1. 27 7月, 2017 3 次提交
  2. 25 7月, 2017 13 次提交
  3. 21 7月, 2017 2 次提交
    • D
      rxrpc: Expose UAPI definitions to userspace · 727f8914
      David Howells 提交于
      Move UAPI definitions from the internal header and place them in a UAPI
      header file so that userspace can make use of them.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      727f8914
    • D
      bpf: fix mixed signed/unsigned derived min/max value bounds · 4cabc5b1
      Daniel Borkmann 提交于
      Edward reported that there's an issue in min/max value bounds
      tracking when signed and unsigned compares both provide hints
      on limits when having unknown variables. E.g. a program such
      as the following should have been rejected:
      
         0: (7a) *(u64 *)(r10 -8) = 0
         1: (bf) r2 = r10
         2: (07) r2 += -8
         3: (18) r1 = 0xffff8a94cda93400
         5: (85) call bpf_map_lookup_elem#1
         6: (15) if r0 == 0x0 goto pc+7
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
         7: (7a) *(u64 *)(r10 -16) = -8
         8: (79) r1 = *(u64 *)(r10 -16)
         9: (b7) r2 = -1
        10: (2d) if r1 > r2 goto pc+3
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=0
        R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
        11: (65) if r1 s> 0x1 goto pc+2
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=1
        R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
        12: (0f) r0 += r1
        13: (72) *(u8 *)(r0 +0) = 0
        R0=map_value_adj(ks=8,vs=8,id=0),min_value=0,max_value=1 R1=inv,min_value=0,max_value=1
        R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
        14: (b7) r0 = 0
        15: (95) exit
      
      What happens is that in the first part ...
      
         8: (79) r1 = *(u64 *)(r10 -16)
         9: (b7) r2 = -1
        10: (2d) if r1 > r2 goto pc+3
      
      ... r1 carries an unsigned value, and is compared as unsigned
      against a register carrying an immediate. Verifier deduces in
      reg_set_min_max() that since the compare is unsigned and operation
      is greater than (>), that in the fall-through/false case, r1's
      minimum bound must be 0 and maximum bound must be r2. Latter is
      larger than the bound and thus max value is reset back to being
      'invalid' aka BPF_REGISTER_MAX_RANGE. Thus, r1 state is now
      'R1=inv,min_value=0'. The subsequent test ...
      
        11: (65) if r1 s> 0x1 goto pc+2
      
      ... is a signed compare of r1 with immediate value 1. Here,
      verifier deduces in reg_set_min_max() that since the compare
      is signed this time and operation is greater than (>), that
      in the fall-through/false case, we can deduce that r1's maximum
      bound must be 1, meaning with prior test, we result in r1 having
      the following state: R1=inv,min_value=0,max_value=1. Given that
      the actual value this holds is -8, the bounds are wrongly deduced.
      When this is being added to r0 which holds the map_value(_adj)
      type, then subsequent store access in above case will go through
      check_mem_access() which invokes check_map_access_adj(), that
      will then probe whether the map memory is in bounds based
      on the min_value and max_value as well as access size since
      the actual unknown value is min_value <= x <= max_value; commit
      fce366a9 ("bpf, verifier: fix alu ops against map_value{,
      _adj} register types") provides some more explanation on the
      semantics.
      
      It's worth to note in this context that in the current code,
      min_value and max_value tracking are used for two things, i)
      dynamic map value access via check_map_access_adj() and since
      commit 06c1c049 ("bpf: allow helpers access to variable memory")
      ii) also enforced at check_helper_mem_access() when passing a
      memory address (pointer to packet, map value, stack) and length
      pair to a helper and the length in this case is an unknown value
      defining an access range through min_value/max_value in that
      case. The min_value/max_value tracking is /not/ used in the
      direct packet access case to track ranges. However, the issue
      also affects case ii), for example, the following crafted program
      based on the same principle must be rejected as well:
      
         0: (b7) r2 = 0
         1: (bf) r3 = r10
         2: (07) r3 += -512
         3: (7a) *(u64 *)(r10 -16) = -8
         4: (79) r4 = *(u64 *)(r10 -16)
         5: (b7) r6 = -1
         6: (2d) if r4 > r6 goto pc+5
        R1=ctx R2=imm0,min_value=0,max_value=0,min_align=2147483648 R3=fp-512
        R4=inv,min_value=0 R6=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
         7: (65) if r4 s> 0x1 goto pc+4
        R1=ctx R2=imm0,min_value=0,max_value=0,min_align=2147483648 R3=fp-512
        R4=inv,min_value=0,max_value=1 R6=imm-1,max_value=18446744073709551615,min_align=1
        R10=fp
         8: (07) r4 += 1
         9: (b7) r5 = 0
        10: (6a) *(u16 *)(r10 -512) = 0
        11: (85) call bpf_skb_load_bytes#26
        12: (b7) r0 = 0
        13: (95) exit
      
      Meaning, while we initialize the max_value stack slot that the
      verifier thinks we access in the [1,2] range, in reality we
      pass -7 as length which is interpreted as u32 in the helper.
      Thus, this issue is relevant also for the case of helper ranges.
      Resetting both bounds in check_reg_overflow() in case only one
      of them exceeds limits is also not enough as similar test can be
      created that uses values which are within range, thus also here
      learned min value in r1 is incorrect when mixed with later signed
      test to create a range:
      
         0: (7a) *(u64 *)(r10 -8) = 0
         1: (bf) r2 = r10
         2: (07) r2 += -8
         3: (18) r1 = 0xffff880ad081fa00
         5: (85) call bpf_map_lookup_elem#1
         6: (15) if r0 == 0x0 goto pc+7
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
         7: (7a) *(u64 *)(r10 -16) = -8
         8: (79) r1 = *(u64 *)(r10 -16)
         9: (b7) r2 = 2
        10: (3d) if r2 >= r1 goto pc+3
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
        R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
        11: (65) if r1 s> 0x4 goto pc+2
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0
        R1=inv,min_value=3,max_value=4 R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
        12: (0f) r0 += r1
        13: (72) *(u8 *)(r0 +0) = 0
        R0=map_value_adj(ks=8,vs=8,id=0),min_value=3,max_value=4
        R1=inv,min_value=3,max_value=4 R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
        14: (b7) r0 = 0
        15: (95) exit
      
      This leaves us with two options for fixing this: i) to invalidate
      all prior learned information once we switch signed context, ii)
      to track min/max signed and unsigned boundaries separately as
      done in [0]. (Given latter introduces major changes throughout
      the whole verifier, it's rather net-next material, thus this
      patch follows option i), meaning we can derive bounds either
      from only signed tests or only unsigned tests.) There is still the
      case of adjust_reg_min_max_vals(), where we adjust bounds on ALU
      operations, meaning programs like the following where boundaries
      on the reg get mixed in context later on when bounds are merged
      on the dst reg must get rejected, too:
      
         0: (7a) *(u64 *)(r10 -8) = 0
         1: (bf) r2 = r10
         2: (07) r2 += -8
         3: (18) r1 = 0xffff89b2bf87ce00
         5: (85) call bpf_map_lookup_elem#1
         6: (15) if r0 == 0x0 goto pc+6
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
         7: (7a) *(u64 *)(r10 -16) = -8
         8: (79) r1 = *(u64 *)(r10 -16)
         9: (b7) r2 = 2
        10: (3d) if r2 >= r1 goto pc+2
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
        R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
        11: (b7) r7 = 1
        12: (65) if r7 s> 0x0 goto pc+2
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
        R2=imm2,min_value=2,max_value=2,min_align=2 R7=imm1,max_value=0 R10=fp
        13: (b7) r0 = 0
        14: (95) exit
      
        from 12 to 15: R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0
        R1=inv,min_value=3 R2=imm2,min_value=2,max_value=2,min_align=2 R7=imm1,min_value=1 R10=fp
        15: (0f) r7 += r1
        16: (65) if r7 s> 0x4 goto pc+2
        R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
        R2=imm2,min_value=2,max_value=2,min_align=2 R7=inv,min_value=4,max_value=4 R10=fp
        17: (0f) r0 += r7
        18: (72) *(u8 *)(r0 +0) = 0
        R0=map_value_adj(ks=8,vs=8,id=0),min_value=4,max_value=4 R1=inv,min_value=3
        R2=imm2,min_value=2,max_value=2,min_align=2 R7=inv,min_value=4,max_value=4 R10=fp
        19: (b7) r0 = 0
        20: (95) exit
      
      Meaning, in adjust_reg_min_max_vals() we must also reset range
      values on the dst when src/dst registers have mixed signed/
      unsigned derived min/max value bounds with one unbounded value
      as otherwise they can be added together deducing false boundaries.
      Once both boundaries are established from either ALU ops or
      compare operations w/o mixing signed/unsigned insns, then they
      can safely be added to other regs also having both boundaries
      established. Adding regs with one unbounded side to a map value
      where the bounded side has been learned w/o mixing ops is
      possible, but the resulting map value won't recover from that,
      meaning such op is considered invalid on the time of actual
      access. Invalid bounds are set on the dst reg in case i) src reg,
      or ii) in case dst reg already had them. The only way to recover
      would be to perform i) ALU ops but only 'add' is allowed on map
      value types or ii) comparisons, but these are disallowed on
      pointers in case they span a range. This is fine as only BPF_JEQ
      and BPF_JNE may be performed on PTR_TO_MAP_VALUE_OR_NULL registers
      which potentially turn them into PTR_TO_MAP_VALUE type depending
      on the branch, so only here min/max value cannot be invalidated
      for them.
      
      In terms of state pruning, value_from_signed is considered
      as well in states_equal() when dealing with adjusted map values.
      With regards to breaking existing programs, there is a small
      risk, but use-cases are rather quite narrow where this could
      occur and mixing compares probably unlikely.
      
      Joint work with Josef and Edward.
      
        [0] https://lists.iovisor.org/pipermail/iovisor-dev/2017-June/000822.html
      
      Fixes: 48461135 ("bpf: allow access into map value arrays")
      Reported-by: NEdward Cree <ecree@solarflare.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Signed-off-by: NEdward Cree <ecree@solarflare.com>
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      4cabc5b1
  4. 20 7月, 2017 2 次提交
  5. 18 7月, 2017 14 次提交
  6. 17 7月, 2017 6 次提交