- 19 12月, 2013 3 次提交
-
-
由 Rik van Riel 提交于
There are a few subtle races, between change_protection_range (used by mprotect and change_prot_numa) on one side, and NUMA page migration and compaction on the other side. The basic race is that there is a time window between when the PTE gets made non-present (PROT_NONE or NUMA), and the TLB is flushed. During that time, a CPU may continue writing to the page. This is fine most of the time, however compaction or the NUMA migration code may come in, and migrate the page away. When that happens, the CPU may continue writing, through the cached translation, to what is no longer the current memory location of the process. This only affects x86, which has a somewhat optimistic pte_accessible. All other architectures appear to be safe, and will either always flush, or flush whenever there is a valid mapping, even with no permissions (SPARC). The basic race looks like this: CPU A CPU B CPU C load TLB entry make entry PTE/PMD_NUMA fault on entry read/write old page start migrating page change PTE/PMD to new page read/write old page [*] flush TLB reload TLB from new entry read/write new page lose data [*] the old page may belong to a new user at this point! The obvious fix is to flush remote TLB entries, by making sure that pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may still be accessible if there is a TLB flush pending for the mm. This should fix both NUMA migration and compaction. [mgorman@suse.de: fix build] Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
On a protection change it is no longer clear if the page should be still accessible. This patch clears the NUMA hinting fault bits on a protection change. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The TLB must be flushed if the PTE is updated but change_pte_range is clearing the PTE while marking PTEs pte_numa without necessarily flushing the TLB if it reinserts the same entry. Without the flush, it's conceivable that two processors have different TLBs for the same virtual address and at the very least it would generate spurious faults. This patch only unmaps the pages in change_pte_range for a full protection change. [riel@redhat.com: write pte_numa pte back to the page tables] Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NRik van Riel <riel@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Alex Thorlton <athorlton@sgi.com> Cc: Chegu Vinod <chegu_vinod@hp.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 11月, 2013 1 次提交
-
-
由 Mel Gorman 提交于
Commit 0255d491 ("mm: Account for a THP NUMA hinting update as one PTE update") was added to account for the number of PTE updates when marking pages prot_numa. task_numa_work was using the old return value to track how much address space had been updated. Altering the return value causes the scanner to do more work than it is configured or documented to in a single unit of work. This patch reverts that commit and accounts for the number of THP updates separately in vmstat. It is up to the administrator to interpret the pair of values correctly. This is a straight-forward operation and likely to only be of interest when actively debugging NUMA balancing problems. The impact of this patch is that the NUMA PTE scanner will scan slower when THP is enabled and workloads may converge slower as a result. On the flip size system CPU usage should be lower than recent tests reported. This is an illustrative example of a short single JVM specjbb test specjbb 3.12.0 3.12.0 vanilla acctupdates TPut 1 26143.00 ( 0.00%) 25747.00 ( -1.51%) TPut 7 185257.00 ( 0.00%) 183202.00 ( -1.11%) TPut 13 329760.00 ( 0.00%) 346577.00 ( 5.10%) TPut 19 442502.00 ( 0.00%) 460146.00 ( 3.99%) TPut 25 540634.00 ( 0.00%) 549053.00 ( 1.56%) TPut 31 512098.00 ( 0.00%) 519611.00 ( 1.47%) TPut 37 461276.00 ( 0.00%) 474973.00 ( 2.97%) TPut 43 403089.00 ( 0.00%) 414172.00 ( 2.75%) 3.12.0 3.12.0 vanillaacctupdates User 5169.64 5184.14 System 100.45 80.02 Elapsed 252.75 251.85 Performance is similar but note the reduction in system CPU time. While this showed a performance gain, it will not be universal but at least it'll be behaving as documented. The vmstats are obviously different but here is an obvious interpretation of them from mmtests. 3.12.0 3.12.0 vanillaacctupdates NUMA page range updates 1408326 11043064 NUMA huge PMD updates 0 21040 NUMA PTE updates 1408326 291624 "NUMA page range updates" == nr_pte_updates and is the value returned to the NUMA pte scanner. NUMA huge PMD updates were the number of THP updates which in combination can be used to calculate how many ptes were updated from userspace. Signed-off-by: NMel Gorman <mgorman@suse.de> Reported-by: NAlex Thorlton <athorlton@sgi.com> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 10月, 2013 1 次提交
-
-
由 Mel Gorman 提交于
A THP PMD update is accounted for as 512 pages updated in vmstat. This is large difference when estimating the cost of automatic NUMA balancing and can be misleading when comparing results that had collapsed versus split THP. This patch addresses the accounting issue. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: <stable@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-10-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 10月, 2013 1 次提交
-
-
由 Cyrill Gorcunov 提交于
If page migration is turned on in config and the page is migrating, we may lose the soft dirty bit. If fork and mprotect are called on migrating pages (once migration is complete) pages do not obtain the soft dirty bit in the correspond pte entries. Fix it adding an appropriate test on swap entries. Signed-off-by: NCyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 10月, 2013 8 次提交
-
-
由 Mel Gorman 提交于
With the THP migration races closed it is still possible to occasionally see corruption. The problem is related to handling PMD pages in batch. When a page fault is handled it can be assumed that the page being faulted will also be flushed from the TLB. The same flushing does not happen when handling PMD pages in batch. Fixing is straight forward but there are a number of reasons not to 1. Multiple TLB flushes may have to be sent depending on what pages get migrated 2. The handling of PMDs in batch means that faults get accounted to the task that is handling the fault. While care is taken to only mark PMDs where the last CPU and PID match it can still have problems due to PID truncation when matching PIDs. 3. Batching on the PMD level may reduce faults but setting pmd_numa requires taking a heavy lock that can contend with THP migration and handling the fault requires the release/acquisition of the PTL for every page migrated. It's still pretty heavy. PMD batch handling is not something that people ever have been happy with. This patch removes it and later patches will deal with the additional fault overhead using more installigent migrate rate adaption. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-48-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Change the per page last fault tracking to use cpu,pid instead of nid,pid. This will allow us to try and lookup the alternate task more easily. Note that even though it is the cpu that is store in the page flags that the mpol_misplaced decision is still based on the node. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de [ Fixed build failure on 32-bit systems. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Base page PMD faulting is meant to batch handle NUMA hinting faults from PTEs. However, even is no PTE faults would ever be handled within a range the kernel still traps PMD hinting faults. This patch avoids the overhead. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-37-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Ideally it would be possible to distinguish between NUMA hinting faults that are private to a task and those that are shared. If treated identically there is a risk that shared pages bounce between nodes depending on the order they are referenced by tasks. Ultimately what is desirable is that task private pages remain local to the task while shared pages are interleaved between sharing tasks running on different nodes to give good average performance. This is further complicated by THP as even applications that partition their data may not be partitioning on a huge page boundary. To start with, this patch assumes that multi-threaded or multi-process applications partition their data and that in general the private accesses are more important for cpu->memory locality in the general case. Also, no new infrastructure is required to treat private pages properly but interleaving for shared pages requires additional infrastructure. To detect private accesses the pid of the last accessing task is required but the storage requirements are a high. This patch borrows heavily from Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking" to encode some bits from the last accessing task in the page flags as well as the node information. Collisions will occur but it is better than just depending on the node information. Node information is then used to determine if a page needs to migrate. The PID information is used to detect private/shared accesses. The preferred NUMA node is selected based on where the maximum number of approximately private faults were measured. Shared faults are not taken into consideration for a few reasons. First, if there are many tasks sharing the page then they'll all move towards the same node. The node will be compute overloaded and then scheduled away later only to bounce back again. Alternatively the shared tasks would just bounce around nodes because the fault information is effectively noise. Either way accounting for shared faults the same as private faults can result in lower performance overall. The second reason is based on a hypothetical workload that has a small number of very important, heavily accessed private pages but a large shared array. The shared array would dominate the number of faults and be selected as a preferred node even though it's the wrong decision. The third reason is that multiple threads in a process will race each other to fault the shared page making the fault information unreliable. Signed-off-by: NMel Gorman <mgorman@suse.de> [ Fix complication error when !NUMA_BALANCING. ] Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Currently automatic NUMA balancing is unable to distinguish between false shared versus private pages except by ignoring pages with an elevated page_mapcount entirely. This avoids shared pages bouncing between the nodes whose task is using them but that is ignored quite a lot of data. This patch kicks away the training wheels in preparation for adding support for identifying shared/private pages is now in place. The ordering is so that the impact of the shared/private detection can be easily measured. Note that the patch does not migrate shared, file-backed within vmas marked VM_EXEC as these are generally shared library pages. Migrating such pages is not beneficial as there is an expectation they are read-shared between caches and iTLB and iCache pressure is generally low. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
NUMA PTE scanning is expensive both in terms of the scanning itself and the TLB flush if there are any updates. The TLB flush is avoided if no PTEs are updated but there is a bug where transhuge PMDs are considered to be updated even if they were already pmd_numa. This patch addresses the problem and TLB flushes should be reduced. Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-12-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
NUMA PTE scanning is expensive both in terms of the scanning itself and the TLB flush if there are any updates. Currently non-present PTEs are accounted for as an update and incurring a TLB flush where it is only necessary for anonymous migration entries. This patch addresses the problem and should reduce TLB flushes. Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-11-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
A THP PMD update is accounted for as 512 pages updated in vmstat. This is large difference when estimating the cost of automatic NUMA balancing and can be misleading when comparing results that had collapsed versus split THP. This patch addresses the accounting issue. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-10-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 12月, 2012 1 次提交
-
-
由 Andrew Morton 提交于
A few gremlins have recently crept in. Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2012 1 次提交
-
-
由 Kirill A. Shutemov 提交于
Pass vma instead of mm and add address parameter. In most cases we already have vma on the stack. We provides split_huge_page_pmd_mm() for few cases when we have mm, but not vma. This change is preparation to huge zero pmd splitting implementation. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 4 次提交
-
-
由 Mel Gorman 提交于
To say that the PMD handling code was incorrectly transferred from autonuma is an understatement. The intention was to handle a PMDs worth of pages in the same fault and effectively batch the taking of the PTL and page migration. The copied version instead has the impact of clearing a number of pte_numa PTE entries and whether any page migration takes place depends on racing. This just happens to work in some cases. This patch handles pte_numa faults in batch when a pmd_numa fault is handled. The pages are migrated if they are currently misplaced. Essentially this is making an assumption that NUMA locality is on a PMD boundary but that could be addressed by only setting pmd_numa if all the pages within that PMD are on the same node if necessary. Signed-off-by: NMel Gorman <mgorman@suse.de>
-
由 Mel Gorman 提交于
This patch converts change_prot_numa() to use change_protection(). As pte_numa and friends check the PTE bits directly it is necessary for change_protection() to use pmd_mknuma(). Hence the required modifications to change_protection() are a little clumsy but the end result is that most of the numa page table helpers are just one or two instructions. Signed-off-by: NMel Gorman <mgorman@suse.de>
-
由 Ingo Molnar 提交于
Reuse the NUMA code's 'modified page protections' count that change_protection() computes and skip the TLB flush if there's no changes to a range that sys_mprotect() modifies. Given that mprotect() already optimizes the same-flags case I expected this optimization to dominantly trigger on CONFIG_NUMA_BALANCING=y kernels - but even with that feature disabled it triggers rather often. There's two reasons for that: 1) While sys_mprotect() already optimizes the same-flag case: if (newflags == oldflags) { *pprev = vma; return 0; } and this test works in many cases, but it is too sharp in some others, where it differentiates between protection values that the underlying PTE format makes no distinction about, such as PROT_EXEC == PROT_READ on x86. 2) Even where the pte format over vma flag changes necessiates a modification of the pagetables, there might be no pagetables yet to modify: they might not be instantiated yet. During a regular desktop bootup this optimization hits a couple of hundred times. During a Java test I measured thousands of hits. So this optimization improves sys_mprotect() in general, not just CONFIG_NUMA_BALANCING=y kernels. [ We could further increase the efficiency of this optimization if change_pte_range() and change_huge_pmd() was a bit smarter about recognizing exact-same-value protection masks - when the hardware can do that safely. This would probably further speed up mprotect(). ] Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
This will be used for three kinds of purposes: - to optimize mprotect() - to speed up working set scanning for working set areas that have not been touched - to more accurately scan per real working set No change in functionality from this patch. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 22 3月, 2012 1 次提交
-
-
由 Konstantin Khlebnikov 提交于
Since commit 2a11c8ea ("kconfig: Introduce IS_ENABLED(), IS_BUILTIN() and IS_MODULE()") there is a generic grep-friendly method for checking config options in C expressions. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 3月, 2012 1 次提交
-
-
由 Linus Torvalds 提交于
Several users of "find_vma_prev()" were not in fact interested in the previous vma if there was no primary vma to be found either. And in those cases, we're much better off just using the regular "find_vma()", and then "prev" can be looked up by just checking vma->vm_prev. The find_vma_prev() semantics are fairly subtle (see Mikulas' recent commit 83cd904d: "mm: fix find_vma_prev"), and the whole "return prev by reference" means that it generates worse code too. Thus this "let's avoid using this inconvenient and clearly too subtle interface when we don't really have to" patch. Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 2月, 2012 1 次提交
-
-
由 Al Viro 提交于
Collapse security_vm_enough_memory() variants into a single function. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NJames Morris <jmorris@namei.org>
-
- 14 1月, 2011 3 次提交
-
-
由 Johannes Weiner 提交于
Natively handle huge pmds when changing page tables on behalf of mprotect(). I left out update_mmu_cache() because we do not need it on x86 anyway but more importantly the interface works on ptes, not pmds. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Flushing the tlb for huge pmds requires the vma's anon_vma, so pass along the vma instead of the mm, we can always get the latter when we need it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrea Arcangeli 提交于
split_huge_page_pmd compat code. Each one of those would need to be expanded to hundred of lines of complex code without a fully reliable split_huge_page_pmd design. Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 11月, 2010 1 次提交
-
-
由 Pekka Enberg 提交于
As pointed out by Linus, commit dab5855b ("perf_counter: Add mmap event hooks to mprotect()") is fundamentally wrong as mprotect_fixup() can free 'vma' due to merging. Fix the problem by moving perf_event_mmap() hook to mprotect_fixup(). Note: there's another successful return path from mprotect_fixup() if old flags equal to new flags. We don't, however, need to call perf_event_mmap() there because 'perf' already knows the VMA is executable. Reported-by: NDave Jones <davej@redhat.com> Analyzed-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@elte.hu> Reviewed-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NPekka Enberg <penberg@kernel.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 21 9月, 2009 1 次提交
-
-
由 Ingo Molnar 提交于
Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: NStephane Eranian <eranian@google.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NPaul Mackerras <paulus@samba.org> Reviewed-by: NArjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 6月, 2009 1 次提交
-
-
由 Peter Zijlstra 提交于
Some JIT compilers allocate memory for generated code with posix_memalign() + mprotect() so we need to hook into mprotect() to make sure 'perf' is aware that we're executing code in anonymous memory. [ penberg@cs.helsinki.fi: move the hook to sys_mprotect() ] Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: NPekka Enberg <penberg@cs.helsinki.fi> LKML-Reference: <Pine.LNX.4.64.0906082111030.12407@melkki.cs.Helsinki.FI> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 11 2月, 2009 1 次提交
-
-
由 Mel Gorman 提交于
When overcommit is disabled, the core VM accounts for pages used by anonymous shared, private mappings and special mappings. It keeps track of VMAs that should be accounted for with VM_ACCOUNT and VMAs that never had a reserve with VM_NORESERVE. Overcommit for hugetlbfs is much riskier than overcommit for base pages due to contiguity requirements. It avoids overcommiting on both shared and private mappings using reservation counters that are checked and updated during mmap(). This ensures (within limits) that hugepages exist in the future when faults occurs or it is too easy to applications to be SIGKILLed. As hugetlbfs makes its own reservations of a different unit to the base page size, VM_ACCOUNT should never be set. Even if the units were correct, we would double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may be set because an application can request no reserves be made for hugetlbfs at the risk of getting killed later. With commit fc8744ad, VM_NORESERVE and VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This breaks the accounting for both the core VM and hugetlbfs, can trigger an OOM storm when hugepage pools are too small lockups and corrupted counters otherwise are used. This patch brings hugetlbfs more in line with how the core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 1月, 2009 1 次提交
-
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 07 1月, 2009 1 次提交
-
-
由 KOSAKI Motohiro 提交于
#ifdef in *.c file decrease source readability a bit. removing is better. This patch doesn't have any functional change. Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 1月, 2009 1 次提交
-
-
由 Alan Cox 提交于
Signed-off-by: NAlan Cox <alan@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 7月, 2008 1 次提交
-
-
由 Andrea Arcangeli 提交于
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 7月, 2008 1 次提交
-
-
由 Andy Whitcroft 提交于
With Mel's hugetlb private reservation support patches applied, strict overcommit semantics are applied to both shared and private huge page mappings. This can be a problem if an application relied on unlimited overcommit semantics for private mappings. An example of this would be an application which maps a huge area with the intention of using it very sparsely. These application would benefit from being able to opt-out of the strict overcommit. It should be noted that prior to hugetlb supporting demand faulting all mappings were fully populated and so applications of this type should be rare. This patch stack implements the MAP_NORESERVE mmap() flag for huge page mappings. This flag has the same meaning as for small page mappings, suppressing reservations for that mapping. Thanks to Mel Gorman for reviewing a number of early versions of these patches. This patch: When a small page mapping is created with mmap() reservations are created by default for any memory pages required. When the region is read/write the reservation is increased for every page, no reservation is needed for read-only regions (as they implicitly share the zero page). Reservations are tracked via the VM_ACCOUNT vma flag which is present when the region has reservation backing it. When we convert a region from read-only to read-write new reservations are aquired and VM_ACCOUNT is set. However, when a read-only map is created with MAP_NORESERVE it is indistinguishable from a normal mapping. When we then convert that to read/write we are forced to incorrectly create reservations for it as we have no record of the original MAP_NORESERVE. This patch introduces a new vma flag VM_NORESERVE which records the presence of the original MAP_NORESERVE flag. This allows us to distinguish these two circumstances and correctly account the reserve. As well as fixing this FIXME in the code, this makes it much easier to introduce MAP_NORESERVE support for huge pages as this flag is available consistantly for the life of the mapping. VM_ACCOUNT on the other hand is heavily used at the generic level in association with small pages. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 7月, 2008 1 次提交
-
-
由 Dave Kleikamp 提交于
This patch allows architectures to define functions to deal with additional protections bits for mmap() and mprotect(). arch_calc_vm_prot_bits() maps additonal protection bits to vm_flags arch_vm_get_page_prot() maps additional vm_flags to the vma's vm_page_prot arch_validate_prot() checks for valid values of the protection bits Note: vm_get_page_prot() is now pretty ugly, but the generated code should be identical for architectures that don't define additional protection bits. Signed-off-by: NDave Kleikamp <shaggy@linux.vnet.ibm.com> Acked-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 25 6月, 2008 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
This patch adds an API for doing read-modify-write updates to a pte's protection bits which may race against hardware updates to the pte. After reading the pte, the hardware may asynchonously set the accessed or dirty bits on a pte, which would be lost when writing back the modified pte value. The existing technique to handle this race is to use ptep_get_and_clear() atomically fetch the old pte value and clear it in memory. This has the effect of marking the pte as non-present, which will prevent the hardware from updating its state. When the new value is written back, the pte will be present again, and the hardware can resume updating the access/dirty flags. When running in a virtualized environment, pagetable updates are relatively expensive, since they generally involve some trap into the hypervisor. To mitigate the cost of these updates, we tend to batch them. However, because of the atomic nature of ptep_get_and_clear(), it is inherently non-batchable. This new interface allows batching by giving the underlying implementation enough information to open a transaction between the read and write phases: ptep_modify_prot_start() returns the current pte value, and puts the pte entry into a state where either the hardware will not update the pte, or if it does, the updates will be preserved on commit. ptep_modify_prot_commit() writes back the updated pte, makes sure that any hardware updates made since ptep_modify_prot_start() are preserved. ptep_modify_prot_start() and _commit() must be exactly paired, and used while holding the appropriate pte lock. They do not protect against other software updates of the pte in any way. The current implementations of ptep_modify_prot_start and _commit are functionally unchanged from before: _start() uses ptep_get_and_clear() fetch the pte and zero the entry, preventing any hardware updates. _commit() simply writes the new pte value back knowing that the hardware has not updated the pte in the meantime. The only current user of this interface is mprotect Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 5月, 2008 1 次提交
-
-
由 Venki Pallipadi 提交于
There is a defect in mprotect, which lets the user change the page cache type bits by-passing the kernel reserve_memtype and free_memtype wrappers. Fix the problem by not letting mprotect change the PAT bits. Signed-off-by: NVenkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NHugh Dickins <hugh@veritas.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 10月, 2007 1 次提交
-
-
由 Hugh Dickins 提交于
Fix mprotect bug in recent commit 3ed75eb8 (setup vma->vm_page_prot by vm_get_page_prot()): the vma_wants_writenotify case was setting the same prot as when not. Nothing wrong with the use of protection_map[] in mmap_region(), but use vm_get_page_prot() there too in the same ~VM_SHARED way. Signed-off-by: NHugh Dickins <hugh@veritas.com> Cc: Coly Li <coyli@suse.de> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-