
-
由 Benjamin Herrenschmidt 提交于
On POWER9 systems, we push the VCPU context onto the XIVE (eXternal Interrupt Virtualization Engine) hardware when entering a guest, and pull the context off the XIVE when exiting the guest. The push is done with cache-inhibited stores, and the pull with cache-inhibited loads. Testing has revealed that it is possible (though very rare) for the stores to get reordered with the loads so that we end up with the guest VCPU context still loaded on the XIVE after we have exited the guest. When that happens, it is possible for the same VCPU context to then get loaded on another CPU, which causes the machine to checkstop. To fix this, we add I/O barrier instructions (eieio) before and after the push and pull operations. As partial compensation for the potential slowdown caused by the extra barriers, we remove the eieio instructions between the two stores in the push operation, and between the two loads in the pull operation. (The architecture requires loads to cache-inhibited, guarded storage to be kept in order, and requires stores to cache-inhibited, guarded storage likewise to be kept in order, but allows such loads and stores to be reordered with respect to each other.) Reported-by: NCarol L Soto <clsoto@us.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This adds code to make sure that we don't try to access the non-existent HPT for a radix guest using the htab file for the VM in debugfs, a file descriptor obtained using the KVM_PPC_GET_HTAB_FD ioctl, or via the KVM_PPC_RESIZE_HPT_{PREPARE,COMMIT} ioctls. At present nothing bad happens if userspace does access these interfaces on a radix guest, mostly because kvmppc_hpt_npte() gives 0 for a radix guest, which in turn is because 1 << -4 comes out as 0 on POWER processors. However, that relies on undefined behaviour, so it is better to be explicit about not accessing the HPT for a radix guest. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 14 10月, 2017 8 次提交
-
-
由 Alexey Kardashevskiy 提交于
The handlers support PR KVM from the day one; however the PR KVM's enable/disable hcalls handler missed these ones. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Markus Elfring 提交于
KVM: PPC: Book3S HV: Delete an error message for a failed memory allocation in kvmppc_allocate_hpt() Omit an extra message for a memory allocation failure in this function. This issue was detected by using the Coccinelle software. Signed-off-by: NMarkus Elfring <elfring@users.sourceforge.net> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Thomas Meyer 提交于
Use vma_pages function on vma object instead of explicit computation. Found by coccinelle spatch "api/vma_pages.cocci" Signed-off-by: NThomas Meyer <thomas@m3y3r.de> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Thomas Meyer 提交于
Use ARRAY_SIZE macro, rather than explicitly coding some variant of it yourself. Found with: find -type f -name "*.c" -o -name "*.h" | xargs perl -p -i -e 's/\bsizeof\s*\(\s*(\w+)\s*\)\s*\ /\s*sizeof\s*\(\s*\1\s*\[\s*0\s*\]\s*\) /ARRAY_SIZE(\1)/g' and manual check/verification. Signed-off-by: NThomas Meyer <thomas@m3y3r.de> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
At present, if an interrupt (i.e. an exception or trap) occurs in the code where KVM is switching the MMU to or from guest context, we jump to kvmppc_bad_host_intr, where we simply spin with interrupts disabled. In this situation, it is hard to debug what happened because we get no indication as to which interrupt occurred or where. Typically we get a cascade of stall and soft lockup warnings from other CPUs. In order to get more information for debugging, this adds code to create a stack frame on the emergency stack and save register values to it. We start half-way down the emergency stack in order to give ourselves some chance of being able to do a stack trace on secondary threads that are already on the emergency stack. On POWER7 or POWER8, we then just spin, as before, because we don't know what state the MMU context is in or what other threads are doing, and we can't switch back to host context without coordinating with other threads. On POWER9 we can do better; there we load up the host MMU context and jump to C code, which prints an oops message to the console and panics. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Alexey Kardashevskiy 提交于
kvmppc_gpa_to_ua() accesses KVM memory slot array via srcu_dereference_check() and this produces warnings from RCU like below. This extends the existing srcu_read_lock/unlock to cover that kvmppc_gpa_to_ua() as well. We did not hit this before as this lock is not needed for the realmode handlers and hash guests would use the realmode path all the time; however the radix guests are always redirected to the virtual mode handlers and hence the warning. [ 68.253798] ./include/linux/kvm_host.h:575 suspicious rcu_dereference_check() usage! [ 68.253799] other info that might help us debug this: [ 68.253802] rcu_scheduler_active = 2, debug_locks = 1 [ 68.253804] 1 lock held by qemu-system-ppc/6413: [ 68.253806] #0: (&vcpu->mutex){+.+.}, at: [<c00800000e3c22f4>] vcpu_load+0x3c/0xc0 [kvm] [ 68.253826] stack backtrace: [ 68.253830] CPU: 92 PID: 6413 Comm: qemu-system-ppc Tainted: G W 4.14.0-rc3-00553-g432dcba58e9c-dirty #72 [ 68.253833] Call Trace: [ 68.253839] [c000000fd3d9f790] [c000000000b7fcc8] dump_stack+0xe8/0x160 (unreliable) [ 68.253845] [c000000fd3d9f7d0] [c0000000001924c0] lockdep_rcu_suspicious+0x110/0x180 [ 68.253851] [c000000fd3d9f850] [c0000000000e825c] kvmppc_gpa_to_ua+0x26c/0x2b0 [ 68.253858] [c000000fd3d9f8b0] [c00800000e3e1984] kvmppc_h_put_tce+0x12c/0x2a0 [kvm] Fixes: 121f80ba ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO") Cc: stable@vger.kernel.org # v4.12+ Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Nicholas Piggin 提交于
- Add another case where msgsync is required. - Required barrier sequence for global doorbells is msgsync ; lwsync When msgsnd is used for IPIs to other cores, msgsync must be executed by the target to order stores performed on the source before its msgsnd (provided the source executes the appropriate sync). Fixes: 1704a81c ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9") Cc: stable@vger.kernel.org # v4.10+ Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Greg Kurz 提交于
The following program causes a kernel oops: #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <sys/ioctl.h> #include <linux/kvm.h> main() { int fd = open("/dev/kvm", O_RDWR); ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_PPC_HTM); } This happens because when using the global KVM fd with KVM_CHECK_EXTENSION, kvm_vm_ioctl_check_extension() gets called with a NULL kvm argument, which gets dereferenced in is_kvmppc_hv_enabled(). Spotted while reading the code. Let's use the hv_enabled fallback variable, like everywhere else in this function. Fixes: 23528bb2 ("KVM: PPC: Introduce KVM_CAP_PPC_HTM") Cc: stable@vger.kernel.org # v4.7+ Signed-off-by: NGreg Kurz <groug@kaod.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Reviewed-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 03 10月, 2017 1 次提交
-
-
由 Sam Bobroff 提交于
In KVM's XICS-on-XIVE emulation, kvmppc_xive_get_xive() returns the value of state->guest_server as "server". However, this value is not set by it's counterpart kvmppc_xive_set_xive(). When the guest uses this interface to migrate interrupts away from a CPU that is going offline, it sees all interrupts as belonging to CPU 0, so they are left assigned to (now) offline CPUs. This patch removes the guest_server field from the state, and returns act_server in it's place (that is, the CPU actually handling the interrupt, which may differ from the one requested). Fixes: 5af50993 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller") Cc: stable@vger.kernel.org Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
-
- 22 9月, 2017 1 次提交
-
-
由 Michael Neuling 提交于
On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage Interrupt (HDSI) the HDSISR is not be updated at all. To work around this we put a canary value into the HDSISR before returning to a guest and then check for this canary when we take a HDSI. If we find the canary on a HDSI, we know the hardware didn't update the HDSISR. In this case we return to the guest to retake the HDSI which should correctly update the HDSISR the second time HDSI entry. After talking to Paulus we've applied this workaround to all POWER9 CPUs. The workaround of returning to the guest shouldn't ever be triggered on well behaving CPU. The extra instructions should have negligible performance impact. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 15 9月, 2017 1 次提交
-
-
由 Davidlohr Bueso 提交于
Particularly because kvmppc_fast_vcpu_kick_hv() is a callback, ensure that we properly serialize wq active checks in order to avoid potentially missing a wakeup due to racing with the waiter side. Signed-off-by: NDavidlohr Bueso <dbueso@suse.de> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 12 9月, 2017 3 次提交
-
-
由 Paul Mackerras 提交于
Aneesh Kumar reported seeing host crashes when running recent kernels on POWER8. The symptom was an oops like this: Unable to handle kernel paging request for data at address 0xf00000000786c620 Faulting instruction address: 0xc00000000030e1e4 Oops: Kernel access of bad area, sig: 11 [#1] LE SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: powernv_op_panel CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2 task: c000000fdeadfe80 task.stack: c000000fdeb68000 NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620 REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000 CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0 GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0 GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386 GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000 GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8 GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040 GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000 GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000 NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070 LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070 Call Trace: [c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable) [c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120 [c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30 [c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00 [c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40 [c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300 [c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900 [c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950 [c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100 [c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c Instruction dump: 7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a 794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0 ---[ end trace fad4a342d0414aa2 ]--- It turns out that what has happened is that the SLB entry for the vmmemap region hasn't been reloaded on exit from a guest, and it has the wrong page size. Then, when the host next accesses the vmemmap region, it gets a page fault. Commit a25bd72b ("powerpc/mm/radix: Workaround prefetch issue with KVM", 2017-07-24) modified the guest exit code so that it now only clears out the SLB for hash guest. The code tests the radix flag and puts the result in a non-volatile CR field, CR2, and later branches based on CR2. Unfortunately, the kvmppc_save_tm function, which gets called between those two points, modifies all the user-visible registers in the case where the guest was in transactional or suspended state, except for a few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted. This fixes the problem by re-doing the comparison just before the result is needed. For good measure, this also adds comments next to the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out that non-volatile register state will be lost. Cc: stable@vger.kernel.org # v4.13 Fixes: a25bd72b ("powerpc/mm/radix: Workaround prefetch issue with KVM") Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
Commit 468808bd ("KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9", 2017-01-30) added a call to kvmppc_update_lpcr() which doesn't hold the kvm->lock mutex around the call, as required. This adds the lock/unlock pair, and for good measure, includes the kvmppc_setup_partition_table() call in the locked region, since it is altering global state of the VM. This error appears not to have any fatal consequences for the host; the consequences would be that the VCPUs could end up running with different LPCR values, or an update to the LPCR value by userspace using the one_reg interface could get overwritten, or the update done by kvmhv_configure_mmu() could get overwritten. Cc: stable@vger.kernel.org # v4.10+ Fixes: 468808bd ("KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9") Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Benjamin Herrenschmidt 提交于
The XIVE interrupt controller on POWER9 machines doesn't support byte accesses to any register in the thread management area other than the CPPR (current processor priority register). In particular, when reading the PIPR (pending interrupt priority register), we need to do a 32-bit or 64-bit load. Cc: stable@vger.kernel.org # v4.13 Fixes: 2c4fb78f ("KVM: PPC: Book3S HV: Workaround POWER9 DD1.0 bug causing IPB bit loss") Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 01 9月, 2017 1 次提交
-
-
由 nixiaoming 提交于
We do ctx = kzalloc(sizeof(*ctx), GFP_KERNEL) and then later on call anon_inode_getfd(), but if that fails we don't free ctx, so that memory gets leaked. To fix it, this adds kfree(ctx) in the failure path. Signed-off-by: Nnixiaoming <nixiaoming@huawei.com> Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 31 8月, 2017 4 次提交
-
-
由 Paul Mackerras 提交于
This adds information about storage keys to the struct returned by the KVM_PPC_GET_SMMU_INFO ioctl. The new fields replace a pad field, which was zeroed by previous kernel versions. Thus userspace that knows about the new fields will see zeroes when running on an older kernel, indicating that storage keys are not supported. The size of the structure has not changed. The number of keys is hard-coded for the CPUs supported by HV KVM, which is just POWER7, POWER8 and POWER9. Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
Commit 2f272463 ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode", 2017-05-22) added code to treat the hypervisor decrementer (HDEC) as a 64-bit value on POWER9 rather than 32-bit. Unfortunately, that commit missed one place where HDEC is treated as a 32-bit value. This fixes it. This bug should not have any user-visible consequences that I can think of, beyond an occasional unnecessary exit to the host kernel. If the hypervisor decrementer has gone negative, then the bottom 32 bits will be negative for about 4 seconds after that, so as long as we get out of the guest within those 4 seconds we won't conclude that the HDEC interrupt is spurious. Reported-by: NSuraj Jitindar Singh <sjitindarsingh@gmail.com> Fixes: 2f272463 ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode") Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Andreas Schwab 提交于
binutils >= 2.26 now warns about misuse of register expressions in assembler operands that are actually literals. In this instance r0 is being used where a literal 0 should be used. Signed-off-by: NAndreas Schwab <schwab@linux-m68k.org> [mpe: Split into separate KVM patch, tweak change log] Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Nicholas Piggin 提交于
KVM currently validates the size of the VPA registered by the client against sizeof(struct lppaca), however we align (and therefore size) that struct to 1kB to avoid crossing a 4kB boundary in the client. PAPR calls for sizes >= 640 bytes to be accepted. Hard code this with a comment. Signed-off-by: NNicholas Piggin <npiggin@gmail.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-