1. 19 4月, 2017 3 次提交
    • P
      block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler · aee69d78
      Paolo Valente 提交于
      We tag as v0 the version of BFQ containing only BFQ's engine plus
      hierarchical support. BFQ's engine is introduced by this commit, while
      hierarchical support is added by next commit. We use the v0 tag to
      distinguish this minimal version of BFQ from the versions containing
      also the features and the improvements added by next commits. BFQ-v0
      coincides with the version of BFQ submitted a few years ago [1], apart
      from the introduction of preemption, described below.
      
      BFQ is a proportional-share I/O scheduler, whose general structure,
      plus a lot of code, are borrowed from CFQ.
      
      - Each process doing I/O on a device is associated with a weight and a
        (bfq_)queue.
      
      - BFQ grants exclusive access to the device, for a while, to one queue
        (process) at a time, and implements this service model by
        associating every queue with a budget, measured in number of
        sectors.
      
        - After a queue is granted access to the device, the budget of the
          queue is decremented, on each request dispatch, by the size of the
          request.
      
        - The in-service queue is expired, i.e., its service is suspended,
          only if one of the following events occurs: 1) the queue finishes
          its budget, 2) the queue empties, 3) a "budget timeout" fires.
      
          - The budget timeout prevents processes doing random I/O from
            holding the device for too long and dramatically reducing
            throughput.
      
          - Actually, as in CFQ, a queue associated with a process issuing
            sync requests may not be expired immediately when it empties. In
            contrast, BFQ may idle the device for a short time interval,
            giving the process the chance to go on being served if it issues
            a new request in time. Device idling typically boosts the
            throughput on rotational devices, if processes do synchronous
            and sequential I/O. In addition, under BFQ, device idling is
            also instrumental in guaranteeing the desired throughput
            fraction to processes issuing sync requests (see [2] for
            details).
      
            - With respect to idling for service guarantees, if several
              processes are competing for the device at the same time, but
              all processes (and groups, after the following commit) have
              the same weight, then BFQ guarantees the expected throughput
              distribution without ever idling the device. Throughput is
              thus as high as possible in this common scenario.
      
        - Queues are scheduled according to a variant of WF2Q+, named
          B-WF2Q+, and implemented using an augmented rb-tree to preserve an
          O(log N) overall complexity.  See [2] for more details. B-WF2Q+ is
          also ready for hierarchical scheduling. However, for a cleaner
          logical breakdown, the code that enables and completes
          hierarchical support is provided in the next commit, which focuses
          exactly on this feature.
      
        - B-WF2Q+ guarantees a tight deviation with respect to an ideal,
          perfectly fair, and smooth service. In particular, B-WF2Q+
          guarantees that each queue receives a fraction of the device
          throughput proportional to its weight, even if the throughput
          fluctuates, and regardless of: the device parameters, the current
          workload and the budgets assigned to the queue.
      
        - The last, budget-independence, property (although probably
          counterintuitive in the first place) is definitely beneficial, for
          the following reasons:
      
          - First, with any proportional-share scheduler, the maximum
            deviation with respect to an ideal service is proportional to
            the maximum budget (slice) assigned to queues. As a consequence,
            BFQ can keep this deviation tight not only because of the
            accurate service of B-WF2Q+, but also because BFQ *does not*
            need to assign a larger budget to a queue to let the queue
            receive a higher fraction of the device throughput.
      
          - Second, BFQ is free to choose, for every process (queue), the
            budget that best fits the needs of the process, or best
            leverages the I/O pattern of the process. In particular, BFQ
            updates queue budgets with a simple feedback-loop algorithm that
            allows a high throughput to be achieved, while still providing
            tight latency guarantees to time-sensitive applications. When
            the in-service queue expires, this algorithm computes the next
            budget of the queue so as to:
      
            - Let large budgets be eventually assigned to the queues
              associated with I/O-bound applications performing sequential
              I/O: in fact, the longer these applications are served once
              got access to the device, the higher the throughput is.
      
            - Let small budgets be eventually assigned to the queues
              associated with time-sensitive applications (which typically
              perform sporadic and short I/O), because, the smaller the
              budget assigned to a queue waiting for service is, the sooner
              B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).
      
      - Weights can be assigned to processes only indirectly, through I/O
        priorities, and according to the relation:
        weight = 10 * (IOPRIO_BE_NR - ioprio).
        The next patch provides, instead, a cgroups interface through which
        weights can be assigned explicitly.
      
      - If several processes are competing for the device at the same time,
        but all processes and groups have the same weight, then BFQ
        guarantees the expected throughput distribution without ever idling
        the device. It uses preemption instead. Throughput is then much
        higher in this common scenario.
      
      - ioprio classes are served in strict priority order, i.e.,
        lower-priority queues are not served as long as there are
        higher-priority queues.  Among queues in the same class, the
        bandwidth is distributed in proportion to the weight of each
        queue. A very thin extra bandwidth is however guaranteed to the Idle
        class, to prevent it from starving.
      
      - If the strict_guarantees parameter is set (default: unset), then BFQ
           - always performs idling when the in-service queue becomes empty;
           - forces the device to serve one I/O request at a time, by
             dispatching a new request only if there is no outstanding
             request.
        In the presence of differentiated weights or I/O-request sizes,
        both the above conditions are needed to guarantee that every
        queue receives its allotted share of the bandwidth (see
        Documentation/block/bfq-iosched.txt for more details). Setting
        strict_guarantees may evidently affect throughput.
      
      [1] https://lkml.org/lkml/2008/4/1/234
          https://lkml.org/lkml/2008/11/11/148
      
      [2] P. Valente and M. Andreolini, "Improving Application
          Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
          the 5th Annual International Systems and Storage Conference
          (SYSTOR '12), June 2012.
          Slightly extended version:
          http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
      							results.pdf
      Signed-off-by: NFabio Checconi <fchecconi@gmail.com>
      Signed-off-by: NPaolo Valente <paolo.valente@linaro.org>
      Signed-off-by: NArianna Avanzini <avanzini.arianna@gmail.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      aee69d78
    • J
      nbd: set the max segment size to UINT_MAX · ebb16d0d
      Josef Bacik 提交于
      NBD doesn't care about limiting the segment size, let the user push the
      largest bio's they want.  This allows us to control the request size
      solely through max_sectors_kb.
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Reviewed-by: NMing Lei <ming.lei@redhat.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      ebb16d0d
    • J
      Merge branch 'stable/for-jens-4.12' of... · 6af38473
      Jens Axboe 提交于
      Merge branch 'stable/for-jens-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen into for-4.12/block
      
      Konrad writes:
      
      It has one fix - to emit an uevent whenever the size of the guest disk image
      changes.
      6af38473
  2. 18 4月, 2017 1 次提交
  3. 17 4月, 2017 31 次提交
  4. 15 4月, 2017 5 次提交
    • D
      net: off by one in inet6_pton() · a88086e0
      Dan Carpenter 提交于
      If "scope_len" is sizeof(scope_id) then we would put the NUL terminator
      one space beyond the end of the buffer.
      
      Fixes: b1a951fe ("net/utils: generic inet_pton_with_scope helper")
      Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      a88086e0
    • O
      blk-mq: introduce Kyber multiqueue I/O scheduler · 00e04393
      Omar Sandoval 提交于
      The Kyber I/O scheduler is an I/O scheduler for fast devices designed to
      scale to multiple queues. Users configure only two knobs, the target
      read and synchronous write latencies, and the scheduler tunes itself to
      achieve that latency goal.
      
      The implementation is based on "tokens", built on top of the scalable
      bitmap library. Tokens serve as a mechanism for limiting requests. There
      are two tiers of tokens: queueing tokens and dispatch tokens.
      
      A queueing token is required to allocate a request. In fact, these
      tokens are actually the blk-mq internal scheduler tags, but the
      scheduler manages the allocation directly in order to implement its
      policy.
      
      Dispatch tokens are device-wide and split up into two scheduling
      domains: reads vs. writes. Each hardware queue dispatches batches
      round-robin between the scheduling domains as long as tokens are
      available for that domain.
      
      These tokens can be used as the mechanism to enable various policies.
      The policy Kyber uses is inspired by active queue management techniques
      for network routing, similar to blk-wbt. The scheduler monitors
      latencies and scales the number of dispatch tokens accordingly. Queueing
      tokens are used to prevent starvation of synchronous requests by
      asynchronous requests.
      
      Various extensions are possible, including better heuristics and ionice
      support. The new scheduler isn't set as the default yet.
      Signed-off-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      00e04393
    • O
      blk-mq-sched: make completed_request() callback more useful · c05f8525
      Omar Sandoval 提交于
      Currently, this callback is called right after put_request() and has no
      distinguishable purpose. Instead, let's call it before put_request() as
      soon as I/O has completed on the request, before we account it in
      blk-stat. With this, Kyber can enable stats when it sees a latency
      outlier and make sure the outlier gets accounted.
      Signed-off-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      c05f8525
    • O
      blk-mq: export helpers · 5b727272
      Omar Sandoval 提交于
      blk_mq_finish_request() is required for schedulers that define their own
      put_request(). blk_mq_run_hw_queue() is required for schedulers that
      hold back requests to be run later.
      Signed-off-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      5b727272
    • O
      blk-mq: add shallow depth option for blk_mq_get_tag() · 229a9287
      Omar Sandoval 提交于
      Wire up the sbitmap_get_shallow() operation to the tag code so that a
      caller can limit the number of tags available to it.
      Signed-off-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      229a9287