1. 01 12月, 2022 2 次提交
    • S
      mm: use part per 1000000 for bdi ratios · ae82291e
      Stefan Roesch 提交于
      To get finer granularity for ratio calculations use part per million
      instead of percentiles. This is especially important if we want to
      automatically convert byte values to ratios. Otherwise the values that
      are actually used can be quite different. This is also important for
      machines with more main memory (1% of 256GB is already 2.5GB).
      
      Link: https://lkml.kernel.org/r/20221119005215.3052436-5-shr@devkernel.ioSigned-off-by: NStefan Roesch <shr@devkernel.io>
      Cc: Chris Mason <clm@meta.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      ae82291e
    • S
      mm: add bdi_set_strict_limit() function · 8e9d5ead
      Stefan Roesch 提交于
      Patch series "mm/block: add bdi sysfs knobs", v4.
      
      At meta network block devices (nbd) are used to implement remote block
      storage.  In testing and during production it has been observed that these
      network block devices can consume a huge portion of the dirty writeback
      cache and writeback can take a considerable time.
      
      To be able to give stricter limits, I'm proposing the following changes:
      
      1) introduce strictlimit knob
      
        Currently the max_ratio knob exists to limit the dirty_memory. However
        this knob only applies once (dirty_ratio + dirty_background_ratio) / 2
        has been reached.
        With the BDI_CAP_STRICTLIMIT flag, the max_ratio can be applied without
        reaching that limit. This change exposes that knob.
      
        This knob can also be useful for NFS, fuse filesystems and USB devices.
      
      2) Use part of 1000000 internal calculation
      
        The max_ratio is based on percentage. With the current machine sizes
        percentage values can be very high (1% of a 256GB main memory is already
        2.5GB). This change uses part of 1000000 instead of percentages for the
        internal calculations.
      
      3) Introduce two new sysfs knobs: min_bytes and max_bytes.
      
        Currently all calculations are based on ratio, but for a user it often
        more convenient to specify a limit in bytes. The new knobs will not
        store bytes values, instead they will translate the byte value to a
        corresponding ratio. As the internal values are now part of 1000, the
        ratio is closer to the specified value. However the value should be more
        seen as an approximation as it can fluctuate over time.
      
      
      3) Introduce two new sysfs knobs: min_ratio_fine and max_ratio_fine.
      
        The granularity for the existing sysfs bdi knobs min_ratio and max_ratio
        is based on percentage values. The new sysfs bdi knobs min_ratio_fine
        and max_ratio_fine allow to specify the ratio as part of 1 million.
      
      
      This patch (of 20):
      
      This adds the bdi_set_strict_limit function to be able to set/unset the
      BDI_CAP_STRICTLIMIT flag.
      
      Link: https://lkml.kernel.org/r/20221119005215.3052436-1-shr@devkernel.io
      Link: https://lkml.kernel.org/r/20221119005215.3052436-2-shr@devkernel.ioSigned-off-by: NStefan Roesch <shr@devkernel.io>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Chris Mason <clm@meta.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      8e9d5ead
  2. 30 7月, 2022 1 次提交
  3. 18 7月, 2022 1 次提交
  4. 16 6月, 2022 1 次提交
  5. 03 5月, 2022 1 次提交
  6. 23 3月, 2022 3 次提交
    • N
      remove congestion tracking framework · a88f2096
      NeilBrown 提交于
      This framework is no longer used - so discard it.
      
      Link: https://lkml.kernel.org/r/164549983747.9187.6171768583526866601.stgit@noble.brownSigned-off-by: NNeilBrown <neilb@suse.de>
      Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
      Cc: Chao Yu <chao@kernel.org>
      Cc: Darrick J. Wong <djwong@kernel.org>
      Cc: Ilya Dryomov <idryomov@gmail.com>
      Cc: Jaegeuk Kim <jaegeuk@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jeff Layton <jlayton@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
      Cc: Miklos Szeredi <miklos@szeredi.hu>
      Cc: Paolo Valente <paolo.valente@linaro.org>
      Cc: Philipp Reisner <philipp.reisner@linbit.com>
      Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
      Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a88f2096
    • N
      remove bdi_congested() and wb_congested() and related functions · b9b1335e
      NeilBrown 提交于
      These functions are no longer useful as no BDIs report congestions any
      more.
      
      Removing the test on bdi_write_contested() in current_may_throttle()
      could cause a small change in behaviour, but only when PF_LOCAL_THROTTLE
      is set.
      
      So replace the calls by 'false' and simplify the code - and remove the
      functions.
      
      [akpm@linux-foundation.org: fix build]
      
      Link: https://lkml.kernel.org/r/164549983742.9187.2570198746005819592.stgit@noble.brownSigned-off-by: NNeilBrown <neilb@suse.de>
      Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>	[nilfs]
      Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
      Cc: Chao Yu <chao@kernel.org>
      Cc: Darrick J. Wong <djwong@kernel.org>
      Cc: Ilya Dryomov <idryomov@gmail.com>
      Cc: Jaegeuk Kim <jaegeuk@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jeff Layton <jlayton@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
      Cc: Miklos Szeredi <miklos@szeredi.hu>
      Cc: Paolo Valente <paolo.valente@linaro.org>
      Cc: Philipp Reisner <philipp.reisner@linbit.com>
      Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b9b1335e
    • N
      remove inode_congested() · fe55d563
      NeilBrown 提交于
      inode_congested() reports if the backing-device for the inode is
      congested.  No bdi reports congestion any more, so this always returns
      'false'.
      
      So remove inode_congested() and related functions, and remove the call
      sites, assuming that inode_congested() always returns 'false'.
      
      Link: https://lkml.kernel.org/r/164549983741.9187.2174285592262191311.stgit@noble.brownSigned-off-by: NNeilBrown <neilb@suse.de>
      Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
      Cc: Chao Yu <chao@kernel.org>
      Cc: Darrick J. Wong <djwong@kernel.org>
      Cc: Ilya Dryomov <idryomov@gmail.com>
      Cc: Jaegeuk Kim <jaegeuk@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jeff Layton <jlayton@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
      Cc: Miklos Szeredi <miklos@szeredi.hu>
      Cc: Paolo Valente <paolo.valente@linaro.org>
      Cc: Philipp Reisner <philipp.reisner@linbit.com>
      Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
      Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fe55d563
  7. 07 11月, 2021 1 次提交
    • M
      mm/vmscan: throttle reclaim until some writeback completes if congested · 8cd7c588
      Mel Gorman 提交于
      Patch series "Remove dependency on congestion_wait in mm/", v5.
      
      This series that removes all calls to congestion_wait in mm/ and deletes
      wait_iff_congested.  It's not a clever implementation but
      congestion_wait has been broken for a long time [1].
      
      Even if congestion throttling worked, it was never a great idea.  While
      excessive dirty/writeback pages at the tail of the LRU is one
      possibility that reclaim may be slow, there is also the problem of too
      many pages being isolated and reclaim failing for other reasons
      (elevated references, too many pages isolated, excessive LRU contention
      etc).
      
      This series replaces the "congestion" throttling with 3 different types.
      
       - If there are too many dirty/writeback pages, sleep until a timeout or
         enough pages get cleaned
      
       - If too many pages are isolated, sleep until enough isolated pages are
         either reclaimed or put back on the LRU
      
       - If no progress is being made, direct reclaim tasks sleep until
         another task makes progress with acceptable efficiency.
      
      This was initially tested with a mix of workloads that used to trigger
      corner cases that no longer work.  A new test case was created called
      "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly
      created XFS filesystem.  Note that it may be necessary to increase the
      timeout of ssh if executing remotely as ssh itself can get throttled and
      the connection may timeout.
      
      stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4
      to check the impact as the number of direct reclaimers increase.  It has
      four types of worker.
      
       - One "anon latency" worker creates small mappings with mmap() and
         times how long it takes to fault the mapping reading it 4K at a time
      
       - X file writers which is fio randomly writing X files where the total
         size of the files add up to the allowed dirty_ratio. fio is allowed
         to run for a warmup period to allow some file-backed pages to
         accumulate. The duration of the warmup is based on the best-case
         linear write speed of the storage.
      
       - Y file readers which is fio randomly reading small files
      
       - Z anon memory hogs which continually map (100-dirty_ratio)% of memory
      
       - Total estimated WSS = (100+dirty_ration) percentage of memory
      
      X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4
      
      The intent is to maximise the total WSS with a mix of file and anon
      memory where some anonymous memory must be swapped and there is a high
      likelihood of dirty/writeback pages reaching the end of the LRU.
      
      The test can be configured to have no background readers to stress
      dirty/writeback pages.  The results below are based on having zero
      readers.
      
      The short summary of the results is that the series works and stalls
      until some event occurs but the timeouts may need adjustment.
      
      The test results are not broken down by patch as the series should be
      treated as one block that replaces a broken throttling mechanism with a
      working one.
      
      Finally, three machines were tested but I'm reporting the worst set of
      results.  The other two machines had much better latencies for example.
      
      First the results of the "anon latency" latency
      
        stutterp
                                      5.15.0-rc1             5.15.0-rc1
                                         vanilla mm-reclaimcongest-v5r4
        Amean     mmap-4      31.4003 (   0.00%)   2661.0198 (-8374.52%)
        Amean     mmap-7      38.1641 (   0.00%)    149.2891 (-291.18%)
        Amean     mmap-12     60.0981 (   0.00%)    187.8105 (-212.51%)
        Amean     mmap-21    161.2699 (   0.00%)    213.9107 ( -32.64%)
        Amean     mmap-30    174.5589 (   0.00%)    377.7548 (-116.41%)
        Amean     mmap-48   8106.8160 (   0.00%)   1070.5616 (  86.79%)
        Stddev    mmap-4      41.3455 (   0.00%)  27573.9676 (-66591.66%)
        Stddev    mmap-7      53.5556 (   0.00%)   4608.5860 (-8505.23%)
        Stddev    mmap-12    171.3897 (   0.00%)   5559.4542 (-3143.75%)
        Stddev    mmap-21   1506.6752 (   0.00%)   5746.2507 (-281.39%)
        Stddev    mmap-30    557.5806 (   0.00%)   7678.1624 (-1277.05%)
        Stddev    mmap-48  61681.5718 (   0.00%)  14507.2830 (  76.48%)
        Max-90    mmap-4      31.4243 (   0.00%)     83.1457 (-164.59%)
        Max-90    mmap-7      41.0410 (   0.00%)     41.0720 (  -0.08%)
        Max-90    mmap-12     66.5255 (   0.00%)     53.9073 (  18.97%)
        Max-90    mmap-21    146.7479 (   0.00%)    105.9540 (  27.80%)
        Max-90    mmap-30    193.9513 (   0.00%)     64.3067 (  66.84%)
        Max-90    mmap-48    277.9137 (   0.00%)    591.0594 (-112.68%)
        Max       mmap-4    1913.8009 (   0.00%) 299623.9695 (-15555.96%)
        Max       mmap-7    2423.9665 (   0.00%) 204453.1708 (-8334.65%)
        Max       mmap-12   6845.6573 (   0.00%) 221090.3366 (-3129.64%)
        Max       mmap-21  56278.6508 (   0.00%) 213877.3496 (-280.03%)
        Max       mmap-30  19716.2990 (   0.00%) 216287.6229 (-997.00%)
        Max       mmap-48 477923.9400 (   0.00%) 245414.8238 (  48.65%)
      
      For most thread counts, the time to mmap() is unfortunately increased.
      In earlier versions of the series, this was lower but a large number of
      throttling events were reaching their timeout increasing the amount of
      inefficient scanning of the LRU.  There is no prioritisation of reclaim
      tasks making progress based on each tasks rate of page allocation versus
      progress of reclaim.  The variance is also impacted for high worker
      counts but in all cases, the differences in latency are not
      statistically significant due to very large maximum outliers.  Max-90
      shows that 90% of the stalls are comparable but the Max results show the
      massive outliers which are increased to to stalling.
      
      It is expected that this will be very machine dependant.  Due to the
      test design, reclaim is difficult so allocations stall and there are
      variances depending on whether THPs can be allocated or not.  The amount
      of memory will affect exactly how bad the corner cases are and how often
      they trigger.  The warmup period calculation is not ideal as it's based
      on linear writes where as fio is randomly writing multiple files from
      multiple tasks so the start state of the test is variable.  For example,
      these are the latencies on a single-socket machine that had more memory
      
        Amean     mmap-4      42.2287 (   0.00%)     49.6838 * -17.65%*
        Amean     mmap-7     216.4326 (   0.00%)     47.4451 *  78.08%*
        Amean     mmap-12   2412.0588 (   0.00%)     51.7497 (  97.85%)
        Amean     mmap-21   5546.2548 (   0.00%)     51.8862 (  99.06%)
        Amean     mmap-30   1085.3121 (   0.00%)     72.1004 (  93.36%)
      
      The overall system CPU usage and elapsed time is as follows
      
                          5.15.0-rc3  5.15.0-rc3
                             vanilla mm-reclaimcongest-v5r4
        Duration User        6989.03      983.42
        Duration System      7308.12      799.68
        Duration Elapsed     2277.67     2092.98
      
      The patches reduce system CPU usage by 89% as the vanilla kernel is rarely
      stalling.
      
      The high-level /proc/vmstats show
      
                                             5.15.0-rc1     5.15.0-rc1
                                                vanilla mm-reclaimcongest-v5r2
        Ops Direct pages scanned          1056608451.00   503594991.00
        Ops Kswapd pages scanned           109795048.00   147289810.00
        Ops Kswapd pages reclaimed          63269243.00    31036005.00
        Ops Direct pages reclaimed          10803973.00     6328887.00
        Ops Kswapd efficiency %                   57.62          21.07
        Ops Kswapd velocity                    48204.98       57572.86
        Ops Direct efficiency %                    1.02           1.26
        Ops Direct velocity                   463898.83      196845.97
      
      Kswapd scanned less pages but the detailed pattern is different.  The
      vanilla kernel scans slowly over time where as the patches exhibits
      burst patterns of scan activity.  Direct reclaim scanning is reduced by
      52% due to stalling.
      
      The pattern for stealing pages is also slightly different.  Both kernels
      exhibit spikes but the vanilla kernel when reclaiming shows pages being
      reclaimed over a period of time where as the patches tend to reclaim in
      spikes.  The difference is that vanilla is not throttling and instead
      scanning constantly finding some pages over time where as the patched
      kernel throttles and reclaims in spikes.
      
        Ops Percentage direct scans               90.59          77.37
      
      For direct reclaim, vanilla scanned 90.59% of pages where as with the
      patches, 77.37% were direct reclaim due to throttling
      
        Ops Page writes by reclaim           2613590.00     1687131.00
      
      Page writes from reclaim context are reduced.
      
        Ops Page writes anon                 2932752.00     1917048.00
      
      And there is less swapping.
      
        Ops Page reclaim immediate         996248528.00   107664764.00
      
      The number of pages encountered at the tail of the LRU tagged for
      immediate reclaim but still dirty/writeback is reduced by 89%.
      
        Ops Slabs scanned                     164284.00      153608.00
      
      Slab scan activity is similar.
      
      ftrace was used to gather stall activity
      
        Vanilla
        -------
            1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000
            2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000
            8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000
           29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000
        82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0
      
      The fast majority of wait_iff_congested calls do not stall at all.  What
      is likely happening is that cond_resched() reschedules the task for a
      short period when the BDI is not registering congestion (which it never
      will in this test setup).
      
            1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000
            2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000
            4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000
          380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000
          778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000
      
      congestion_wait if called always exceeds the timeout as there is no
      trigger to wake it up.
      
      Bottom line: Vanilla will throttle but it's not effective.
      
      Patch series
      ------------
      
      Kswapd throttle activity was always due to scanning pages tagged for
      immediate reclaim at the tail of the LRU
      
            1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
            4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
            5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
            6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
           11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
           11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
           94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
          112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
      
      The majority of events did not stall or stalled for a short period.
      Roughly 16% of stalls reached the timeout before expiry.  For direct
      reclaim, the number of times stalled for each reason were
      
         6624 reason=VMSCAN_THROTTLE_ISOLATED
        93246 reason=VMSCAN_THROTTLE_NOPROGRESS
        96934 reason=VMSCAN_THROTTLE_WRITEBACK
      
      The most common reason to stall was due to excessive pages tagged for
      immediate reclaim at the tail of the LRU followed by a failure to make
      forward.  A relatively small number were due to too many pages isolated
      from the LRU by parallel threads
      
      For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was
      
            9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED
           12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED
           83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED
         6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED
      
      Most did not stall at all.  A small number reached the timeout.
      
      For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over
      the map
      
            1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS
            1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS
            1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS
            1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS
            2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS
            3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS
            3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS
            3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS
            4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS
            5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS
            5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS
            5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS
            5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS
            6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS
            7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS
            7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS
            7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS
            7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS
            8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS
            8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS
            8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS
            9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS
            9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS
            9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS
           10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS
           10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS
           10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS
           11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS
           12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS
           13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS
           13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS
           14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS
           14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS
           14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS
           16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS
           17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS
           17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS
           17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS
           18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS
           20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS
           20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS
           20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS
           21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS
           23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS
           23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS
           25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS
           25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS
           26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS
           27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS
           28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS
           29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS
           30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS
           30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS
           31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS
           32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS
           33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS
           35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS
           35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS
           36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS
           36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS
           37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS
           38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS
           40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS
           43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS
           55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS
           56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS
           58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS
           59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS
           61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS
           71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS
           71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS
           79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS
           82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS
           82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS
           85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS
           85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS
           88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS
           90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS
           90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS
           94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS
          118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS
          119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS
          126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS
          146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS
          148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS
          148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS
          159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS
          178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS
          183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS
          237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS
          266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS
          313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS
          347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS
          470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS
          559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS
          964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS
         2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS
         2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS
         7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS
        22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS
        51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS
      
      The full timeout is often hit but a large number also do not stall at
      all.  The remainder slept a little allowing other reclaim tasks to make
      progress.
      
      While this timeout could be further increased, it could also negatively
      impact worst-case behaviour when there is no prioritisation of what task
      should make progress.
      
      For VMSCAN_THROTTLE_WRITEBACK, the breakdown was
      
            1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK
            2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK
            3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK
            5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK
            5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK
            6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK
            7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK
           11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK
           12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK
           16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK
           24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK
           28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK
           30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK
           30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK
           32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK
           42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK
           77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK
           99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK
          137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK
          190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK
          339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK
          518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK
          852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK
         3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK
         7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK
        83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK
      
      The majority hit the timeout in direct reclaim context although a
      sizable number did not stall at all.  This is very different to kswapd
      where only a tiny percentage of stalls due to writeback reached the
      timeout.
      
      Bottom line, the throttling appears to work and the wakeup events may
      limit worst case stalls.  There might be some grounds for adjusting
      timeouts but it's likely futile as the worst-case scenarios depend on
      the workload, memory size and the speed of the storage.  A better
      approach to improve the series further would be to prioritise tasks
      based on their rate of allocation with the caveat that it may be very
      expensive to track.
      
      This patch (of 5):
      
      Page reclaim throttles on wait_iff_congested under the following
      conditions:
      
       - kswapd is encountering pages under writeback and marked for immediate
         reclaim implying that pages are cycling through the LRU faster than
         pages can be cleaned.
      
       - Direct reclaim will stall if all dirty pages are backed by congested
         inodes.
      
      wait_iff_congested is almost completely broken with few exceptions.
      This patch adds a new node-based workqueue and tracks the number of
      throttled tasks and pages written back since throttling started.  If
      enough pages belonging to the node are written back then the throttled
      tasks will wake early.  If not, the throttled tasks sleeps until the
      timeout expires.
      
      [neilb@suse.de: Uninterruptible sleep and simpler wakeups]
      [hdanton@sina.com: Avoid race when reclaim starts]
      [vbabka@suse.cz: vmstat irq-safe api, clarifications]
      
      Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1]
      Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net
      Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: NeilBrown <neilb@suse.de>
      Cc: "Theodore Ts'o" <tytso@mit.edu>
      Cc: Andreas Dilger <adilger.kernel@dilger.ca>
      Cc: "Darrick J . Wong" <djwong@kernel.org>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Rik van Riel <riel@surriel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8cd7c588
  8. 18 10月, 2021 3 次提交
  9. 04 9月, 2021 1 次提交
  10. 10 8月, 2021 1 次提交
  11. 25 9月, 2020 5 次提交
  12. 09 7月, 2020 2 次提交
  13. 10 5月, 2020 2 次提交
  14. 07 5月, 2020 1 次提交
  15. 01 2月, 2020 1 次提交
    • T
      memcg: fix a crash in wb_workfn when a device disappears · 68f23b89
      Theodore Ts'o 提交于
      Without memcg, there is a one-to-one mapping between the bdi and
      bdi_writeback structures.  In this world, things are fairly
      straightforward; the first thing bdi_unregister() does is to shutdown
      the bdi_writeback structure (or wb), and part of that writeback ensures
      that no other work queued against the wb, and that the wb is fully
      drained.
      
      With memcg, however, there is a one-to-many relationship between the bdi
      and bdi_writeback structures; that is, there are multiple wb objects
      which can all point to a single bdi.  There is a refcount which prevents
      the bdi object from being released (and hence, unregistered).  So in
      theory, the bdi_unregister() *should* only get called once its refcount
      goes to zero (bdi_put will drop the refcount, and when it is zero,
      release_bdi gets called, which calls bdi_unregister).
      
      Unfortunately, del_gendisk() in block/gen_hd.c never got the memo about
      the Brave New memcg World, and calls bdi_unregister directly.  It does
      this without informing the file system, or the memcg code, or anything
      else.  This causes the root wb associated with the bdi to be
      unregistered, but none of the memcg-specific wb's are shutdown.  So when
      one of these wb's are woken up to do delayed work, they try to
      dereference their wb->bdi->dev to fetch the device name, but
      unfortunately bdi->dev is now NULL, thanks to the bdi_unregister()
      called by del_gendisk().  As a result, *boom*.
      
      Fortunately, it looks like the rest of the writeback path is perfectly
      happy with bdi->dev and bdi->owner being NULL, so the simplest fix is to
      create a bdi_dev_name() function which can handle bdi->dev being NULL.
      This also allows us to bulletproof the writeback tracepoints to prevent
      them from dereferencing a NULL pointer and crashing the kernel if one is
      tracing with memcg's enabled, and an iSCSI device dies or a USB storage
      stick is pulled.
      
      The most common way of triggering this will be hotremoval of a device
      while writeback with memcg enabled is going on.  It was triggering
      several times a day in a heavily loaded production environment.
      
      Google Bug Id: 145475544
      
      Link: https://lore.kernel.org/r/20191227194829.150110-1-tytso@mit.edu
      Link: http://lkml.kernel.org/r/20191228005211.163952-1-tytso@mit.eduSigned-off-by: NTheodore Ts'o <tytso@mit.edu>
      Cc: Chris Mason <clm@fb.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      68f23b89
  16. 27 8月, 2019 3 次提交
  17. 10 7月, 2019 1 次提交
    • T
      blkcg: implement REQ_CGROUP_PUNT · d3f77dfd
      Tejun Heo 提交于
      When a shared kthread needs to issue a bio for a cgroup, doing so
      synchronously can lead to priority inversions as the kthread can be
      trapped waiting for that cgroup.  This patch implements
      REQ_CGROUP_PUNT flag which makes submit_bio() punt the actual issuing
      to a dedicated per-blkcg work item to avoid such priority inversions.
      
      This will be used to fix priority inversions in btrfs compression and
      should be generally useful as we grow filesystem support for
      comprehensive IO control.
      
      Cc: Chris Mason <clm@fb.com>
      Reviewed-by: NJosef Bacik <josef@toxicpanda.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Signed-off-by: NJens Axboe <axboe@kernel.dk>
      d3f77dfd
  18. 06 3月, 2019 1 次提交
  19. 23 8月, 2018 1 次提交
  20. 21 4月, 2018 1 次提交
    • G
      writeback: safer lock nesting · 2e898e4c
      Greg Thelen 提交于
      lock_page_memcg()/unlock_page_memcg() use spin_lock_irqsave/restore() if
      the page's memcg is undergoing move accounting, which occurs when a
      process leaves its memcg for a new one that has
      memory.move_charge_at_immigrate set.
      
      unlocked_inode_to_wb_begin,end() use spin_lock_irq/spin_unlock_irq() if
      the given inode is switching writeback domains.  Switches occur when
      enough writes are issued from a new domain.
      
      This existing pattern is thus suspicious:
          lock_page_memcg(page);
          unlocked_inode_to_wb_begin(inode, &locked);
          ...
          unlocked_inode_to_wb_end(inode, locked);
          unlock_page_memcg(page);
      
      If both inode switch and process memcg migration are both in-flight then
      unlocked_inode_to_wb_end() will unconditionally enable interrupts while
      still holding the lock_page_memcg() irq spinlock.  This suggests the
      possibility of deadlock if an interrupt occurs before unlock_page_memcg().
      
          truncate
          __cancel_dirty_page
          lock_page_memcg
          unlocked_inode_to_wb_begin
          unlocked_inode_to_wb_end
          <interrupts mistakenly enabled>
                                          <interrupt>
                                          end_page_writeback
                                          test_clear_page_writeback
                                          lock_page_memcg
                                          <deadlock>
          unlock_page_memcg
      
      Due to configuration limitations this deadlock is not currently possible
      because we don't mix cgroup writeback (a cgroupv2 feature) and
      memory.move_charge_at_immigrate (a cgroupv1 feature).
      
      If the kernel is hacked to always claim inode switching and memcg
      moving_account, then this script triggers lockup in less than a minute:
      
        cd /mnt/cgroup/memory
        mkdir a b
        echo 1 > a/memory.move_charge_at_immigrate
        echo 1 > b/memory.move_charge_at_immigrate
        (
          echo $BASHPID > a/cgroup.procs
          while true; do
            dd if=/dev/zero of=/mnt/big bs=1M count=256
          done
        ) &
        while true; do
          sync
        done &
        sleep 1h &
        SLEEP=$!
        while true; do
          echo $SLEEP > a/cgroup.procs
          echo $SLEEP > b/cgroup.procs
        done
      
      The deadlock does not seem possible, so it's debatable if there's any
      reason to modify the kernel.  I suggest we should to prevent future
      surprises.  And Wang Long said "this deadlock occurs three times in our
      environment", so there's more reason to apply this, even to stable.
      Stable 4.4 has minor conflicts applying this patch.  For a clean 4.4 patch
      see "[PATCH for-4.4] writeback: safer lock nesting"
      https://lkml.org/lkml/2018/4/11/146
      
      Wang Long said "this deadlock occurs three times in our environment"
      
      [gthelen@google.com: v4]
        Link: http://lkml.kernel.org/r/20180411084653.254724-1-gthelen@google.com
      [akpm@linux-foundation.org: comment tweaks, struct initialization simplification]
      Change-Id: Ibb773e8045852978f6207074491d262f1b3fb613
      Link: http://lkml.kernel.org/r/20180410005908.167976-1-gthelen@google.com
      Fixes: 682aa8e1 ("writeback: implement unlocked_inode_to_wb transaction and use it for stat updates")
      Signed-off-by: NGreg Thelen <gthelen@google.com>
      Reported-by: NWang Long <wanglong19@meituan.com>
      Acked-by: NWang Long <wanglong19@meituan.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Nicholas Piggin <npiggin@gmail.com>
      Cc: <stable@vger.kernel.org>	[v4.2+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2e898e4c
  21. 12 4月, 2018 2 次提交
    • M
      page cache: use xa_lock · b93b0163
      Matthew Wilcox 提交于
      Remove the address_space ->tree_lock and use the xa_lock newly added to
      the radix_tree_root.  Rename the address_space ->page_tree to ->i_pages,
      since we don't really care that it's a tree.
      
      [willy@infradead.org: fix nds32, fs/dax.c]
        Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.orgSigned-off-by: NMatthew Wilcox <mawilcox@microsoft.com>
      Acked-by: NJeff Layton <jlayton@redhat.com>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b93b0163
    • A
      mm/vmscan: don't mess with pgdat->flags in memcg reclaim · e3c1ac58
      Andrey Ryabinin 提交于
      memcg reclaim may alter pgdat->flags based on the state of LRU lists in
      cgroup and its children.  PGDAT_WRITEBACK may force kswapd to sleep
      congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem
      pages.  But the worst here is PGDAT_CONGESTED, since it may force all
      direct reclaims to stall in wait_iff_congested().  Note that only kswapd
      have powers to clear any of these bits.  This might just never happen if
      cgroup limits configured that way.  So all direct reclaims will stall as
      long as we have some congested bdi in the system.
      
      Leave all pgdat->flags manipulations to kswapd.  kswapd scans the whole
      pgdat, only kswapd can clear pgdat->flags once node is balanced, thus
      it's reasonable to leave all decisions about node state to kswapd.
      
      Why only kswapd? Why not allow to global direct reclaim change these
      flags? It is because currently only kswapd can clear these flags.  I'm
      less worried about the case when PGDAT_CONGESTED falsely not set, and
      more worried about the case when it falsely set.  If direct reclaimer
      sets PGDAT_CONGESTED, do we have guarantee that after the congestion
      problem is sorted out, kswapd will be woken up and clear the flag? It
      seems like there is no such guarantee.  E.g.  direct reclaimers may
      eventually balance pgdat and kswapd simply won't wake up (see
      wakeup_kswapd()).
      
      Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim
      now loses its congestion throttling mechanism.  Add per-cgroup
      congestion state and throttle cgroup2 reclaimers if memcg is in
      congestion state.
      
      Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY
      bits since they alter only kswapd behavior.
      
      The problem could be easily demonstrated by creating heavy congestion in
      one cgroup:
      
          echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control
          mkdir -p /sys/fs/cgroup/congester
          echo 512M > /sys/fs/cgroup/congester/memory.max
          echo $$ > /sys/fs/cgroup/congester/cgroup.procs
          /* generate a lot of diry data on slow HDD */
          while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &
          ....
          while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &
      
      and some job in another cgroup:
      
          mkdir /sys/fs/cgroup/victim
          echo 128M > /sys/fs/cgroup/victim/memory.max
      
          # time cat /dev/sda > /dev/null
          real    10m15.054s
          user    0m0.487s
          sys     1m8.505s
      
      According to the tracepoint in wait_iff_congested(), the 'cat' spent 50%
      of the time sleeping there.
      
      With the patch, cat don't waste time anymore:
      
          # time cat /dev/sda > /dev/null
          real    5m32.911s
          user    0m0.411s
          sys     0m56.664s
      
      [aryabinin@virtuozzo.com: congestion state should be per-node]
        Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com
      [ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[
        Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com
      Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.comSigned-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com>
      Reviewed-by: NShakeel Butt <shakeelb@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e3c1ac58
  22. 10 4月, 2018 1 次提交
  23. 18 1月, 2018 1 次提交
  24. 16 11月, 2017 2 次提交
  25. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318