- 07 5月, 2020 2 次提交
-
-
由 Florian Fainelli 提交于
When ndo_get_phys_port_name() for the CPU port was added we introduced an early check for when the DSA master network device in dsa_master_ndo_setup() already implements ndo_get_phys_port_name(). When we perform the teardown operation in dsa_master_ndo_teardown() we would not be checking that cpu_dp->orig_ndo_ops was successfully allocated and non-NULL initialized. With network device drivers such as virtio_net, this leads to a NPD as soon as the DSA switch hanging off of it gets torn down because we are now assigning the virtio_net device's netdev_ops a NULL pointer. Fixes: da7b9e9b ("net: dsa: Add ndo_get_phys_port_name() for CPU port") Reported-by: NAllen Pais <allen.pais@oracle.com> Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Tested-by: NAllen Pais <allen.pais@oracle.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
This was caused by a poor merge conflict resolution on my side. The "act = &cls->rule->action.entries[0];" assignment was already present in the code prior to the patch mentioned below. Fixes: e13c2075 ("net: dsa: refactor matchall mirred action to separate function") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 5月, 2020 2 次提交
-
-
由 Cong Wang 提交于
This patch reverts the folowing commits: commit 064ff66e "bonding: add missing netdev_update_lockdep_key()" commit 53d37497 "net: avoid updating qdisc_xmit_lock_key in netdev_update_lockdep_key()" commit 1f26c0d3 "net: fix kernel-doc warning in <linux/netdevice.h>" commit ab92d68f "net: core: add generic lockdep keys" but keeps the addr_list_lock_key because we still lock addr_list_lock nestedly on stack devices, unlikely xmit_lock this is safe because we don't take addr_list_lock on any fast path. Reported-and-tested-by: syzbot+aaa6fa4949cc5d9b7b25@syzkaller.appspotmail.com Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Taehee Yoo <ap420073@gmail.com> Signed-off-by: NCong Wang <xiyou.wangcong@gmail.com> Acked-by: NTaehee Yoo <ap420073@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Florian Fainelli 提交于
Prior to 1d27732f ("net: dsa: setup and teardown ports"), we would not treat failures to set-up an user port as fatal, but after this commit we would, which is a regression for some systems where interfaces may be declared in the Device Tree, but the underlying hardware may not be present (pluggable daughter cards for instance). Fixes: 1d27732f ("net: dsa: setup and teardown ports") Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 4月, 2020 1 次提交
-
-
由 Russell King 提交于
Move the callback into the phylink_config structure, rather than providing a callback to set this up. Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Tested-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 4月, 2020 1 次提交
-
-
由 Alexander Lobakin 提交于
gro_cells lib is used by different encapsulating netdevices, such as geneve, macsec, vxlan etc. to speed up decapsulated traffic processing. CPU tag is a sort of "encapsulation", and we can use the same mechs to greatly improve overall DSA performance. skbs are passed to the GRO layer after removing CPU tags, so we don't need any new packet offload types as it was firstly proposed by me in the first GRO-over-DSA variant [1]. The size of struct gro_cells is sizeof(void *), so hot struct dsa_slave_priv becomes only 4/8 bytes bigger, and all critical fields remain in one 32-byte cacheline. The other positive side effect is that drivers for network devices that can be shipped as CPU ports of DSA-driven switches can now use napi_gro_frags() to pass skbs to kernel. Packets built that way are completely non-linear and are likely being dropped without GRO. This was tested on to-be-mainlined-soon Ethernet driver that uses napi_gro_frags(), and the overall performance was on par with the variant from [1], sometimes even better due to minimal overhead. net.core.gro_normal_batch tuning may help to push it to the limit on particular setups and platforms. iperf3 IPoE VLAN NAT TCP forwarding (port1.218 -> port0) setup on 1.2 GHz MIPS board: 5.7-rc2 baseline: [ID] Interval Transfer Bitrate Retr [ 5] 0.00-120.01 sec 9.00 GBytes 644 Mbits/sec 413 sender [ 5] 0.00-120.00 sec 8.99 GBytes 644 Mbits/sec receiver Iface RX packets TX packets eth0 7097731 7097702 port0 426050 6671829 port1 6671681 425862 port1.218 6671677 425851 With this patch: [ID] Interval Transfer Bitrate Retr [ 5] 0.00-120.01 sec 12.2 GBytes 870 Mbits/sec 122 sender [ 5] 0.00-120.00 sec 12.2 GBytes 870 Mbits/sec receiver Iface RX packets TX packets eth0 9474792 9474777 port0 455200 353288 port1 9019592 455035 port1.218 353144 455024 v2: - Add some performance examples in the commit message; - No functional changes. [1] https://lore.kernel.org/netdev/20191230143028.27313-1-alobakin@dlink.ru/Signed-off-by: NAlexander Lobakin <bloodyreaper@yandex.ru> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 4月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
There is no reason to fail the probing of the switch if the MTU couldn't be configured correctly (either the switch port itself, or the host port) for whatever reason. MTU-sized traffic probably won't work, sure, but we can still probably limp on and support some form of communication anyway, which the users would probably appreciate more. Fixes: bfcb8132 ("net: dsa: configure the MTU for switch ports") Reported-by: NOleksij Rempel <o.rempel@pengutronix.de> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 4月, 2020 1 次提交
-
-
由 Andrew Lunn 提交于
DSA and CPU ports can be configured in two ways. By default, the driver should configure such ports to there maximum bandwidth. For most use cases, this is sufficient. When this default is insufficient, a phylink instance can be bound to such ports, and phylink will configure the port, e.g. based on fixed-link properties. phylink assumes the port is initially down. Given that the driver should have already configured it to its maximum speed, ask the driver to down the port before instantiating the phylink instance. Fixes: 30c4a5b0 ("net: mv88e6xxx: use resolved link config in mac_link_up()") Signed-off-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 4月, 2020 1 次提交
-
-
由 kbuild test robot 提交于
Fixes: f41071407c85 ("net: dsa: implement auto-normalization of MTU for bridge hardware datapath") Signed-off-by: Nkbuild test robot <lkp@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 4月, 2020 1 次提交
-
-
由 Russell King 提交于
Fix an oops in dsa_port_phylink_mac_change() caused by a combination of a20f9970 ("net: dsa: Don't instantiate phylink for CPU/DSA ports unless needed") and the net-dsa-improve-serdes-integration series of patches 65b7a2c8 ("Merge branch 'net-dsa-improve-serdes-integration'"). Unable to handle kernel NULL pointer dereference at virtual address 00000124 pgd = c0004000 [00000124] *pgd=00000000 Internal error: Oops: 805 [#1] SMP ARM Modules linked in: tag_edsa spi_nor mtd xhci_plat_hcd mv88e6xxx(+) xhci_hcd armada_thermal marvell_cesa dsa_core ehci_orion libdes phy_armada38x_comphy at24 mcp3021 sfp evbug spi_orion sff mdio_i2c CPU: 1 PID: 214 Comm: irq/55-mv88e6xx Not tainted 5.6.0+ #470 Hardware name: Marvell Armada 380/385 (Device Tree) PC is at phylink_mac_change+0x10/0x88 LR is at mv88e6352_serdes_irq_status+0x74/0x94 [mv88e6xxx] Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Reviewed-by: NVivien Didelot <vivien.didelot@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 3月, 2020 3 次提交
-
-
由 Vladimir Oltean 提交于
The approach taken to pass the port policer methods on to drivers is pragmatic. It is similar to the port mirroring implementation (in that the DSA core does all of the filter block interaction and only passes simple operations for the driver to implement) and dissimilar to how flow-based policers are going to be implemented (where the driver has full control over the flow_cls_offload data structure). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Make room for other actions for the matchall filter by keeping the mirred argument parsing self-contained in its own function. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Christophe JAILLET 提交于
There is no point in preparing the module name in a buffer. The format string can be passed diectly to 'request_module()'. This axes a few lines of code and cleans a few things: - max len for a driver name is MODULE_NAME_LEN wich is ~ 60 chars, not 128. It would be down-sized in 'request_module()' - we should pass the total size of the buffer to 'snprintf()', not the size minus 1 Signed-off-by: NChristophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 3月, 2020 2 次提交
-
-
由 Vladimir Oltean 提交于
Many switches don't have an explicit knob for configuring the MTU (maximum transmission unit per interface). Instead, they do the length-based packet admission checks on the ingress interface, for reasons that are easy to understand (why would you accept a packet in the queuing subsystem if you know you're going to drop it anyway). So it is actually the MRU that these switches permit configuring. In Linux there only exists the IFLA_MTU netlink attribute and the associated dev_set_mtu function. The comments like to play blind and say that it's changing the "maximum transfer unit", which is to say that there isn't any directionality in the meaning of the MTU word. So that is the interpretation that this patch is giving to things: MTU == MRU. When 2 interfaces having different MTUs are bridged, the bridge driver MTU auto-adjustment logic kicks in: what br_mtu_auto_adjust() does is it adjusts the MTU of the bridge net device itself (and not that of the slave net devices) to the minimum value of all slave interfaces, in order for forwarded packets to not exceed the MTU regardless of the interface they are received and send on. The idea behind this behavior, and why the slave MTUs are not adjusted, is that normal termination from Linux over the L2 forwarding domain should happen over the bridge net device, which _is_ properly limited by the minimum MTU. And termination over individual slave devices is possible even if those are bridged. But that is not "forwarding", so there's no reason to do normalization there, since only a single interface sees that packet. The problem with those switches that can only control the MRU is with the offloaded data path, where a packet received on an interface with MRU 9000 would still be forwarded to an interface with MRU 1500. And the br_mtu_auto_adjust() function does not really help, since the MTU configured on the bridge net device is ignored. In order to enforce the de-facto MTU == MRU rule for these switches, we need to do MTU normalization, which means: in order for no packet larger than the MTU configured on this port to be sent, then we need to limit the MRU on all ports that this packet could possibly come from. AKA since we are configuring the MRU via MTU, it means that all ports within a bridge forwarding domain should have the same MTU. And that is exactly what this patch is trying to do. >From an implementation perspective, we try to follow the intent of the user, otherwise there is a risk that we might livelock them (they try to change the MTU on an already-bridged interface, but we just keep changing it back in an attempt to keep the MTU normalized). So the MTU that the bridge is normalized to is either: - The most recently changed one: ip link set dev swp0 master br0 ip link set dev swp1 master br0 ip link set dev swp0 mtu 1400 This sequence will make swp1 inherit MTU 1400 from swp0. - The one of the most recently added interface to the bridge: ip link set dev swp0 master br0 ip link set dev swp1 mtu 1400 ip link set dev swp1 master br0 The above sequence will make swp0 inherit MTU 1400 as well. Suggested-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
It is useful be able to configure port policers on a switch to accept frames of various sizes: - Increase the MTU for better throughput from the default of 1500 if it is known that there is no 10/100 Mbps device in the network. - Decrease the MTU to limit the latency of high-priority frames under congestion, or work around various network segments that add extra headers to packets which can't be fragmented. For DSA slave ports, this is mostly a pass-through callback, called through the regular ndo ops and at probe time (to ensure consistency across all supported switches). The CPU port is called with an MTU equal to the largest configured MTU of the slave ports. The assumption is that the user might want to sustain a bidirectional conversation with a partner over any switch port. The DSA master is configured the same as the CPU port, plus the tagger overhead. Since the MTU is by definition L2 payload (sans Ethernet header), it is up to each individual driver to figure out if it needs to do anything special for its frame tags on the CPU port (it shouldn't except in special cases). So the MTU does not contain the tagger overhead on the CPU port. However the MTU of the DSA master, minus the tagger overhead, is used as a proxy for the MTU of the CPU port, which does not have a net device. This is to avoid uselessly calling the .change_mtu function on the CPU port when nothing should change. So it is safe to assume that the DSA master and the CPU port MTUs are apart by exactly the tagger's overhead in bytes. Some changes were made around dsa_master_set_mtu(), function which was now removed, for 2 reasons: - dev_set_mtu() already calls dev_validate_mtu(), so it's redundant to do the same thing in DSA - __dev_set_mtu() returns 0 if ops->ndo_change_mtu is an absent method That is to say, there's no need for this function in DSA, we can safely call dev_set_mtu() directly, take the rtnl lock when necessary, and just propagate whatever errors get reported (since the user probably wants to be informed). Some inspiration (mainly in the MTU DSA notifier) was taken from a vaguely similar patch from Murali and Florian, who are credited as co-developers down below. Co-developed-by: NMurali Krishna Policharla <murali.policharla@broadcom.com> Signed-off-by: NMurali Krishna Policharla <murali.policharla@broadcom.com> Co-developed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Not only did this wheel did not need reinventing, but there is also an issue with it: It doesn't remove the VLAN header in a way that preserves the L2 payload checksum when that is being provided by the DSA master hw. It should recalculate checksum both for the push, before removing the header, and for the pull afterwards. But the current implementation is quite dizzying, with pulls followed immediately afterwards by pushes, the memmove is done before the push, etc. This makes a DSA master with RX checksumming offload to print stack traces with the infamous 'hw csum failure' message. So remove the dsa_8021q_remove_header function and replace it with something that actually works with inet checksumming. Fixes: d4619336 ("net: dsa: tag_8021q: Create helper function for removing VLAN header") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 3月, 2020 2 次提交
-
-
由 Florian Fainelli 提交于
Provide a flow_dissect callback which returns the network offset and where to find the skb protocol, given the tags structure a common function works for both tagging formats that are supported. Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NVivien Didelot <vivien.didelot@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Florian Fainelli 提交于
When both the switch and the bridge are learning about new addresses, switch ports attached to the bridge would see duplicate ARP frames because both entities would attempt to send them. Fixes: 5037d532 ("net: dsa: add Broadcom tag RX/TX handler") Reported-by: NMaxime Bizon <mbizon@freebox.fr> Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NVivien Didelot <vivien.didelot@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2020 1 次提交
-
-
由 Jakub Kicinski 提交于
flow_action_hw_stats_types_check() helper takes one of the FLOW_ACTION_HW_STATS_*_BIT values as input. If we align the arguments to the opening bracket of the helper there is no way to call this helper and stay under 80 characters. Remove the "types" part from the new flow_action helpers and enum values. Signed-off-by: NJakub Kicinski <kuba@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 3月, 2020 1 次提交
-
-
由 Russell King 提交于
Issue a warning to the kernel log if phylink_mac_link_state() returns an error. This should not occur, but let's make it visible. Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 3月, 2020 1 次提交
-
-
由 Andrew Lunn 提交于
By default, DSA drivers should configure CPU and DSA ports to their maximum speed. In many configurations this is sufficient to make the link work. In some cases it is necessary to configure the link to run slower, e.g. because of limitations of the SoC it is connected to. Or back to back PHYs are used and the PHY needs to be driven in order to establish link. In this case, phylink is used. Only instantiate phylink if it is required. If there is no PHY, or no fixed link properties, phylink can upset a link which works in the default configuration. Fixes: 0e279218 ("net: dsa: Use PHYLINK for the CPU/DSA ports") Signed-off-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 3月, 2020 1 次提交
-
-
由 Jiri Pirko 提交于
Introduce flow_action_basic_hw_stats_types_check() helper and use it in drivers. That sanitizes the drivers which do not have support for action HW stats types. Signed-off-by: NJiri Pirko <jiri@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 3月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
Ocelot has the concept of a CPU port. The CPU port is represented in the forwarding and the queueing system, but it is not a physical device. The CPU port can either be accessed via register-based injection/extraction (which is the case of Ocelot), via Frame-DMA (similar to the first one), or "connected" to a physical Ethernet port (called NPI in the datasheet) which is the case of the Felix DSA switch. In Ocelot the CPU port is at index 11. In Felix the CPU port is at index 6. The CPU bit is treated special in the forwarding, as it is never cleared from the forwarding port mask (once added to it). Other than that, it is treated the same as a normal front port. Both Felix and Ocelot should use the CPU port in the same way. This means that Felix should not use the NPI port directly when forwarding to the CPU, but instead use the CPU port. This patch is fixing this such that Felix will use port 6 as its CPU port, and just use the NPI port to carry the traffic. Therefore, eliminate the "ocelot->cpu" variable which was holding the index of the NPI port for Felix, and the index of the CPU port module for Ocelot, so the variable was actually configuring different things for different drivers and causing at least part of the confusion. Also remove the "ocelot->num_cpu_ports" variable, which is the result of another confusion. The 2 CPU ports mentioned in the datasheet are because there are two frame extraction channels (register based or DMA based). This is of no relevance to the driver at the moment, and invisible to the analyzer module. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Suggested-by: NAllan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 3月, 2020 2 次提交
-
-
由 Vladimir Oltean 提交于
Due to the immense variety of classification keys and actions available for tc-flower, as well as due to potentially very different DSA switch capabilities, it doesn't make a lot of sense for the DSA mid layer to even attempt to interpret these. So just pass them on to the underlying switch driver. DSA implements just the standard boilerplate for binding and unbinding flow blocks to ports, since nobody wants to deal with that. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Russell King 提交于
Place phylink_start()/phylink_stop() inside dsa_port_enable() and dsa_port_disable(), which ensures that we call phylink_stop() before tearing down phylink - which is a documented requirement. Failure to do so can cause use-after-free bugs. Fixes: 0e279218 ("net: dsa: Use PHYLINK for the CPU/DSA ports") Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 2月, 2020 2 次提交
-
-
由 Russell King 提交于
Propagate the resolved link configuration down via DSA's phylink_mac_link_up() operation to allow split PCS/MAC to work. Tested-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Russell King 提交于
Propagate the resolved link parameters via the mac_link_up() call for MACs that do not automatically track their PCS state. We propagate the link parameters via function arguments so that inappropriate members of struct phylink_link_state can't be accessed, and creating a new structure just for this adds needless complexity to the API. Tested-by: NAndre Przywara <andre.przywara@arm.com> Tested-by: NAlexandre Belloni <alexandre.belloni@bootlin.com> Tested-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NRussell King <rmk+kernel@armlinux.org.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 2月, 2020 2 次提交
-
-
由 Per Forlin 提交于
Passing tag size to skb_cow_head will make sure there is enough headroom for the tag data. This change does not introduce any overhead in case there is already available headroom for tag. Signed-off-by: NPer Forlin <perfn@axis.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Per Forlin 提交于
Passing tag size to skb_cow_head will make sure there is enough headroom for the tag data. This change does not introduce any overhead in case there is already available headroom for tag. Signed-off-by: NPer Forlin <perfn@axis.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 1月, 2020 1 次提交
-
-
由 Vladimir Oltean 提交于
DSA sets up a switch tree little by little. Every switch of the N members of the tree calls dsa_register_switch, and (N - 1) will just touch the dst->ports list with their ports and quickly exit. Only the last switch that calls dsa_register_switch will find all DSA links complete in dsa_tree_setup_routing_table, and not return zero as a result but instead go ahead and set up the entire DSA switch tree (practically on behalf of the other switches too). The trouble is that the (N - 1) switches don't clean up after themselves after they get an error such as EPROBE_DEFER. Their footprint left in dst->ports by dsa_switch_touch_ports is still there. And switch N, the one responsible with actually setting up the tree, is going to work with those stale dp, dp->ds and dp->ds->dev pointers. In particular ds and ds->dev might get freed by the device driver. Be there a 2-switch tree and the following calling order: - Switch 1 calls dsa_register_switch - Calls dsa_switch_touch_ports, populates dst->ports - Calls dsa_port_parse_cpu, gets -EPROBE_DEFER, exits. - Switch 2 calls dsa_register_switch - Calls dsa_switch_touch_ports, populates dst->ports - Probe doesn't get deferred, so it goes ahead. - Calls dsa_tree_setup_routing_table, which returns "complete == true" due to Switch 1 having called dsa_switch_touch_ports before. - Because the DSA links are complete, it calls dsa_tree_setup_switches now. - dsa_tree_setup_switches iterates through dst->ports, initializing the Switch 1 ds structure (invalid) and the Switch 2 ds structure (valid). - Undefined behavior (use after free, sometimes NULL pointers, etc). Real example below (debugging prints added by me, as well as guards against NULL pointers): [ 5.477947] dsa_tree_setup_switches: Setting up port 0 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.313002] dsa_tree_setup_switches: Setting up port 1 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.319932] dsa_tree_setup_switches: Setting up port 2 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.329693] dsa_tree_setup_switches: Setting up port 3 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.339458] dsa_tree_setup_switches: Setting up port 4 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.349226] dsa_tree_setup_switches: Setting up port 5 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.358991] dsa_tree_setup_switches: Setting up port 6 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.368758] dsa_tree_setup_switches: Setting up port 7 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.378524] dsa_tree_setup_switches: Setting up port 8 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.388291] dsa_tree_setup_switches: Setting up port 9 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.398057] dsa_tree_setup_switches: Setting up port 10 of switch ffffff803df0b980 (dev ffffff803f775c00) [ 6.407912] dsa_tree_setup_switches: Setting up port 0 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.417682] dsa_tree_setup_switches: Setting up port 1 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.427446] dsa_tree_setup_switches: Setting up port 2 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.437212] dsa_tree_setup_switches: Setting up port 3 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.446979] dsa_tree_setup_switches: Setting up port 4 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.456744] dsa_tree_setup_switches: Setting up port 5 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.466512] dsa_tree_setup_switches: Setting up port 6 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.476277] dsa_tree_setup_switches: Setting up port 7 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.486043] dsa_tree_setup_switches: Setting up port 8 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.495810] dsa_tree_setup_switches: Setting up port 9 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.505577] dsa_tree_setup_switches: Setting up port 10 of switch ffffff803da02f80 (dev 0000000000000000) [ 6.515433] dsa_tree_setup_switches: Setting up port 0 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.354120] dsa_tree_setup_switches: Setting up port 1 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.361045] dsa_tree_setup_switches: Setting up port 2 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.370805] dsa_tree_setup_switches: Setting up port 3 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.380571] dsa_tree_setup_switches: Setting up port 4 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.390337] dsa_tree_setup_switches: Setting up port 5 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.400104] dsa_tree_setup_switches: Setting up port 6 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.409872] dsa_tree_setup_switches: Setting up port 7 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.419637] dsa_tree_setup_switches: Setting up port 8 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.429403] dsa_tree_setup_switches: Setting up port 9 of switch ffffff803db15b80 (dev ffffff803d8e4800) [ 7.439169] dsa_tree_setup_switches: Setting up port 10 of switch ffffff803db15b80 (dev ffffff803d8e4800) The solution is to recognize that the functions that call dsa_switch_touch_ports (dsa_switch_parse_of, dsa_switch_parse) have side effects, and therefore one should clean up their side effects on error path. The cleanup of dst->ports was taken from dsa_switch_remove and moved into a dedicated dsa_switch_release_ports function, which should really be per-switch (free only the members of dst->ports that are also members of ds, instead of all switch ports). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 1月, 2020 2 次提交
-
-
由 Alexander Lobakin 提交于
DSA subsystem takes care of netdev statistics since commit 4ed70ce9 ("net: dsa: Refactor transmit path to eliminate duplication"), so any accounting inside tagger callbacks is redundant and can lead to messing up the stats. This bug is present in Qualcomm tagger since day 0. Fixes: cafdc45c ("net-next: dsa: add Qualcomm tag RX/TX handler") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NAlexander Lobakin <alobakin@dlink.ru> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alexander Lobakin 提交于
The correct name is GSWIP (Gigabit Switch IP). Typo was introduced in 875138f8 ("dsa: Move tagger name into its ops structure") while moving tagger names to their structures. Fixes: 875138f8 ("dsa: Move tagger name into its ops structure") Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NAlexander Lobakin <alobakin@dlink.ru> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Acked-by: NHauke Mehrtens <hauke@hauke-m.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 1月, 2020 1 次提交
-
-
由 Florian Fainelli 提交于
It is possible to stack multiple DSA switches in a way that they are not part of the tree (disjoint) but the DSA master of a switch is a DSA slave of another. When that happens switch drivers may have to know this is the case so as to determine whether their tagging protocol has a remove chance of working. This is useful for specific switch drivers such as b53 where devices have been known to be stacked in the wild without the Broadcom tag protocol supporting that feature. This allows b53 to continue supporting those devices by forcing the disabling of Broadcom tags on the outermost switches if necessary. The get_tag_protocol() function is therefore updated to gain an additional enum dsa_tag_protocol argument which denotes the current tagging protocol used by the DSA master we are attached to, else DSA_TAG_PROTO_NONE for the top of the dsa_switch_tree. Signed-off-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 1月, 2020 3 次提交
-
-
由 Vladimir Oltean 提交于
The DSA drivers that implement .phylink_mac_link_state should normally register an interrupt for the PCS, from which they should call phylink_mac_change(). However not all switches implement this, and those who don't should set this flag in dsa_switch in the .setup callback, so that PHYLINK will poll for a few ms until the in-band AN link timer expires and the PCS state settles. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
This is a cosmetic patch that makes the dp, tx_vid, queue_mapping and pcp local variable definitions a bit closer in length, so they don't look like an eyesore as much. The 'ds' variable is not used otherwise, except for ds->dp. Signed-off-by: NVladimir Oltean <olteanv@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
There are 3 things that are wrong with the DSA deferred xmit mechanism: 1. Its introduction has made the DSA hotpath ever so slightly more inefficient for everybody, since DSA_SKB_CB(skb)->deferred_xmit needs to be initialized to false for every transmitted frame, in order to figure out whether the driver requested deferral or not (a very rare occasion, rare even for the only driver that does use this mechanism: sja1105). That was necessary to avoid kfree_skb from freeing the skb. 2. Because L2 PTP is a link-local protocol like STP, it requires management routes and deferred xmit with this switch. But as opposed to STP, the deferred work mechanism needs to schedule the packet rather quickly for the TX timstamp to be collected in time and sent to user space. But there is no provision for controlling the scheduling priority of this deferred xmit workqueue. Too bad this is a rather specific requirement for a feature that nobody else uses (more below). 3. Perhaps most importantly, it makes the DSA core adhere a bit too much to the NXP company-wide policy "Innovate Where It Doesn't Matter". The sja1105 is probably the only DSA switch that requires some frames sent from the CPU to be routed to the slave port via an out-of-band configuration (register write) rather than in-band (DSA tag). And there are indeed very good reasons to not want to do that: if that out-of-band register is at the other end of a slow bus such as SPI, then you limit that Ethernet flow's throughput to effectively the throughput of the SPI bus. So hardware vendors should definitely not be encouraged to design this way. We do _not_ want more widespread use of this mechanism. Luckily we have a solution for each of the 3 issues: For 1, we can just remove that variable in the skb->cb and counteract the effect of kfree_skb with skb_get, much to the same effect. The advantage, of course, being that anybody who doesn't use deferred xmit doesn't need to do any extra operation in the hotpath. For 2, we can create a kernel thread for each port's deferred xmit work. If the user switch ports are named swp0, swp1, swp2, the kernel threads will be named swp0_xmit, swp1_xmit, swp2_xmit (there appears to be a 15 character length limit on kernel thread names). With this, the user can change the scheduling priority with chrt $(pidof swp2_xmit). For 3, we can actually move the entire implementation to the sja1105 driver. So this patch deletes the generic implementation from the DSA core and adds a new one, more adequate to the requirements of PTP TX timestamping, in sja1105_main.c. Suggested-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NVladimir Oltean <olteanv@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 12月, 2019 1 次提交
-
-
由 Vladimir Oltean 提交于
It is possible to kill PTP on a DSA switch completely and absolutely, until a reboot, with a simple command: tcpdump -i eth2 -j adapter_unsynced where eth2 is the switch's DSA master. Why? Well, in short, the PTP API in place today is a bit rudimentary and relies on applications to retrieve the TX timestamps by polling the error queue and looking at the cmsg structure. But there is no timestamp identification of any sorts (except whether it's HW or SW), you don't know how many more timestamps are there to come, which one is this one, from whom it is, etc. In other words, the SO_TIMESTAMPING API is fundamentally limited in that you can get a single HW timestamp from the stack. And the "-j adapter_unsynced" flag of tcpdump enables hardware timestamping. So let's imagine what happens when the DSA master decides it wants to deliver TX timestamps to the skb's socket too: - The timestamp that the user space sees is taken by the DSA master. Whereas the RX timestamp will eventually be overwritten by the DSA switch. So the RX and TX timestamps will be in different time bases (aka garbage). - The user space applications have no way to deal with the second (real) TX timestamp finally delivered by the DSA switch, or even to know to wait for it. Take ptp4l from the linuxptp project, for example. This is its behavior after running tcpdump, before the patch: ptp4l[172]: [6469.594] Unexpected data on socket err queue: ptp4l[172]: [6469.693] rms 8 max 16 freq -21257 +/- 11 delay 748 +/- 0 ptp4l[172]: [6469.711] Unexpected data on socket err queue: ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 03 aa 05 00 fd ptp4l[172]: 0030 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: [6469.721] Unexpected data on socket err queue: ptp4l[172]: 0000 01 80 c2 00 00 0e 00 1f 7b 63 02 48 88 f7 10 02 ptp4l[172]: 0010 00 2c 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 01 c6 b1 00 fd ptp4l[172]: 0030 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: [6469.838] Unexpected data on socket err queue: ptp4l[172]: 0000 01 80 c2 00 00 0e 00 1f 7b 63 02 48 88 f7 10 02 ptp4l[172]: 0010 00 2c 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 03 aa 06 00 fd ptp4l[172]: 0030 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: [6469.848] Unexpected data on socket err queue: ptp4l[172]: 0000 01 80 c2 00 00 0e 00 1f 7b 63 02 48 88 f7 13 02 ptp4l[172]: 0010 00 36 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 04 1a 45 05 7f ptp4l[172]: 0030 00 00 5e 05 41 32 27 c2 1a 68 00 04 9f ff fe 05 ptp4l[172]: 0040 de 06 00 01 ptp4l[172]: [6469.855] Unexpected data on socket err queue: ptp4l[172]: 0000 01 80 c2 00 00 0e 00 1f 7b 63 02 48 88 f7 10 02 ptp4l[172]: 0010 00 2c 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 01 c6 b2 00 fd ptp4l[172]: 0030 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: [6469.974] Unexpected data on socket err queue: ptp4l[172]: 0000 01 80 c2 00 00 0e 00 1f 7b 63 02 48 88 f7 10 02 ptp4l[172]: 0010 00 2c 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ptp4l[172]: 0020 00 00 00 1f 7b ff fe 63 02 48 00 03 aa 07 00 fd ptp4l[172]: 0030 00 00 00 00 00 00 00 00 00 00 The ptp4l program itself is heavily patched to show this (more details here [0]). Otherwise, by default it just hangs. On the other hand, with the DSA patch to disallow HW timestamping applied: tcpdump -i eth2 -j adapter_unsynced tcpdump: SIOCSHWTSTAMP failed: Device or resource busy So it is a fact of life that PTP timestamping on the DSA master is incompatible with timestamping on the switch MAC, at least with the current API. And if the switch supports PTP, taking the timestamps from the switch MAC is highly preferable anyway, due to the fact that those don't contain the queuing latencies of the switch. So just disallow PTP on the DSA master if there is any PTP-capable switch attached. [0]: https://sourceforge.net/p/linuxptp/mailman/message/36880648/ Fixes: 0336369d ("net: dsa: forward hardware timestamping ioctls to switch driver") Signed-off-by: NVladimir Oltean <olteanv@gmail.com> Acked-by: NRichard Cochran <richardcochran@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 12月, 2019 2 次提交
-
-
由 Michael Grzeschik 提交于
Remove special taglen define KSZ8795_INGRESS_TAG_LEN and use generic KSZ_INGRESS_TAG_LEN instead. Signed-off-by: NMichael Grzeschik <m.grzeschik@pengutronix.de> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Oleksij Rempel 提交于
Add support for tag format used in Atheros AR9331 built-in switch. Reviewed-by: NVivien Didelot <vivien.didelot@gmail.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NOleksij Rempel <o.rempel@pengutronix.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 12月, 2019 1 次提交
-
-
由 Ben Dooks (Codethink) 提交于
dsa_link_touch() is not exported, or defined outside of the file it is in so make it static to avoid the following warning: net/dsa/dsa2.c:127:17: warning: symbol 'dsa_link_touch' was not declared. Should it be static? Signed-off-by: NBen Dooks (Codethink) <ben.dooks@codethink.co.uk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-