- 07 10月, 2020 1 次提交
-
-
由 Darrick J. Wong 提交于
Remove this one-line helper since the assert is trivially true in one call site and the rest obscures a bitmask operation. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 23 9月, 2020 1 次提交
-
-
由 Darrick J. Wong 提交于
During a code inspection, I found a serious bug in the log intent item recovery code when an intent item cannot complete all the work and decides to requeue itself to get that done. When this happens, the item recovery creates a new incore deferred op representing the remaining work and attaches it to the transaction that it allocated. At the end of _item_recover, it moves the entire chain of deferred ops to the dummy parent_tp that xlog_recover_process_intents passed to it, but fail to log a new intent item for the remaining work before committing the transaction for the single unit of work. xlog_finish_defer_ops logs those new intent items once recovery has finished dealing with the intent items that it recovered, but this isn't sufficient. If the log is forced to disk after a recovered log item decides to requeue itself and the system goes down before we call xlog_finish_defer_ops, the second log recovery will never see the new intent item and therefore has no idea that there was more work to do. It will finish recovery leaving the filesystem in a corrupted state. The same logic applies to /any/ deferred ops added during intent item recovery, not just the one handling the remaining work. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 20 5月, 2020 1 次提交
-
-
由 Darrick J. Wong 提交于
While QAing the new xfs_repair quotacheck code, I uncovered a quota corruption bug resulting from a bad interaction between dquot buffer initialization and quotacheck. The bug can be reproduced with the following sequence: # mkfs.xfs -f /dev/sdf # mount /dev/sdf /opt -o usrquota # su nobody -s /bin/bash -c 'touch /opt/barf' # sync # xfs_quota -x -c 'report -ahi' /opt User quota on /opt (/dev/sdf) Inodes User ID Used Soft Hard Warn/Grace ---------- --------------------------------- root 3 0 0 00 [------] nobody 1 0 0 00 [------] # xfs_io -x -c 'shutdown' /opt # umount /opt # mount /dev/sdf /opt -o usrquota # touch /opt/man2 # xfs_quota -x -c 'report -ahi' /opt User quota on /opt (/dev/sdf) Inodes User ID Used Soft Hard Warn/Grace ---------- --------------------------------- root 1 0 0 00 [------] nobody 1 0 0 00 [------] # umount /opt Notice how the initial quotacheck set the root dquot icount to 3 (rootino, rbmino, rsumino), but after shutdown -> remount -> recovery, xfs_quota reports that the root dquot has only 1 icount. We haven't deleted anything from the filesystem, which means that quota is now under-counting. This behavior is not limited to icount or the root dquot, but this is the shortest reproducer. I traced the cause of this discrepancy to the way that we handle ondisk dquot updates during quotacheck vs. regular fs activity. Normally, when we allocate a disk block for a dquot, we log the buffer as a regular (dquot) buffer. Subsequent updates to the dquots backed by that block are done via separate dquot log item updates, which means that they depend on the logged buffer update being written to disk before the dquot items. Because individual dquots have their own LSN fields, that initial dquot buffer must always be recovered. However, the story changes for quotacheck, which can cause dquot block allocations but persists the final dquot counter values via a delwri list. Because recovery doesn't gate dquot buffer replay on an LSN, this means that the initial dquot buffer can be replayed over the (newer) contents that were delwritten at the end of quotacheck. In effect, this re-initializes the dquot counters after they've been updated. If the log does not contain any other dquot items to recover, the obsolete dquot contents will not be corrected by log recovery. Because quotacheck uses a transaction to log the setting of the CHKD flags in the superblock, we skip quotacheck during the second mount call, which allows the incorrect icount to remain. Fix this by changing the ondisk dquot initialization function to use ordered buffers to write out fresh dquot blocks if it detects that we're running quotacheck. If the system goes down before quotacheck can complete, the CHKD flags will not be set in the superblock and the next mount will run quotacheck again, which can fix uninitialized dquot buffers. This requires amending the defer code to maintaine ordered buffer state across defer rolls for the sake of the dquot allocation code. For regular operations we preserve the current behavior since the dquot items require properly initialized ondisk dquot records. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 05 5月, 2020 6 次提交
-
-
由 Christoph Hellwig 提交于
Given how XFS is all based around btrees it doesn't make much sense to offer a totally generic state when we can just use the btree cursor. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
All defer op instance place their own extension of the log item into the dfp_done field. Replace that with a xfs_log_item to improve type safety and make the code easier to follow. Also use the opportunity to improve the ->finish_item calling conventions to place the done log item as the higher level structure before the list_entry used for the individual items. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Split out a helper that operates on a single xfs_defer_pending structure to untangle the code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
This avoids a per-item indirect call, and also simplifies the interface a bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
These are aways called together, and my merging them we reduce the amount of indirect calls, improve type safety and in general clean up the code a bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
Create a helper that encapsulates the whole logic to create a defer intent. This reorders some of the work that was done, but none of that has an affect on the operation as only fields that don't directly interact are affected. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 27 8月, 2019 1 次提交
-
-
由 Tetsuo Handa 提交于
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP, we can remove KM_NOSLEEP and replace KM_SLEEP with 0. Signed-off-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 29 6月, 2019 1 次提交
-
-
由 Eric Sandeen 提交于
There are many, many xfs header files which are included but unneeded (or included twice) in the xfs code, so remove them. nb: xfs_linux.h includes about 9 headers for everyone, so those explicit includes get removed by this. I'm not sure what the preference is, but if we wanted explicit includes everywhere, a followup patch could remove those xfs_*.h includes from xfs_linux.h and move them into the files that need them. Or it could be left as-is. Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 30 4月, 2019 1 次提交
-
-
由 Darrick J. Wong 提交于
During testing of xfs/141 on a V4 filesystem, I observed some inconsistent behavior with regards to resources that are held (i.e. remain locked) across a defer roll. The transaction roll always gives the defer roll function a new transaction, even if committing the old transaction fails. However, the defer roll function only rejoins the held resources if the transaction commit succeedied. This means that callers of defer roll have to figure out whether the held resources are attached to the transaction being passed back. Worse yet, if the defer roll was part of a defer finish call, we have a third possibility: the defer finish could pass back a dirty transaction with dirty held resources and an error code. The only sane way to handle all of these scenarios is to require that the code that held the resource either cancel the transaction before unlocking and releasing the resources, or use functions that detach resources from a transaction properly (e.g. xfs_trans_brelse) if they need to drop the reference before committing or cancelling the transaction. In order to make this so, change the defer roll code to join held resources to the new transaction unconditionally and fix all the bhold callers to release the held buffers correctly. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 13 12月, 2018 2 次提交
-
-
由 Darrick J. Wong 提交于
There's no need to bundle a pointer to the defer op type into the defer op control structure. Instead, store the defer op type enum, which enables us to shorten some of the lines. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
由 Darrick J. Wong 提交于
Recently, we forgot to port a new defer op type to xfsprogs, which caused us some userspace pain. Reorganize the way we make libxfs clients supply defer op type information so that all type information has to be provided at build time instead of risky runtime dynamic configuration. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 03 8月, 2018 11 次提交
-
-
由 Brian Foster 提交于
struct xfs_defer_ops has now been reduced to a single list_head. The external dfops mechanism is unused and thus everywhere a (permanent) transaction is accessible the associated dfops structure is as well. Remove the xfs_defer_ops structure and fold the list_head into the transaction. Also remove the last remnant of external dfops in xfs_trans_dup(). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The majority of remaining references to struct xfs_defer_ops in XFS are associated with xfs_defer_add(). At this point, there are no more external xfs_defer_ops users left. All instances of xfs_defer_ops are embedded in the transaction, which means we can safely pass the transaction down to the dfops add interface. Update xfs_defer_add() to receive the transaction as a parameter. Various subsystems implement wrappers to allocate and construct the context specific data structures for the associated deferred operation type. Update these to also carry the transaction down as needed and clean up unused dfops parameters along the way. This removes most of the remaining references to struct xfs_defer_ops throughout the code and facilitates removal of the structure. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> [darrick: fix unused variable warnings with ftrace disabled] Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The xfs_defer_ops ->dop_pending list is used to track active deferred operations once intents are logged. These items must be aborted in the event of an error. The list is populated as intents are logged and items are removed as they complete (or are aborted). Now that xfs_defer_finish() cancels on error, there is no need to ever access ->dop_pending outside of xfs_defer_finish(). The list is only ever populated after xfs_defer_finish() begins and is either completed or cancelled before it returns. Remove ->dop_pending from xfs_defer_ops and replace it with a local list in the xfs_defer_finish() path. Pass the local list to the various helpers now that it is not accessible via dfops. Note that we have to check for NULL in the abort case as the final tx roll occurs outside of the scope of the new local list (once the dfops has completed and thus drained the list). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The current semantics of xfs_defer_finish() require the caller to call xfs_defer_cancel() on error. This is slightly inconsistent with transaction commit error handling where a failed commit cleans up the transaction before returning. More significantly, the only requirement for exposure of ->dop_pending outside of xfs_defer_finish() is so that xfs_defer_cancel() can drain it on error. Since the only recourse of xfs_defer_finish() errors is cancellation, mirror the transaction logic and cancel remaining dfops before returning from xfs_defer_finish() with an error. Beside simplifying xfs_defer_finish() semantics, this ensures that xfs_defer_finish() always returns with an empty ->dop_pending and thus facilitates removal of the list from xfs_defer_ops. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The dfops code still passes around the xfs_defer_ops pointer superfluously in a few places. Clean this up wherever the transaction will suffice. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The dfops infrastructure ->finish_item() callback passes the transaction and dfops as separate parameters. Since dfops is always part of a transaction, the latter parameter is no longer necessary. Remove it from the various callbacks. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Inodes that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While inodes are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for inodes with ili_lock_flags == 0. Replace the xfs_defer_ijoin() infrastructure with such detection and automatic relogging of held inodes. This eliminates the need for the per-dfops inode list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Buffers that are held across deferred operations are explicitly joined to the dfops structure to ensure appropriate relogging. While buffers are currently joined explicitly, we can detect the conditions that require relogging at dfops finish time by inspecting the transaction item list for held buffers. Replace the xfs_defer_bjoin() infrastructure with such detection and automatic relogging of held buffers. This eliminates the need for the per-dfops buffer list, replaced by an on-stack variant in xfs_defer_trans_roll(). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The dop_low field enables the low free space allocation mode when a previous allocation has detected difficulty allocating blocks. It has historically been part of the xfs_defer_ops structure, which means if enabled, it remains enabled across a set of transactions until the deferred operations have completed and the dfops is reset. Now that the dfops is embedded in the transaction, we can save a bit more space by using a transaction flag rather than a standalone boolean. Drop the ->dop_low field and replace it with a transaction flag that is set at the same points, carried across rolling transactions and cleared on completion of deferred operations. This essentially emulates the behavior of ->dop_low and so should not change behavior. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
All callers pass ->t_dfops of the associated transactions. Refactor the helpers to receive the transactions and facilitate further cleanups between xfs_defer_ops and xfs_trans. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
With no more external dfops users, there is no need for an xfs_defer_ops cancel wrapper. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 27 7月, 2018 6 次提交
-
-
由 Brian Foster 提交于
Once xfs_defer_finish() has completed all deferred operations, it checks the dirty state of the transaction and rolls it once more to return a clean transaction for the caller. This primarily to cover the case where repeated xfs_defer_finish() calls are made in a loop and we need to make sure that the caller starts the next iteration with a clean transaction. Otherwise we risk transaction reservation overrun. This final transaction roll is not required in the transaction commit path, however, because the transaction is immediately committed and freed after dfops completion. Refactor the final roll into a separate helper such that we can avoid it in the transaction commit path. Lift the dfops reset as well so dfops remains valid until after the last call to xfs_defer_trans_roll(). The reset is also unnecessary in the transaction commit path because the transaction is about to complete. This eliminates unnecessary regrants of transactions where the associated transaction roll can be replaced by a transaction commit. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Every caller of xfs_defer_finish() now passes the transaction and its associated ->t_dfops. The xfs_defer_ops parameter is therefore no longer necessary and can be removed. Since most xfs_defer_finish() callers also have to consider xfs_defer_cancel() on error, update the latter to also receive the transaction for consistency. The log recovery code contains an outlier case that cancels a dfops directly without an available transaction. Retain an internal wrapper to support this outlier case for the time being. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The dfops structure used by multi-transaction operations is typically stored on the stack and carried around by the associated transaction. The lifecycle of dfops does not quite match that of the transaction, but they are tightly related in that the former depends on the latter. The relationship of these objects is tight enough that we can avoid the cumbersome boilerplate code required in most cases to manage them separately by just embedding an xfs_defer_ops in the transaction itself. This means that a transaction allocation returns with an initialized dfops, a transaction commit finishes pending deferred items before the tx commit, a transaction cancel cancels the dfops before the transaction and a transaction dup operation transfers the current dfops state to the new transaction. The dup operation is slightly complicated by the fact that we can no longer just copy a dfops pointer from the old transaction to the new transaction. This is solved through a dfops move helper that transfers the pending items and other dfops state across the transactions. This also requires that transaction rolling code always refer to the transaction for the current dfops reference. Finally, to facilitate incremental conversion to the internal dfops and continue to support the current external dfops mode of operation, create the new ->t_dfops_internal field with a layer of indirection. On allocation, ->t_dfops points to the internal dfops. This state is overridden by callers who re-init a local dfops on the transaction. Once ->t_dfops is overridden, the external dfops reference is maintained as the transaction rolls. This patch adds the fundamental ability to support an internal dfops. All codepaths that perform deferred processing continue to override the internal dfops until they are converted over in subsequent patches. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
xfs_defer_init() is currently used in two particular situations. The first and most obvious case is raw initialization of an xfs_defer_ops struct. The other case is partial reinit of xfs_defer_ops on reuse due to iteration. Most instances of the first case will be replaced by a single init of a dfops embedded in the transaction. Init calls are still technically required for the second case because the dfops may have low space mode enabled or have joined items that need to be reset before the dfops should be reused. Since the current dfops usage expects either a final transaction commit after xfs_defer_finish() or xfs_defer_init() if dfops is to be reused, we can shift some of the init logic into xfs_defer_finish() such that the latter returns with a reinitialized dfops. This eliminates the second dependency noted above such that a dfops is immediately ready for reuse after an xfs_defer_finish() without the need to change any calling code. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
dop_committed is set when deferred item processing rolls the transaction at least once, but is only ever accessed in tracepoints. The transaction roll/commit events are already available via independent tracepoints, so remove the otherwise unused field. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
xfs_defer_finish() has a couple quirks that are not safe with respect to the upcoming internal dfops functionality. First, xfs_defer_finish() attaches the passed in dfops structure to ->t_dfops and caches and restores the original value. Second, it continues to use the initial dfops reference before and after the transaction roll. These behaviors assume that dop is an independent memory allocation from the transaction itself, which may not always be true once transactions begin to use an embedded dfops structure. In the latter model, dfops processing creates a new xfs_defer_ops structure with each transaction and the associated state is migrated across to the new transaction. Fix up xfs_defer_finish() to handle the possibility of the current dfops changing after a transaction roll. Since ->t_dfops is used unconditionally in this path, it is no longer necessary to attach/restore ->t_dfops and pass it explicitly down to xfs_defer_trans_roll(). Update dop in the latter function and the caller to ensure that it always refers to the current dfops structure. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBill O'Donnell <billodo@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 24 7月, 2018 1 次提交
-
-
由 Darrick J. Wong 提交于
The following assertion was seen on generic/051: XFS: Assertion failed: tp->t_firstblock == NULLFSBLOCK, file: fs/xfs/libxfs5 ------------[ cut here ]------------ kernel BUG at fs/xfs/xfs_message.c:102! invalid opcode: 0000 [#1] SMP PTI CPU: 2 PID: 20757 Comm: fsstress Not tainted 4.18.0-rc4+ #3969 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-1 04/01/4 RIP: 0010:assfail+0x23/0x30 Code: c3 66 0f 1f 44 00 00 48 89 f1 41 89 d0 48 c7 c6 88 e0 8c 82 48 89 fa RSP: 0018:ffff88012dc43c08 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff88012dc43ca0 RCX: 0000000000000000 RDX: 00000000ffffffc0 RSI: 000000000000000a RDI: ffffffff828480eb RBP: ffff88012aa92758 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: f000000000000000 R12: 0000000000000000 R13: ffff88012dc43d48 R14: ffff88013092e7e8 R15: 0000000000000014 FS: 00007f8d689b8e80(0000) GS:ffff88013fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8d689c7000 CR3: 000000012ba6a000 CR4: 00000000000006e0 Call Trace: xfs_defer_init+0xff/0x160 xfs_reflink_remap_extent+0x31b/0xa00 xfs_reflink_remap_blocks+0xec/0x4a0 xfs_reflink_remap_range+0x3a1/0x650 xfs_file_dedupe_range+0x39/0x50 vfs_dedupe_file_range+0x218/0x260 do_vfs_ioctl+0x262/0x6a0 ? __se_sys_newfstat+0x3c/0x60 ksys_ioctl+0x35/0x60 __x64_sys_ioctl+0x11/0x20 do_syscall_64+0x4b/0x190 entry_SYSCALL_64_after_hwframe+0x49/0xbe The root cause of the assertion failure is that xfs_defer_finish doesn't roll the transaction after processing all the deferred items. Therefore it returns a dirty transaction to the caller, which leaves the caller at risk of exceeding the transaction reservation if it logs more items. Brian Foster's patchset to move the defer_ops firstblock into the transaction requires t_firstblock == NULLFSBLOCK upon defer_ops initialization, which is how this was noticed at all. Reported-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 12 7月, 2018 3 次提交
-
-
由 Brian Foster 提交于
All but one caller of xfs_defer_init() passes in the ->t_firstblock of the associated transaction. The one outlier is xlog_recover_process_intents(), which simply passes a dummy value because a valid pointer is required. This firstblock variable can simply be removed. At this point we could remove the xfs_defer_init() firstblock parameter and initialize ->t_firstblock directly. Even that is not necessary, however, because ->t_firstblock is automatically reinitialized in the new transaction on a transaction roll. Since xfs_defer_init() should never occur more than once on a particular transaction (since the corresponding finish will roll it), replace the reinit from xfs_defer_init() with an assert that verifies the transaction has a NULLFSBLOCK firstblock. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Most callers of xfs_defer_init() immediately attach the dfops structure to a transaction. Add a transaction parameter to eliminate much of this boilerplate code. This also helps self-document the fact that many codepaths now expect a dfops pointer implicitly via xfs_trans->t_dfops. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
The ->t_agfl_dfops field is currently used to defer agfl block frees from associated transaction contexts. While all known problematic contexts have already been updated to use ->t_agfl_dfops, the broader goal is defer agfl frees from all callers that already use a deferred operations structure. Further, the transaction field facilitates a good amount of code clean up where the transaction and dfops have historically been passed down through the stack separately. Rename the field to something more generic to prepare to use it as such throughout XFS. This patch does not change behavior. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 07 6月, 2018 1 次提交
-
-
由 Dave Chinner 提交于
Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 10 5月, 2018 2 次提交
-
-
由 Dave Chinner 提交于
So it's clear in the trace where they are being called from. Signed-Off-By: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Brian Foster 提交于
Now that AGFL block frees are deferred when dfops is set in the transaction, start deferring AGFL block frees from contexts that are known to push the limits of existing log reservations. The first such context is deferred operation processing itself. This primarily targets deferred extent frees (such as file extents and inode chunks), but in doing so covers all allocation operations that occur in deferred operation processing context. Update xfs_defer_finish() to set and reset ->t_agfl_dfops across the processing sequence. This means that any AGFL block frees due to allocation events result in the addition of new EFIs to the dfops rather than being processed immediately. xfs_defer_finish() rolls the transaction at least once more to process the frees of the AGFL blocks back to the allocation btrees and returns once the AGFL is rectified. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 15 12月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
In certain cases, defer_ops callers will lock a buffer and want to hold the lock across transaction rolls. Similar to ijoined inodes, we want to dirty & join the buffer with each transaction roll in defer_finish so that afterwards the caller still owns the buffer lock and we haven't inadvertently pinned the log. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 02 9月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
And instead require callers to explicitly join the inode using xfs_defer_ijoin. Also consolidate the defer error handling in a few places using a goto label. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-