- 12 10月, 2011 6 次提交
-
-
由 Christoph Hellwig 提交于
Only read the LSN we need to push to with the ilock held, and then release it before we do the log force to improve concurrency. This also removes the only direct caller of _xfs_trans_commit, thus allowing it to be merged into the plain xfs_trans_commit again. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
xfs_bmapi() currently handles both extent map reading and allocation. As a result, the code is littered with "if (wr)" branches to conditionally do allocation operations if required. This makes the code much harder to follow and causes significant indent issues with the code. Given that read mapping is much simpler than allocation, we can split out read mapping from xfs_bmapi() and reuse the logic that we have already factored out do do all the hard work of handling the extent map manipulations. The results in a much simpler function for the common extent read operations, and will allow the allocation code to be simplified in another commit. Once xfs_bmapi_read() is implemented, convert all the callers of xfs_bmapi() that are only reading extents to use the new function. Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Currently a buffered reader or writer can add pages to the pagecache while we are waiting for the iolock in xfs_file_dio_aio_write. Prevent this by re-checking mapping->nrpages after we got the iolock, and if nessecary upgrade the lock to exclusive mode. To simplify this a bit only take the ilock inside of xfs_file_aio_write_checks. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
We now have an i_dio_count filed and surrounding infrastructure to wait for direct I/O completion instead of i_icount, and we have never needed to iocount waits for buffered I/O given that we only set the page uptodate after finishing all required work. Thus remove i_iocount, and replace the actually needed waits with calls to inode_dio_wait. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
For append write workloads, extending the file requires a certain amount of exclusive locking to be done up front to ensure sanity in things like ensuring that we've zeroed any allocated regions between the old EOF and the start of the new IO. For single threads, this typically isn't a problem, and for large IOs we don't serialise enough for it to be a problem for two threads on really fast block devices. However for smaller IO and larger thread counts we have a problem. Take 4 concurrent sequential, single block sized and aligned IOs. After the first IO is submitted but before it completes, we end up with this state: IO 1 IO 2 IO 3 IO 4 +-------+-------+-------+-------+ ^ ^ | | | | | | | \- ip->i_new_size \- ip->i_size And the IO is done without exclusive locking because offset <= ip->i_size. When we submit IO 2, we see offset > ip->i_size, and grab the IO lock exclusive, because there is a chance we need to do EOF zeroing. However, there is already an IO in progress that avoids the need for IO zeroing because offset <= ip->i_new_size. hence we could avoid holding the IO lock exlcusive for this. Hence after submission of the second IO, we'd end up this state: IO 1 IO 2 IO 3 IO 4 +-------+-------+-------+-------+ ^ ^ | | | | | | | \- ip->i_new_size \- ip->i_size There is no need to grab the i_mutex of the IO lock in exclusive mode if we don't need to invalidate the page cache. Taking these locks on every direct IO effective serialises them as taking the IO lock in exclusive mode has to wait for all shared holders to drop the lock. That only happens when IO is complete, so effective it prevents dispatch of concurrent direct IO writes to the same inode. And so you can see that for the third concurrent IO, we'd avoid exclusive locking for the same reason we avoided the exclusive lock for the second IO. Fixing this is a bit more complex than that, because we need to hold a write-submission local value of ip->i_new_size to that clearing the value is only done if no other thread has updated it before our IO completes..... Signed-off-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Dave Chinner 提交于
There is no need to grab the i_mutex of the IO lock in exclusive mode if we don't need to invalidate the page cache. Taking these locks on every direct IO effective serialises them as taking the IO lock in exclusive mode has to wait for all shared holders to drop the lock. That only happens when IO is complete, so effective it prevents dispatch of concurrent direct IO reads to the same inode. Fix this by taking the IO lock shared to check the page cache state, and only then drop it and take the IO lock exclusively if there is work to be done. Hence for the normal direct IO case, no exclusive locking will occur. Signed-off-by: NDave Chinner <dchinner@redhat.com> Tested-by: NJoern Engel <joern@logfs.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 13 8月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the annoying subdirectories in the XFS source code. Besides the large amount of file rename the only changes are to the Makefile, a few files including headers with the subdirectory prefix, and the binary sysctl compat code that includes a header under fs/xfs/ from kernel/. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 27 7月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
We need to take some locks to prevent new ioends from coming in when we wait for all existing ones to go away. Up to Linux 3.0 that was done using the i_mutex held by the VFS fsync code, but now that we are called without it we need to take care of it ourselves. Use the I/O lock instead of i_mutex just like we do in other places. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 26 7月, 2011 1 次提交
-
-
由 Markus Trippelsdorf 提交于
The fsync prototype change commit 02c24a82 accidentally overwrote the ssize_t return value of xfs_file_aio_write with 0 for SYNC type writes. Fix this by checking if an error occured when calling xfs_file_fsync and only change the return value in this case. In addition xfs_file_fsync actually returns a normal negative error, so fix this, too. Signed-off-by: NMarkus Trippelsdorf <markus@trippelsdorf.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Tested-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 21 7月, 2011 1 次提交
-
-
由 Josef Bacik 提交于
Btrfs needs to be able to control how filemap_write_and_wait_range() is called in fsync to make it less of a painful operation, so push down taking i_mutex and the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some file systems can drop taking the i_mutex altogether it seems, like ext3 and ocfs2. For correctness sake I just pushed everything down in all cases to make sure that we keep the current behavior the same for everybody, and then each individual fs maintainer can make up their mind about what to do from there. Thanks, Acked-by: NJan Kara <jack@suse.cz> Signed-off-by: NJosef Bacik <josef@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 08 7月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
Split up xfs_setattr into two functions, one for the complex truncate handling, and one for the trivial attribute updates. Also move both new routines to xfs_iops.c as they are fairly Linux-specific. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 16 6月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
There's no reason not to support cache flushing on external log devices. The only thing this really requires is flushing the data device first both in fsync and log commits. A side effect is that we also have to remove the barrier write test during mount, which has been superflous since the new FLUSH+FUA code anyway. Also use the chance to flush the RT subvolume write cache before the fsync commit, which is required for correct semantics. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 31 3月, 2011 1 次提交
-
-
由 Lucas De Marchi 提交于
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: NLucas De Marchi <lucas.demarchi@profusion.mobi>
-
- 26 3月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
Preallocation and hole punch transactions are currently synchronous and this is causing performance problems in some cases. The transactions don't need to be synchronous as we don't need to guarantee the preallocation is persistent on disk until a fdatasync, fsync, sync operation occurs. If the file is opened O_SYNC or O_DATASYNC, only then should the transaction be issued synchronously. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com>
-
- 17 1月, 2011 1 次提交
-
-
由 Christoph Hellwig 提交于
Currently all filesystems except XFS implement fallocate asynchronously, while XFS forced a commit. Both of these are suboptimal - in case of O_SYNC I/O we really want our allocation on disk, especially for the !KEEP_SIZE case where we actually grow the file with user-visible zeroes. On the other hand always commiting the transaction is a bad idea for fast-path uses of fallocate like for example in recent Samba versions. Given that block allocation is a data plane operation anyway change it from an inode operation to a file operation so that we have the file structure available that lets us check for O_SYNC. This also includes moving the code around for a few of the filesystems, and remove the already unnedded S_ISDIR checks given that we only wire up fallocate for regular files. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 11 1月, 2011 4 次提交
-
-
由 Dave Chinner 提交于
When two concurrent unaligned, non-overlapping direct IOs are issued to the same block, the direct Io layer will race to zero the block. The result is that one of the concurrent IOs will overwrite data written by the other IO with zeros. This is demonstrated by the xfsqa test 240. To avoid this problem, serialise all unaligned direct IOs to an inode with a big hammer. We need a big hammer approach as we need to serialise AIO as well, so we can't just block writes on locks. Hence, the big hammer is calling xfs_ioend_wait() while holding out other unaligned direct IOs from starting. We don't bother trying to serialised aligned vs unaligned IOs as they are overlapping IO and the result of concurrent overlapping IOs is undefined - the result of either IO is a valid result so we let them race. Hence we only penalise unaligned IO, which already has a major overhead compared to aligned IO so this isn't a major problem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The buffered IO and direct IO write paths share a common set of checks and limiting code prior to issuing the write. Factor that into a common helper function. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Complete the split of the different write IO paths by splitting the buffered IO write path out of xfs_file_aio_write(). This makes the different mechanisms of the write patchs easier to follow. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
The current xfs_file_aio_write code is a mess of locking shenanigans to handle the different locking requirements of buffered and direct IO. Start to clean this up by disentangling the direct IO path from the mess. This also removes the failed direct IO fallback path to buffered IO. XFS handles all direct IO cases without needing to fall back to buffered IO, so we can safely remove this unused path. This greatly simplifies the logic and locking needed in the write path. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 12 1月, 2011 1 次提交
-
-
由 Dave Chinner 提交于
We need to obtain the i_mutex, i_iolock and i_ilock during the read and write paths. Add a set of wrapper functions to neatly encapsulate the lock ordering and shared/exclusive semantics to make the locking easier to follow and get right. Note that this changes some of the exclusive locking serialisation in that serialisation will occur against the i_mutex instead of the XFS_IOLOCK_EXCL. This does not change any behaviour, and it is arguably more efficient to use the mutex for such serialisation than the rw_sem. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 11 1月, 2011 3 次提交
-
-
由 Dave Chinner 提交于
Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Dave Chinner 提交于
xfs_file_aio_write() only returns the error from synchronous flushing of the data and inode if error == 0. At the point where error is being checked, it is guaranteed to be > 0. Therefore any errors returned by the data or fsync flush will never be returned. Fix the checks so we overwrite the current error once and only if an error really occurred. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NAlex Elder <aelder@sgi.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 27 7月, 2010 6 次提交
-
-
由 Christoph Hellwig 提交于
The open_exec file operation is only added by the external dmapi patch. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Replace the xfs_itrace_entry catchall with specific trace points. For most simple callers we now use the simple inode class, which used to be the iget class, but add more details tracing for namespace events, which now includes the name of the directory entries manipulated. Remove the xfs_inactive trace point, which is a duplicate of the clear_inode one, and the xfs_change_file_space trace point, which is immediately followed by the more specific alloc/free space trace points. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
This code was introduced four years ago in commit 3e57ecf6 without any review and has been unused since. Remove it just as the rest of the code introduced in that commit to reduce that stack usage and complexity in this central piece of code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
Currently we need to either call IHOLD or xfs_trans_ihold on an inode when joining it to a transaction via xfs_trans_ijoin. This patches instead makes xfs_trans_ijoin usable on it's own by doing an implicity xfs_trans_ihold, which also allows us to drop the third argument. For the case where we want to hold a reference on the inode a xfs_trans_ijoin_ref wrapper is added which does the IHOLD and marks the inode for needing an xfs_iput. In addition to the cleaner interface to the caller this also simplifies the implementation. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Dmapi support was never merged upstream, but we still have a lot of hooks bloating XFS for it, all over the fast pathes of the filesystem. This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM support in mainline at least the namespace events can be done much saner in the VFS instead of the individual filesystem, so it's not like this is much help for future work. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 28 5月, 2010 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 19 5月, 2010 1 次提交
-
-
由 Christoph Hellwig 提交于
We need to wait for all pending direct I/O requests before taking care of metadata in fsync and write_inode. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com>
-
- 02 3月, 2010 6 次提交
-
-
由 Christoph Hellwig 提交于
We need to hold the ilock to check the inode pincount safely. While we're at it also remove the check for ip->i_itemp->ili_last_lsn, a pinned inode always has it set. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Allow us to track the difference between timestamp and size updates by using mark_inode_dirty from the I/O completion code, and checking the VFS inode flags in xfs_file_fsync. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Currently the fsync file operation is divided into a low-level routine doing all the work and one that implements the Linux file operation and does minimal argument wrapping. This is a leftover from the days of the vnode operations layer and can be removed to simplify the code a bit, as well as preparing for the implementation of an optimized fdatasync which needs to look at the Linux inode state. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Currently the aio_read, aio_write, splice_read and splice_write file operations are divided into a low-level routine doing all the work and one that implements the Linux file operations and does minimal argument wrapping. This is a leftover from the days of the vnode operations layer and can be removed to simplify the code a lot. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Christoph Hellwig 提交于
Currently the code to implement the file operations is split over two small files. Merge the content of xfs_lrw.c into xfs_file.c to have it in one place. Note that I haven't done various cleanups that are possible after this yet, they will follow in the next patch. Also the function xfs_dev_is_read_only which was in xfs_lrw.c before really doesn't fit in here at all and was moved to xfs_mount.c. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
由 Eric Sandeen 提交于
While doing some testing of readdir perf a while back, I noticed that the buffer size we're using internally is smaller than what glibc gives us by default. Upping this size helped a bit, and seems safe. glibc's __alloc_dir() does: const size_t default_allocation = (4 * BUFSIZ < sizeof (struct dirent64) ? sizeof (struct dirent64) : 4 * BUFSIZ); const size_t small_allocation = (BUFSIZ < sizeof (struct dirent64) ? sizeof (struct dirent64) : BUFSIZ); size_t allocation = default_allocation; #ifdef _STATBUF_ST_BLKSIZE if (statp != NULL && default_allocation < statp->st_blksize) allocation = statp->st_blksize; #endif and #define _G_BUFSIZ 8192 #define _IO_BUFSIZ _G_BUFSIZ # define BUFSIZ _IO_BUFSIZ so the default buffer is 4 * 8192 = 32768 (except in the unlikely case of blocks > 32k....) Signed-off-by: NEric Sandeen <sandeen@sandeen.net> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 12 12月, 2009 1 次提交
-
-
由 Christoph Hellwig 提交于
We set the IO_ISAIO flag for all read/write I/O since early Linux 2.6.x. Remove it as it has lost it's purpose long ago. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDave Chinner <david@fromorbit.com> Reviewed-by: NEric Sandeen <sandeen@sandeen.net> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 09 10月, 2009 1 次提交
-
-
由 Christoph Hellwig 提交于
Now that the VFS actually waits for the data I/O to complete before calling into ->fsync we can stop doing it ourselves. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NAlex Elder <aelder@sgi.com> Signed-off-by: NAlex Elder <aelder@sgi.com>
-
- 28 9月, 2009 1 次提交
-
-
由 Alexey Dobriyan 提交于
* mark struct vm_area_struct::vm_ops as const * mark vm_ops in AGP code But leave TTM code alone, something is fishy there with global vm_ops being used. Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-