- 23 12月, 2020 13 次提交
-
-
由 Andrey Konovalov 提交于
Using kasan_reset_tag() currently results in a function call. As it's called quite often from the allocator code, this leads to a noticeable slowdown. Move it to include/linux/kasan.h and turn it into a static inline function. Also remove the now unneeded reset_tag() internal KASAN macro and use kasan_reset_tag() instead. Link: https://lkml.kernel.org/r/6940383a3a9dfb416134d338d8fac97a9ebb8686.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/I4d2061acfe91d480a75df00b07c22d8494ef14b5Signed-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Rename get_alloc_info() and get_free_info() to kasan_get_alloc_meta() and kasan_get_free_meta() to better reflect what those do and avoid confusion with kasan_set_free_info(). No functional changes. Link: https://lkml.kernel.org/r/27b7c036b754af15a2839e945f6d8bfce32b4c2f.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ib6e4ba61c8b12112b403d3479a9799ac8fff8de1Signed-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NMarco Elver <elver@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Patch series "kasan: boot parameters for hardware tag-based mode", v4. === Overview Hardware tag-based KASAN mode [1] is intended to eventually be used in production as a security mitigation. Therefore there's a need for finer control over KASAN features and for an existence of a kill switch. This patchset adds a few boot parameters for hardware tag-based KASAN that allow to disable or otherwise control particular KASAN features, as well as provides some initial optimizations for running KASAN in production. There's another planned patchset what will further optimize hardware tag-based KASAN, provide proper benchmarking and tests, and will fully enable tag-based KASAN for production use. Hardware tag-based KASAN relies on arm64 Memory Tagging Extension (MTE) [2] to perform memory and pointer tagging. Please see [3] and [4] for detailed analysis of how MTE helps to fight memory safety problems. The features that can be controlled are: 1. Whether KASAN is enabled at all. 2. Whether KASAN collects and saves alloc/free stacks. 3. Whether KASAN panics on a detected bug or not. The patch titled "kasan: add and integrate kasan boot parameters" of this series adds a few new boot parameters. kasan.mode allows to choose one of three main modes: - kasan.mode=off - KASAN is disabled, no tag checks are performed - kasan.mode=prod - only essential production features are enabled - kasan.mode=full - all KASAN features are enabled The chosen mode provides default control values for the features mentioned above. However it's also possible to override the default values by providing: - kasan.stacktrace=off/on - enable stacks collection (default: on for mode=full, otherwise off) - kasan.fault=report/panic - only report tag fault or also panic (default: report) If kasan.mode parameter is not provided, it defaults to full when CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise. It is essential that switching between these modes doesn't require rebuilding the kernel with different configs, as this is required by the Android GKI (Generic Kernel Image) initiative. === Benchmarks For now I've only performed a few simple benchmarks such as measuring kernel boot time and slab memory usage after boot. There's an upcoming patchset which will optimize KASAN further and include more detailed benchmarking results. The benchmarks were performed in QEMU and the results below exclude the slowdown caused by QEMU memory tagging emulation (as it's different from the slowdown that will be introduced by hardware and is therefore irrelevant). KASAN_HW_TAGS=y + kasan.mode=off introduces no performance or memory impact compared to KASAN_HW_TAGS=n. kasan.mode=prod (manually excluding tagging) introduces 3% of performance and no memory impact (except memory used by hardware to store tags) compared to kasan.mode=off. kasan.mode=full has about 40% performance and 30% memory impact over kasan.mode=prod. Both come from alloc/free stack collection. === Notes This patchset is available here: https://github.com/xairy/linux/tree/up-boot-mte-v4 This patchset is based on v11 of "kasan: add hardware tag-based mode for arm64" patchset [1]. For testing in QEMU hardware tag-based KASAN requires: 1. QEMU built from master [6] (use "-machine virt,mte=on -cpu max" arguments to run). 2. GCC version 10. [1] https://lore.kernel.org/linux-arm-kernel/cover.1606161801.git.andreyknvl@google.com/T/#t [2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety [3] https://arxiv.org/pdf/1802.09517.pdf [4] https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf [5] https://source.android.com/devices/architecture/kernel/generic-kernel-image [6] https://github.com/qemu/qemu === Tags Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> This patch (of 19): Move get_free_info() call into quarantine_put() to simplify the call site. No functional changes. Link: https://lkml.kernel.org/r/cover.1606162397.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/312d0a3ef92cc6dc4fa5452cbc1714f9393ca239.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Iab0f04e7ebf8d83247024b7190c67c3c34c7940fSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NMarco Elver <elver@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Provide implementation of KASAN functions required for the hardware tag-based mode. Those include core functions for memory and pointer tagging (tags_hw.c) and bug reporting (report_tags_hw.c). Also adapt common KASAN code to support the new mode. Link: https://lkml.kernel.org/r/cfd0fbede579a6b66755c98c88c108e54f9c56bf.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Hardware tag-based KASAN has granules of MTE_GRANULE_SIZE. Define KASAN_GRANULE_SIZE to MTE_GRANULE_SIZE for CONFIG_KASAN_HW_TAGS. Link: https://lkml.kernel.org/r/3d15794b3d1b27447fd7fdf862c073192ba657bd.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This patch add a set of arch_*() memory tagging helpers currently only defined for arm64 when hardware tag-based KASAN is enabled. These helpers will be used by KASAN runtime to implement the hardware tag-based mode. The arch-level indirection level is introduced to simplify adding hardware tag-based KASAN support for other architectures in the future by defining the appropriate arch_*() macros. Link: https://lkml.kernel.org/r/fc9e5bb71201c03131a2fc00a74125723568dda9.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Co-developed-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. Rework print_memory_metadata() to make it agnostic with regard to the way metadata is stored. Allow providing a separate metadata_fetch_row() implementation for each KASAN mode. Hardware tag-based KASAN will provide its own implementation that doesn't use shadow memory. No functional changes for software modes. Link: https://lkml.kernel.org/r/5fb1ec0152bb1f521505017800387ec3e36ffe18.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. Hardware tag-based KASAN won't be using shadow memory, but will reuse this function. Rename "shadow" to implementation-neutral "metadata". No functional changes. Link: https://lkml.kernel.org/r/370466fba590a4596b55ffd38adfd990f8886db4.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Decoding routines aren't needed when CONFIG_KASAN_STACK_ENABLE is not enabled. Currently only generic KASAN mode implements stack error reporting. No functional changes for software modes. Link: https://lkml.kernel.org/r/05a24db36f5ec876af876a299bbea98c29468ebd.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. For software KASAN modes the check is based on the value in the shadow memory. Hardware tag-based KASAN won't be using shadow, so hide the implementation of the check in check_invalid_free(). Also simplify the code for software tag-based mode. No functional changes for software modes. Link: https://lkml.kernel.org/r/d01534a4b977f97d87515dc590e6348e1406de81.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Define KASAN_MEMORY_PER_SHADOW_PAGE as (KASAN_GRANULE_SIZE << PAGE_SHIFT), which is the same as (KASAN_GRANULE_SIZE * PAGE_SIZE) for software modes that use shadow memory, and use it across KASAN code to simplify it. Link: https://lkml.kernel.org/r/8329391cfe14b5cffd3decf3b5c535b6ce21eef6.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory, but will still use the concept of memory granules. Each memory granule maps to a single metadata entry: 8 bytes per one shadow byte for generic mode, 16 bytes per one shadow byte for software tag-based mode, and 16 bytes per one allocation tag for hardware tag-based mode. Rename KASAN_SHADOW_SCALE_SIZE to KASAN_GRANULE_SIZE, and KASAN_SHADOW_MASK to KASAN_GRANULE_MASK. Also use MASK when used as a mask, otherwise use SIZE. No functional changes. Link: https://lkml.kernel.org/r/939b5754e47f528a6e6a6f28ffc5815d8d128033.1606161801.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NMarco Elver <elver@google.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This is a preparatory commit for the upcoming addition of a new hardware tag-based (MTE-based) KASAN mode. The new mode won't be using shadow memory. Rename external annotation kasan_unpoison_shadow() to kasan_unpoison_range(), and introduce internal functions (un)poison_range() (without kasan_ prefix). Co-developed-by: NMarco Elver <elver@google.com> Link: https://lkml.kernel.org/r/fccdcaa13dc6b2211bf363d6c6d499279a54fe3a.1606161801.git.andreyknvl@google.comSigned-off-by: NMarco Elver <elver@google.com> Signed-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Tested-by: NVincenzo Frascino <vincenzo.frascino@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 8月, 2020 2 次提交
-
-
由 Walter Wu 提交于
Move free track from kasan_alloc_meta to kasan_free_meta in order to make struct kasan_alloc_meta and kasan_free_meta size are both 16 bytes. It is a good size because it is the minimal redzone size and a good number of alignment. For free track, we make some modifications as shown below: 1) Remove the free_track from struct kasan_alloc_meta. 2) Add the free_track into struct kasan_free_meta. 3) Add a macro KASAN_KMALLOC_FREETRACK in order to check whether it can print free stack in KASAN report. [1]https://bugzilla.kernel.org/show_bug.cgi?id=198437 [walter-zh.wu@mediatek.com: build fix] Link: http://lkml.kernel.org/r/20200710162440.23887-1-walter-zh.wu@mediatek.comSuggested-by: NDmitry Vyukov <dvyukov@google.com> Co-developed-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NWalter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NAndrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Link: http://lkml.kernel.org/r/20200601051022.1230-1-walter-zh.wu@mediatek.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Walter Wu 提交于
Patch series "kasan: memorize and print call_rcu stack", v8. This patchset improves KASAN reports by making them to have call_rcu() call stack information. It is useful for programmers to solve use-after-free or double-free memory issue. The KASAN report was as follows(cleaned up slightly): BUG: KASAN: use-after-free in kasan_rcu_reclaim+0x58/0x60 Freed by task 0: kasan_save_stack+0x24/0x50 kasan_set_track+0x24/0x38 kasan_set_free_info+0x18/0x20 __kasan_slab_free+0x10c/0x170 kasan_slab_free+0x10/0x18 kfree+0x98/0x270 kasan_rcu_reclaim+0x1c/0x60 Last call_rcu(): kasan_save_stack+0x24/0x50 kasan_record_aux_stack+0xbc/0xd0 call_rcu+0x8c/0x580 kasan_rcu_uaf+0xf4/0xf8 Generic KASAN will record the last two call_rcu() call stacks and print up to 2 call_rcu() call stacks in KASAN report. it is only suitable for generic KASAN. This feature considers the size of struct kasan_alloc_meta and kasan_free_meta, we try to optimize the structure layout and size, lets it get better memory consumption. [1]https://bugzilla.kernel.org/show_bug.cgi?id=198437 [2]https://groups.google.com/forum/#!searchin/kasan-dev/better$20stack$20traces$20for$20rcu%7Csort:date/kasan-dev/KQsjT_88hDE/7rNUZprRBgAJ This patch (of 4): This feature will record the last two call_rcu() call stacks and prints up to 2 call_rcu() call stacks in KASAN report. When call_rcu() is called, we store the call_rcu() call stack into slub alloc meta-data, so that the KASAN report can print rcu stack. [1]https://bugzilla.kernel.org/show_bug.cgi?id=198437 [2]https://groups.google.com/forum/#!searchin/kasan-dev/better$20stack$20traces$20for$20rcu%7Csort:date/kasan-dev/KQsjT_88hDE/7rNUZprRBgAJ [walter-zh.wu@mediatek.com: build fix] Link: http://lkml.kernel.org/r/20200710162401.23816-1-walter-zh.wu@mediatek.comSuggested-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NWalter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NAndrey Konovalov <andreyknvl@google.com> Acked-by: NPaul E. McKenney <paulmck@kernel.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthias Brugger <matthias.bgg@gmail.com> Link: http://lkml.kernel.org/r/20200710162123.23713-1-walter-zh.wu@mediatek.com Link: http://lkml.kernel.org/r/20200601050847.1096-1-walter-zh.wu@mediatek.com Link: http://lkml.kernel.org/r/20200601050927.1153-1-walter-zh.wu@mediatek.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 5月, 2020 1 次提交
-
-
由 Andrey Konovalov 提交于
KASAN is currently missing declarations for __asan_report* and __hwasan* functions. This can lead to compiler warnings. Reported-by: NLeon Romanovsky <leon@kernel.org> Reported-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NAndrey Konovalov <andreyknvl@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Tested-by: NLeon Romanovsky <leon@kernel.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Link: http://lkml.kernel.org/r/45b445a76a79208918f0cc44bfabebaea909b54d.1589297433.git.andreyknvl@google.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2020 1 次提交
-
-
由 Walter Wu 提交于
Patch series "fix the missing underflow in memory operation function", v4. The patchset helps to produce a KASAN report when size is negative in memory operation functions. It is helpful for programmer to solve an undefined behavior issue. Patch 1 based on Dmitry's review and suggestion, patch 2 is a test in order to verify the patch 1. [1]https://bugzilla.kernel.org/show_bug.cgi?id=199341 [2]https://lore.kernel.org/linux-arm-kernel/20190927034338.15813-1-walter-zh.wu@mediatek.com/ This patch (of 2): KASAN missed detecting size is a negative number in memset(), memcpy(), and memmove(), it will cause out-of-bounds bug. So needs to be detected by KASAN. If size is a negative number, then it has a reason to be defined as out-of-bounds bug type. Casting negative numbers to size_t would indeed turn up as a large size_t and its value will be larger than ULONG_MAX/2, so that this can qualify as out-of-bounds. KASAN report is shown below: BUG: KASAN: out-of-bounds in kmalloc_memmove_invalid_size+0x70/0xa0 Read of size 18446744073709551608 at addr ffffff8069660904 by task cat/72 CPU: 2 PID: 72 Comm: cat Not tainted 5.4.0-rc1-next-20191004ajb-00001-gdb8af2f372b2-dirty #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x288 show_stack+0x14/0x20 dump_stack+0x10c/0x164 print_address_description.isra.9+0x68/0x378 __kasan_report+0x164/0x1a0 kasan_report+0xc/0x18 check_memory_region+0x174/0x1d0 memmove+0x34/0x88 kmalloc_memmove_invalid_size+0x70/0xa0 [1] https://bugzilla.kernel.org/show_bug.cgi?id=199341 [cai@lca.pw: fix -Wdeclaration-after-statement warn] Link: http://lkml.kernel.org/r/1583509030-27939-1-git-send-email-cai@lca.pw [peterz@infradead.org: fix objtool warning] Link: http://lkml.kernel.org/r/20200305095436.GV2596@hirez.programming.kicks-ass.netReported-by: Nkernel test robot <lkp@intel.com> Reported-by: NDmitry Vyukov <dvyukov@google.com> Suggested-by: NDmitry Vyukov <dvyukov@google.com> Signed-off-by: NWalter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NQian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Link: http://lkml.kernel.org/r/20191112065302.7015-1-walter-zh.wu@mediatek.comSigned-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 12月, 2019 1 次提交
-
-
由 Daniel Axtens 提交于
Patch series "kasan: support backing vmalloc space with real shadow memory", v11. Currently, vmalloc space is backed by the early shadow page. This means that kasan is incompatible with VMAP_STACK. This series provides a mechanism to back vmalloc space with real, dynamically allocated memory. I have only wired up x86, because that's the only currently supported arch I can work with easily, but it's very easy to wire up other architectures, and it appears that there is some work-in-progress code to do this on arm64 and s390. This has been discussed before in the context of VMAP_STACK: - https://bugzilla.kernel.org/show_bug.cgi?id=202009 - https://lkml.org/lkml/2018/7/22/198 - https://lkml.org/lkml/2019/7/19/822 In terms of implementation details: Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=1) This is unfortunate but given that this is a debug feature only, not the end of the world. The benchmarks are also a stress-test for the vmalloc subsystem: they're not indicative of an overall 2x slowdown! This patch (of 4): Hook into vmalloc and vmap, and dynamically allocate real shadow memory to back the mappings. Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. To avoid the difficulties around swapping mappings around, this code expects that the part of the shadow region that covers the vmalloc space will not be covered by the early shadow page, but will be left unmapped. This will require changes in arch-specific code. This allows KASAN with VMAP_STACK, and may be helpful for architectures that do not have a separate module space (e.g. powerpc64, which I am currently working on). It also allows relaxing the module alignment back to PAGE_SIZE. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=3D1) This is unfortunate but given that this is a debug feature only, not the end of the world. The full benchmark results are: Performance No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 662004 11404956 17.23 19144610 28.92 1.68 full_fit_alloc_test 710950 12029752 16.92 13184651 18.55 1.10 long_busy_list_alloc_test 9431875 43990172 4.66 82970178 8.80 1.89 random_size_alloc_test 5033626 23061762 4.58 47158834 9.37 2.04 fix_align_alloc_test 1252514 15276910 12.20 31266116 24.96 2.05 random_size_align_alloc_te 1648501 14578321 8.84 25560052 15.51 1.75 align_shift_alloc_test 147 830 5.65 5692 38.72 6.86 pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12 Total Cycles 119240774314 763211341128 6.40 1390338696894 11.66 1.82 Sequential, 2 cpus No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 1423150 14276550 10.03 27733022 19.49 1.94 full_fit_alloc_test 1754219 14722640 8.39 15030786 8.57 1.02 long_busy_list_alloc_test 11451858 52154973 4.55 107016027 9.34 2.05 random_size_alloc_test 5989020 26735276 4.46 68885923 11.50 2.58 fix_align_alloc_test 2050976 20166900 9.83 50491675 24.62 2.50 random_size_align_alloc_te 2858229 17971700 6.29 38730225 13.55 2.16 align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08 pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43 Total Cycles 54181269392 308723699764 5.70 650772566394 12.01 2.11 fix_size_alloc_test 1420404 14289308 10.06 27790035 19.56 1.94 full_fit_alloc_test 1736145 14806234 8.53 15274301 8.80 1.03 long_busy_list_alloc_test 11404638 52270785 4.58 107550254 9.43 2.06 random_size_alloc_test 6017006 26650625 4.43 68696127 11.42 2.58 fix_align_alloc_test 2045504 20280985 9.91 50414862 24.65 2.49 random_size_align_alloc_te 2845338 17931018 6.30 38510276 13.53 2.15 align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57 pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10 Total Cycles 54040011688 309102805492 5.72 651325675652 12.05 2.11 [dja@axtens.net: fixups] Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009 Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net Signed-off-by: Mark Rutland <mark.rutland@arm.com> [shadow rework] Signed-off-by: NDaniel Axtens <dja@axtens.net> Co-developed-by: NMark Rutland <mark.rutland@arm.com> Acked-by: NVasily Gorbik <gor@linux.ibm.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Qian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 9月, 2019 1 次提交
-
-
由 Walter Wu 提交于
Add memory corruption identification at bug report for software tag-based mode. The report shows whether it is "use-after-free" or "out-of-bound" error instead of "invalid-access" error. This will make it easier for programmers to see the memory corruption problem. We extend the slab to store five old free pointer tag and free backtrace, we can check if the tagged address is in the slab record and make a good guess if the object is more like "use-after-free" or "out-of-bound". therefore every slab memory corruption can be identified whether it's "use-after-free" or "out-of-bound". [aryabinin@virtuozzo.com: simplify & clenup code] Link: https://lkml.kernel.org/r/3318f9d7-a760-3cc8-b700-f06108ae745f@virtuozzo.com] Link: http://lkml.kernel.org/r/20190821180332.11450-1-aryabinin@virtuozzo.comSigned-off-by: NWalter Wu <walter-zh.wu@mediatek.com> Signed-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NAndrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 7月, 2019 2 次提交
-
-
由 Marco Elver 提交于
This changes {,__}kasan_check_{read,write} functions to return a boolean denoting if the access was valid or not. [sfr@canb.auug.org.au: include types.h for "bool"] Link: http://lkml.kernel.org/r/20190705184949.13cdd021@canb.auug.org.au Link: http://lkml.kernel.org/r/20190626142014.141844-3-elver@google.comSigned-off-by: NMarco Elver <elver@google.com> Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marco Elver 提交于
This adds support for printing stack frame description on invalid stack accesses. The frame description is embedded by the compiler, which is parsed and then pretty-printed. Currently, we can only print the stack frame info for accesses to the task's own stack, but not accesses to other tasks' stacks. Example of what it looks like: page dumped because: kasan: bad access detected addr ffff8880673ef98a is located in stack of task insmod/2008 at offset 106 in frame: kasan_stack_oob+0x0/0xf5 [test_kasan] this frame has 2 objects: [32, 36) 'i' [96, 106) 'stack_array' Memory state around the buggy address: Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=198435 Link: http://lkml.kernel.org/r/20190522100048.146841-1-elver@google.comSigned-off-by: NMarco Elver <elver@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 3月, 2019 1 次提交
-
-
由 Qian Cai 提交于
set_tag() compiles away when CONFIG_KASAN_SW_TAGS=n, so make arch_kasan_set_tag() a static inline function to fix warnings below. mm/kasan/common.c: In function '__kasan_kmalloc': mm/kasan/common.c:475:5: warning: variable 'tag' set but not used [-Wunused-but-set-variable] u8 tag; ^~~ Link: http://lkml.kernel.org/r/20190307185244.54648-1-cai@lca.pwSigned-off-by: NQian Cai <cai@lca.pw> Reviewed-by: NAndrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 3月, 2019 1 次提交
-
-
由 Andrey Ryabinin 提交于
Use after scope bugs detector seems to be almost entirely useless for the linux kernel. It exists over two years, but I've seen only one valid bug so far [1]. And the bug was fixed before it has been reported. There were some other use-after-scope reports, but they were false-positives due to different reasons like incompatibility with structleak plugin. This feature significantly increases stack usage, especially with GCC < 9 version, and causes a 32K stack overflow. It probably adds performance penalty too. Given all that, let's remove use-after-scope detector entirely. While preparing this patch I've noticed that we mistakenly enable use-after-scope detection for clang compiler regardless of CONFIG_KASAN_EXTRA setting. This is also fixed now. [1] http://lkml.kernel.org/r/<20171129052106.rhgbjhhis53hkgfn@wfg-t540p.sh.intel.com> Link: http://lkml.kernel.org/r/20190111185842.13978-1-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Will Deacon <will.deacon@arm.com> [arm64] Cc: Qian Cai <cai@lca.pw> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 12月, 2018 6 次提交
-
-
由 Andrey Konovalov 提交于
This commit adds tag-based KASAN specific hooks implementation and adjusts common generic and tag-based KASAN ones. 1. When a new slab cache is created, tag-based KASAN rounds up the size of the objects in this cache to KASAN_SHADOW_SCALE_SIZE (== 16). 2. On each kmalloc tag-based KASAN generates a random tag, sets the shadow memory, that corresponds to this object to this tag, and embeds this tag value into the top byte of the returned pointer. 3. On each kfree tag-based KASAN poisons the shadow memory with a random tag to allow detection of use-after-free bugs. The rest of the logic of the hook implementation is very much similar to the one provided by generic KASAN. Tag-based KASAN saves allocation and free stack metadata to the slab object the same way generic KASAN does. Link: http://lkml.kernel.org/r/bda78069e3b8422039794050ddcb2d53d053ed41.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This commit adds rountines, that print tag-based KASAN error reports. Those are quite similar to generic KASAN, the difference is: 1. The way tag-based KASAN finds the first bad shadow cell (with a mismatching tag). Tag-based KASAN compares memory tags from the shadow memory to the pointer tag. 2. Tag-based KASAN reports all bugs with the "KASAN: invalid-access" header. Also simplify generic KASAN find_first_bad_addr. Link: http://lkml.kernel.org/r/aee6897b1bd077732a315fd84c6b4f234dbfdfcb.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Move generic KASAN specific error reporting routines to generic_report.c without any functional changes, leaving common error reporting code in report.c to be later reused by tag-based KASAN. Link: http://lkml.kernel.org/r/ba48c32f8e5aefedee78998ccff0413bee9e0f5b.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This commit adds a few helper functions, that are meant to be used to work with tags embedded in the top byte of kernel pointers: to set, to get or to reset the top byte. Link: http://lkml.kernel.org/r/f6c6437bb8e143bc44f42c3c259c62e734be7935.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
This commit splits the current CONFIG_KASAN config option into two: 1. CONFIG_KASAN_GENERIC, that enables the generic KASAN mode (the one that exists now); 2. CONFIG_KASAN_SW_TAGS, that enables the software tag-based KASAN mode. The name CONFIG_KASAN_SW_TAGS is chosen as in the future we will have another hardware tag-based KASAN mode, that will rely on hardware memory tagging support in arm64. With CONFIG_KASAN_SW_TAGS enabled, compiler options are changed to instrument kernel files with -fsantize=kernel-hwaddress (except the ones for which KASAN_SANITIZE := n is set). Both CONFIG_KASAN_GENERIC and CONFIG_KASAN_SW_TAGS support both CONFIG_KASAN_INLINE and CONFIG_KASAN_OUTLINE instrumentation modes. This commit also adds empty placeholder (for now) implementation of tag-based KASAN specific hooks inserted by the compiler and adjusts common hooks implementation. While this commit adds the CONFIG_KASAN_SW_TAGS config option, this option is not selectable, as it depends on HAVE_ARCH_KASAN_SW_TAGS, which we will enable once all the infrastracture code has been added. Link: http://lkml.kernel.org/r/b2550106eb8a68b10fefbabce820910b115aa853.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Tag-based KASAN reuses a significant part of the generic KASAN code, so move the common parts to common.c without any functional changes. Link: http://lkml.kernel.org/r/114064d002356e03bb8cc91f7835e20dc61b51d9.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 2月, 2018 4 次提交
-
-
由 Dmitry Vyukov 提交于
__builtin_return_address(1) is unreliable without frame pointers. With defconfig on kmalloc_pagealloc_invalid_free test I am getting: BUG: KASAN: double-free or invalid-free in (null) Pass caller PC from callers explicitly. Link: http://lkml.kernel.org/r/9b01bc2d237a4df74ff8472a3bf6b7635908de01.1514378558.git.dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dmitry Vyukov 提交于
Patch series "kasan: detect invalid frees". KASAN detects double-frees, but does not detect invalid-frees (when a pointer into a middle of heap object is passed to free). We recently had a very unpleasant case in crypto code which freed an inner object inside of a heap allocation. This left unnoticed during free, but totally corrupted heap and later lead to a bunch of random crashes all over kernel code. Detect invalid frees. This patch (of 5): Detect frees of pointers into middle of large heap objects. I dropped const from kasan_kfree_large() because it starts propagating through a bunch of functions in kasan_report.c, slab/slub nearest_obj(), all of their local variables, fixup_red_left(), etc. Link: http://lkml.kernel.org/r/1b45b4fe1d20fc0de1329aab674c1dd973fee723.1514378558.git.dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>a Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexander Potapenko 提交于
As a code-size optimization, LLVM builds since r279383 may bulk-manipulate the shadow region when (un)poisoning large memory blocks. This requires new callbacks that simply do an uninstrumented memset(). This fixes linking the Clang-built kernel when using KASAN. [arnd@arndb.de: add declarations for internal functions] Link: http://lkml.kernel.org/r/20180105094112.2690475-1-arnd@arndb.de [fengguang.wu@intel.com: __asan_set_shadow_00 can be static] Link: http://lkml.kernel.org/r/20171223125943.GA74341@lkp-ib03 [ghackmann@google.com: fix memset() parameters, and tweak commit message to describe new callbacks] Link: http://lkml.kernel.org/r/20171204191735.132544-6-paullawrence@google.comSigned-off-by: NAlexander Potapenko <glider@google.com> Signed-off-by: NGreg Hackmann <ghackmann@google.com> Signed-off-by: NPaul Lawrence <paullawrence@google.com> Signed-off-by: NFengguang Wu <fengguang.wu@intel.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Paul Lawrence 提交于
clang's AddressSanitizer implementation adds redzones on either side of alloca()ed buffers. These redzones are 32-byte aligned and at least 32 bytes long. __asan_alloca_poison() is passed the size and address of the allocated buffer, *excluding* the redzones on either side. The left redzone will always be to the immediate left of this buffer; but AddressSanitizer may need to add padding between the end of the buffer and the right redzone. If there are any 8-byte chunks inside this padding, we should poison those too. __asan_allocas_unpoison() is just passed the top and bottom of the dynamic stack area, so unpoisoning is simpler. Link: http://lkml.kernel.org/r/20171204191735.132544-4-paullawrence@google.comSigned-off-by: NGreg Hackmann <ghackmann@google.com> Signed-off-by: NPaul Lawrence <paullawrence@google.com> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 04 5月, 2017 1 次提交
-
-
由 Andrey Konovalov 提交于
Changes double-free report header from BUG: Double free or freeing an invalid pointer Unexpected shadow byte: 0xFB to BUG: KASAN: double-free or invalid-free in kmalloc_oob_left+0xe5/0xef This makes a bug uniquely identifiable by the first report line. To account for removing of the unexpected shadow value, print shadow bytes at the end of the report as in reports for other kinds of bugs. Link: http://lkml.kernel.org/r/20170302134851.101218-9-andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Acked-by: NDmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 4月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
Disable kasan after the first report. There are several reasons for this: - Single bug quite often has multiple invalid memory accesses causing storm in the dmesg. - Write OOB access might corrupt metadata so the next report will print bogus alloc/free stacktraces. - Reports after the first easily could be not bugs by itself but just side effects of the first one. Given that multiple reports usually only do harm, it makes sense to disable kasan after the first one. If user wants to see all the reports, the boot-time parameter kasan_multi_shot must be used. [aryabinin@virtuozzo.com: wrote changelog and doc, added missing include] Link: http://lkml.kernel.org/r/20170323154416.30257-1-aryabinin@virtuozzo.comSigned-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 12月, 2016 2 次提交
-
-
由 Dmitry Vyukov 提交于
Gcc revision 241896 implements use-after-scope detection. Will be available in gcc 7. Support it in KASAN. Gcc emits 2 new callbacks to poison/unpoison large stack objects when they go in/out of scope. Implement the callbacks and add a test. [dvyukov@google.com: v3] Link: http://lkml.kernel.org/r/1479998292-144502-1-git-send-email-dvyukov@google.com Link: http://lkml.kernel.org/r/1479226045-145148-1-git-send-email-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dmitry Vyukov 提交于
kasan_global struct is part of compiler/runtime ABI. gcc revision 241983 has added a new field to kasan_global struct. Update kernel definition of kasan_global struct to include the new field. Without this patch KASAN is broken with gcc 7. Link: http://lkml.kernel.org/r/1479219743-28682-1-git-send-email-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: <stable@vger.kernel.org> [4.0+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 8月, 2016 2 次提交
-
-
由 Andrey Ryabinin 提交于
Currently we just dump stack in case of double free bug. Let's dump all info about the object that we have. [aryabinin@virtuozzo.com: change double free message per Alexander] Link: http://lkml.kernel.org/r/1470153654-30160-1-git-send-email-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/1470062715-14077-6-git-send-email-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Ryabinin 提交于
The state of object currently tracked in two places - shadow memory, and the ->state field in struct kasan_alloc_meta. We can get rid of the latter. The will save us a little bit of memory. Also, this allow us to move free stack into struct kasan_alloc_meta, without increasing memory consumption. So now we should always know when the last time the object was freed. This may be useful for long delayed use-after-free bugs. As a side effect this fixes following UBSAN warning: UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13 member access within misaligned address ffff88000d1efebc for type 'struct qlist_node' which requires 8 byte alignment Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.comReported-by: Nkernel test robot <xiaolong.ye@intel.com> Signed-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-