- 21 12月, 2016 3 次提交
-
-
由 Arnd Bergmann 提交于
s3c64xx_cpufreq_config_regulator is incorrectly annotated as __init, since the caller is also not init: WARNING: vmlinux.o(.text+0x92fe1c): Section mismatch in reference from the function s3c64xx_cpufreq_driver_init() to the function .init.text:s3c64xx_cpufreq_config_regulator() With modern gcc versions, the function gets inline, so we don't see the warning, this only happens with gcc-4.6 and older. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NKrzysztof Kozlowski <krzk@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Boris Ostrovsky 提交于
Since CPU hotplug callbacks are requested for CPUHP_AP_ONLINE_DYN state, successful callback initialization will result in cpuhp_setup_state() returning a positive value. Therefore acpi_cpufreq_online being zero indicates that callbacks have not been installed. This means that acpi_cpufreq_boost_exit() should only remove them if acpi_cpufreq_online is positive. Trying to call cpuhp_remove_state_nocalls(0) will cause a BUG(). Signed-off-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Boris Ostrovsky 提交于
When ivoked with CPUHP_AP_ONLINE_DYN state __cpuhp_setup_state() is expected to return positive value which is the hotplug state that the routine assigns. Signed-off-by: NBoris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 13 12月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
-
- 08 12月, 2016 3 次提交
-
-
由 Srinivas Pandruvada 提交于
Updated documentation for the support of energy performance hint in the HWP mode. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Subject & changelog ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srinivas Pandruvada 提交于
It is possible to provide hints to the HWP algorithms in the processor to be more performance centric to more energy centric. These hints are provided by using HWP energy performance preference (EPP) or energy performance bias (EPB) settings. The scope of these settings is per logical processor, which means that each of the logical processors in the package can be programmed with a different value. This change provides cpufreq sysfs interface to provide hint. For each policy, two additional attributes will be available to check and provide hint. These attributes will only be present when the intel_pstate driver is using HWP mode. These attributes are: - energy_performance_available_preferences - energy_performance_preference To get list of supported hints: $ cat energy_performance_available_preferences default performance balance_performance balance_power power The current preference can be read or changed via cpufreq sysfs attribute "energy_performance_preference". Reading from this attribute will display current effective setting changed via any method. User can write any of the valid preference string to this attribute. User can always restore to power-on default by writing "default". Implementation Since these hints can be provided by direct MSR write or using some tools like x86_energy_perf_policy, the driver internally doesn't maintain any state. The user operation will result in direct read/write of MSR: 0x774 (HWP_REQUEST_MSR). Also driver use read modify write to update other fields in this MSR. Summary of changes: - struct cpudata field epp_saved is renamed to epp_powersave, as this stores the value to restore once policy is switched from performance to powersave to restore original powersave EPP value. - A new struct cpudata field epp_saved is used to store the raw MSR EPP/EPB value when a CPU goes offline or on suspend and restore on online/resume. This ensures that EPP value is restored to correct value irrespective of the means used to set. - EPP/EPB value ranges are fixed for each preference, which can be set for the cpufreq sysfs, so user request is mapped to/from this range. - New attributes are only added when HWP is present. - Since EPP value of 0 is valid the fields are initialized to -EINVAL when not valid. The field epp_default is read only once after powerup to avoid reading on subsequent CPU online operation - New suspend callback to store epp on suspend operation - Don't invalidate old epp_saved field on resume and online as now we can restore last epp value on suspend and this field can still have old EPP value sampled during switch to performance from powersave. - While here optimized setting of cpu_data->epp_powersave = epp in intel_pstate_hwp_set() as this was done in both true and false paths. - epp/epb set function returns error to caller on failure to pass on to user space for display. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srinivas Pandruvada 提交于
To avoid race conditions from multiple threads, increase the scope of intel_pstate_limits_lock to include HWP requests also. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> [ rjw: Subject ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 02 12月, 2016 1 次提交
-
-
由 Chen Yu 提交于
Currently the minimal up_threshold is 11, and user may want to use a smaller minimal up_threshold for performance tuning, so MIN_FREQUENCY_UP_THRESHOLD could be set to 1 because: 1. Current systems wouldn't be affected as they have already a value >= 11. 2. New systems with a default kernel would keep still the default value that is >= 11. Users now have the advantage that they can make their own decisions and customize the 'trip point' to switch to the max frequency. Link: https://bugzilla.kernel.org/show_bug.cgi?id=65501Signed-off-by: NChen Yu <yu.c.chen@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 12月, 2016 3 次提交
-
-
由 Piotr Luc 提交于
Add Knights Mill (KNM) to the list of CPUIDs supported by intel_pstate. Signed-off-by: NPiotr Luc <piotr.luc@intel.com> Reviewed-by: NDave Hansen <dave.hansen@intel.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The kernel Bugzilla is used for tracking cpufreq bugs, so document that. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NLen Brown <len.brown@intel.com>
-
由 Baoyou Xie 提交于
Add the compatible string for supporting the generic cpufreq driver on the ZTE's zx296718 SoC. Signed-off-by: NBaoyou Xie <baoyou.xie@linaro.org> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 11月, 2016 4 次提交
-
-
The online / pre_down callback is invoked on the target CPU since commit 1cf4f629 ("cpu/hotplug: Move online calls to hotplugged cpu") which means for the hotplug callback we can use rmdsrl() instead of rdmsr_on_cpus(). This leaves us with set_boost() as the only user which still needs to read/write the MSR on different CPUs. There is no point in doing that update on all cpus with the read modify write magic via per cpu data. We simply can issue a function call on all online CPUs which also means that we need half that many IPIs. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
Install the callbacks via the state machine. Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Arnd Bergmann 提交于
The addition of the generic governor support marked the intel_pstate_exit_perf_limits as inline(), which fixed a warning, but it introduced another warning: drivers/cpufreq/intel_pstate.c: In function ‘intel_pstate_exit_perf_limits’: drivers/cpufreq/intel_pstate.c:483:1: error: no return statement in function returning non-void [-Werror=return-type] This changes it back to a 'void' return type, and changes the corresponding intel_pstate_init_acpi_perf_limits() function to be inline as well for consistency. Fixes: 001c76f0 (cpufreq: intel_pstate: Generic governors support) Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srinivas Pandruvada 提交于
When user has selected performance policy, then set the EPP (Energy Performance Preference) or EPB (Energy Performance Bias) to maximum performance mode. Also when user switch back to powersave, then restore EPP/EPB to last EPP/EPB value before entering performance mode. If user has not changed EPP/EPB manually then it will be power on default value. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 25 11月, 2016 1 次提交
-
-
由 Viresh Kumar 提交于
This patch rectifies a comment present in sugov_irq_work() function to follow proper grammar. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 22 11月, 2016 2 次提交
-
-
由 Srinivas Pandruvada 提交于
Even with round up of limits->min_perf and limits->max_perf, in some cases resultant performance is 100 MHz less than the desired. For example when the maximum frequency is 3.50 GHz, setting scaling_min_frequency to 2.3 GHz always results in 2.2 GHz minimum. Currently the fixed floating point operation uses 8 bit precision for calculating limits->min_perf and limits->max_perf. For some operations in this driver the 14 bit precision is used. Using the 14 bit precision also for calculating limits->min_perf and limits->max_perf, addresses this issue. Introduced fp_ext_toint() equivalent to fp_toint() and int_ext_tofp() equivalent to int_tofp() with 14 bit precision. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srinivas Pandruvada 提交于
In some use cases, user wants to enforce a minimum performance limit on CPUs. But because of simple division the resultant performance is 100 MHz less than the desired in some cases. For example when the maximum frequency is 3.50 GHz, setting scaling_min_frequency to 1.6 GHz always results in 1.5 GHz minimum. With simple round up, the frequency can be set to 1.6 GHz to minimum in this case. This round up is already done to max_policy_pct and max_perf, so do the same for min_policy_pct and min_perf. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 11月, 2016 4 次提交
-
-
由 Rafael J. Wysocki 提交于
The return value of cpufreq_update_policy() is never used, so make it void. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The return value of acpi_processor_ppc_has_changed() is never used, so make it void. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
There are two places in the cpufreq core in which low-level driver callbacks may be invoked for an inactive cpufreq policy, which isn't guaranteed to work in general. Both are due to possible races with CPU offline. First, in cpufreq_get(), the policy may become inactive after the check against policy->cpus in cpufreq_cpu_get() and before policy->rwsem is acquired, in which case using it going forward may not be correct. Second, an analogous situation is possible in cpufreq_update_policy(). Avoid using inactive policies by adding policy_is_inactive() checks to the code in the above places. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
There may be reasons to use generic cpufreq governors (eg. schedutil) on Intel platforms instead of the intel_pstate driver's internal governor. However, that currently can only be done by disabling intel_pstate altogether and using the acpi-cpufreq driver instead of it, which is subject to limitations. First of all, acpi-cpufreq only works on systems where the _PSS object is present in the ACPI tables for all logical CPUs. Second, on those systems acpi-cpufreq will only use frequencies listed by _PSS which may be suboptimal. In particular, by convention, the whole turbo range is represented in _PSS as a single P-state and the frequency assigned to it is greater by 1 MHz than the greatest non-turbo frequency listed by _PSS. That may confuse governors to use turbo frequencies less frequently which may lead to suboptimal performance. For this reason, make it possible to use the intel_pstate driver with generic cpufreq governors as a "normal" cpufreq driver. That mode is enforced by adding intel_pstate=passive to the kernel command line and cannot be disabled at run time. In that mode, intel_pstate provides a cpufreq driver interface including the ->target() and ->fast_switch() callbacks and is listed in scaling_driver as "intel_cpufreq". Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NDoug Smythies <dsmythies@telus.net>
-
- 18 11月, 2016 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Currently, intel_pstate is unable to control P-states on my IvyBridge-based Acer Aspire S5, because they are controlled by SMM on that machine by default and it is necessary to request OS control of P-states from it via the SMI Command register exposed in the ACPI FADT. intel_pstate doesn't do that now, but acpi-cpufreq and other cpufreq drivers for x86 platforms do. Address this problem by making intel_pstate use the ACPI-defined mechanism as well. However, intel_pstate is not modular and it doesn't need the module refcount tricks played by acpi_processor_notify_smm(), so export the core of this function to it as acpi_processor_pstate_control() and make it call that. [The changes in processor_perflib.c related to this should not make any functional difference for the acpi_processor_notify_smm() users]. To be safe, only call acpi_processor_notify_smm() from intel_pstate if ACPI _PPC support is enabled in it. Suggested-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
-
- 17 11月, 2016 8 次提交
-
-
由 Geert Uytterhoeven 提交于
Add the compatible strings for supporting the generic cpufreq driver on the Renesas RZ/G1M (r8a7743) and RZ/G1E (r8a7745) SoCs. Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NSimon Horman <horms+renesas@verge.net.au> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Denis Kirjanov 提交于
With preemption turned on we can read incorrect throttling state while being switched to CPU on a different chip. BUG: using smp_processor_id() in preemptible [00000000] code: cat/7343 caller is .powernv_cpufreq_throttle_check+0x2c/0x710 CPU: 13 PID: 7343 Comm: cat Not tainted 4.8.0-rc5-dirty #1 Call Trace: [c0000007d25b75b0] [c000000000971378] .dump_stack+0xe4/0x150 (unreliable) [c0000007d25b7640] [c0000000005162e4] .check_preemption_disabled+0x134/0x150 [c0000007d25b76e0] [c0000000007b63ac] .powernv_cpufreq_throttle_check+0x2c/0x710 [c0000007d25b7790] [c0000000007b6d18] .powernv_cpufreq_target_index+0x288/0x360 [c0000007d25b7870] [c0000000007acee4] .__cpufreq_driver_target+0x394/0x8c0 [c0000007d25b7920] [c0000000007b22ac] .cpufreq_set+0x7c/0xd0 [c0000007d25b79b0] [c0000000007adf50] .store_scaling_setspeed+0x80/0xc0 [c0000007d25b7a40] [c0000000007ae270] .store+0xa0/0x100 [c0000007d25b7ae0] [c0000000003566e8] .sysfs_kf_write+0x88/0xb0 [c0000007d25b7b70] [c0000000003553b8] .kernfs_fop_write+0x178/0x260 [c0000007d25b7c10] [c0000000002ac3cc] .__vfs_write+0x3c/0x1c0 [c0000007d25b7cf0] [c0000000002ad584] .vfs_write+0xc4/0x230 [c0000007d25b7d90] [c0000000002aeef8] .SyS_write+0x58/0x100 [c0000007d25b7e30] [c00000000000bfec] system_call+0x38/0xfc Fixes: 09a972d1 (cpufreq: powernv: Report cpu frequency throttling) Reviewed-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NDenis Kirjanov <kda@linux-powerpc.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Execute the irq-work specific initialization/exit code only when the fast path isn't available. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
If slow path frequency changes are conducted in a SCHED_OTHER context then they may be delayed for some amount of time, including indefinitely, when real time or deadline activity is taking place. Move the slow path to a real time kernel thread. In the future the thread should be made SCHED_DEADLINE. The RT priority is arbitrarily set to 50 for now. Hackbench results on ARM Exynos, dual core A15 platform for 10 iterations: $ hackbench -s 100 -l 100 -g 10 -f 20 Before After --------------------------------- 1.808 1.603 1.847 1.251 2.229 1.590 1.952 1.600 1.947 1.257 1.925 1.627 2.694 1.620 1.258 1.621 1.919 1.632 1.250 1.240 Average: 1.8829 1.5041 Based on initial work by Steve Muckle. Signed-off-by: NSteve Muckle <smuckle.linux@gmail.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The fast_switch_enabled flag will be used by both sugov_policy_alloc() and sugov_policy_free() with a later patch. Prepare for that by moving the calls to enable and disable it to the beginning of sugov_init() and end of sugov_exit(). Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Switch to the more common practice of writing labels. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Stratos Karafotis 提交于
The original comment about the frequency increase to maximum is wrong. Both increase and decrease happen at steps. Signed-off-by: NStratos Karafotis <stratosk@semaphore.gr> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Stratos Karafotis 提交于
Conservative governor changes the CPU frequency in steps. That means that if a CPU runs at max frequency, it will need several sampling periods to return to min frequency when the workload is finished. If the update function that calculates the load and target frequency is deferred, the governor might need even more time to decrease the frequency. This may have impact to power consumption and after all conservative should decrease the frequency if there is no workload at every sampling rate. To resolve the above issue calculate the number of sampling periods that the update is deferred. Considering that for each sampling period conservative should drop the frequency by a freq_step because the CPU was idle apply the proper subtraction to requested frequency. Below, the kernel trace with and without this patch. First an intensive workload is applied on a specific CPU. Then the workload is removed and the CPU goes to idle. WITHOUT <idle>-0 [007] dN.. 620.329153: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 620.350857: cpu_frequency: state=1700000 cpu_id=7 kworker/7:2-556 [007] .... 620.370856: cpu_frequency: state=1900000 cpu_id=7 kworker/7:2-556 [007] .... 620.390854: cpu_frequency: state=2100000 cpu_id=7 kworker/7:2-556 [007] .... 620.411853: cpu_frequency: state=2200000 cpu_id=7 kworker/7:2-556 [007] .... 620.432854: cpu_frequency: state=2400000 cpu_id=7 kworker/7:2-556 [007] .... 620.453854: cpu_frequency: state=2600000 cpu_id=7 kworker/7:2-556 [007] .... 620.494856: cpu_frequency: state=2900000 cpu_id=7 kworker/7:2-556 [007] .... 620.515856: cpu_frequency: state=3100000 cpu_id=7 kworker/7:2-556 [007] .... 620.536858: cpu_frequency: state=3300000 cpu_id=7 kworker/7:2-556 [007] .... 620.557857: cpu_frequency: state=3401000 cpu_id=7 <idle>-0 [007] d... 669.591363: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 669.591939: cpu_idle: state=4294967295 cpu_id=7 <idle>-0 [007] d... 669.591980: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] dN.. 669.591989: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 670.201224: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 670.221975: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 670.222016: cpu_frequency: state=3300000 cpu_id=7 <idle>-0 [007] d... 670.222026: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 670.234964: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 670.801251: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.236046: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 671.236073: cpu_frequency: state=3100000 cpu_id=7 <idle>-0 [007] d... 671.236112: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.393437: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 671.401277: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.404083: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 671.404111: cpu_frequency: state=2900000 cpu_id=7 <idle>-0 [007] d... 671.404125: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.404974: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 671.501180: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.995414: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 671.995459: cpu_frequency: state=2800000 cpu_id=7 <idle>-0 [007] d... 671.995469: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 671.996287: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 672.001305: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.078374: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 672.078410: cpu_frequency: state=2600000 cpu_id=7 <idle>-0 [007] d... 672.078419: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.158020: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 672.158040: cpu_frequency: state=2400000 cpu_id=7 <idle>-0 [007] d... 672.158044: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.160038: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 672.234557: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.237121: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 672.237174: cpu_frequency: state=2100000 cpu_id=7 <idle>-0 [007] d... 672.237186: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.237778: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 672.267902: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.269860: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 672.269906: cpu_frequency: state=1900000 cpu_id=7 <idle>-0 [007] d... 672.269914: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.271902: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 672.751342: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 672.823056: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-556 [007] .... 672.823095: cpu_frequency: state=1600000 cpu_id=7 WITH <idle>-0 [007] dN.. 4380.928009: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-399 [007] .... 4380.949767: cpu_frequency: state=2000000 cpu_id=7 kworker/7:2-399 [007] .... 4380.969765: cpu_frequency: state=2200000 cpu_id=7 kworker/7:2-399 [007] .... 4381.009766: cpu_frequency: state=2500000 cpu_id=7 kworker/7:2-399 [007] .... 4381.029767: cpu_frequency: state=2600000 cpu_id=7 kworker/7:2-399 [007] .... 4381.049769: cpu_frequency: state=2800000 cpu_id=7 kworker/7:2-399 [007] .... 4381.069769: cpu_frequency: state=3000000 cpu_id=7 kworker/7:2-399 [007] .... 4381.089771: cpu_frequency: state=3100000 cpu_id=7 kworker/7:2-399 [007] .... 4381.109772: cpu_frequency: state=3400000 cpu_id=7 kworker/7:2-399 [007] .... 4381.129773: cpu_frequency: state=3401000 cpu_id=7 <idle>-0 [007] d... 4428.226159: cpu_idle: state=1 cpu_id=7 <idle>-0 [007] d... 4428.226176: cpu_idle: state=4294967295 cpu_id=7 <idle>-0 [007] d... 4428.226181: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4428.227177: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 4428.551640: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4428.649239: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-399 [007] .... 4428.649268: cpu_frequency: state=2800000 cpu_id=7 <idle>-0 [007] d... 4428.649278: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4428.689856: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 4428.799542: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4428.801683: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-399 [007] .... 4428.801748: cpu_frequency: state=1700000 cpu_id=7 <idle>-0 [007] d... 4428.801761: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4428.806545: cpu_idle: state=4294967295 cpu_id=7 ... <idle>-0 [007] d... 4429.051880: cpu_idle: state=4 cpu_id=7 <idle>-0 [007] d... 4429.086240: cpu_idle: state=4294967295 cpu_id=7 kworker/7:2-399 [007] .... 4429.086293: cpu_frequency: state=1600000 cpu_id=7 Without the patch the CPU dropped to min frequency after 3.2s With the patch applied the CPU dropped to min frequency after 0.86s Signed-off-by: NStratos Karafotis <stratosk@semaphore.gr> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 15 11月, 2016 3 次提交
-
-
由 Viresh Kumar 提交于
What's returned from this function is the delta by which the frequency must be increased or decreased and not the final frequency that should be selected. Name it properly to match its purpose. Also update the variables used to store that value. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Akshay Adiga 提交于
lpstate_idx remains uninitialized in the case when elapsed_time is greater than MAX_RAMP_DOWN_TIME. At the end of rampdown the global pstate should be equal to the local pstate. Fixes: 20b15b76 (cpufreq: powernv: Use PMCR to verify global and localpstate) Reported-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAkshay Adiga <akshay.adiga@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srinivas Pandruvada 提交于
Use get_target_pstate_use_cpu_load() to calculate target P-State for devices, with the preferred power management profile in ACPI FADT set to PM_MOBILE. This may help in resolving some thermal issues caused by low sustained cpu bound workloads. The current algorithm tend to over provision in this case as it doesn't look at the CPU busyness. Also included the fix from Arnd Bergmann <arnd@arndb.de> to solve compile issue, when CONFIG_ACPI is not defined. Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 14 11月, 2016 6 次提交
-
-
由 Linus Torvalds 提交于
-
git://git.kernel.org/pub/scm/virt/kvm/kvm由 Linus Torvalds 提交于
Pull KVM fixes from Paolo Bonzini: "ARM fixes. There are a couple pending x86 patches but they'll have to wait for next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: arm/arm64: vgic: Kick VCPUs when queueing already pending IRQs KVM: arm/arm64: vgic: Prevent access to invalid SPIs arm/arm64: KVM: Perform local TLB invalidation when multiplexing vcpus on a single CPU
-
由 Linus Torvalds 提交于
Merge media fixes from Mauro Carvalho Chehab: "This contains two patches fixing problems with my patch series meant to make USB drivers to work again after the DMA on stack changes. The last patch on this series is actually not related to DMA on stack. It solves a longstanding bug affecting module unload, causing module_put() to be called twice. It was reported by the user who reported and tested the issues with the gp8psk driver with the DMA fixup patches. As we're late at -rc cycle, maybe you prefer to not apply it right now. If this is the case, I'll add to the pile of patches for 4.10. Exceptionally this time, I'm sending the patches via e-mail, because I'm on another trip, and won't be able to use the usual procedure until Monday. Also, it is only three patches, and you followed already the discussions about the first one" * emailed patches from Mauro Carvalho Chehab <mchehab@osg.samsung.com>: gp8psk: Fix DVB frontend attach gp8psk: fix gp8psk_usb_in_op() logic dvb-usb: move data_mutex to struct dvb_usb_device
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc由 Linus Torvalds 提交于
Pull char/misc fixes from Greg KH: "Here are three small driver fixes for some reported issues for 4.9-rc5. One for the hyper-v subsystem, fixing up a naming issue that showed up in 4.9-rc1, one mei driver fix, and one fix for parallel ports, resolving a reported regression. All have been in linux-next with no reported issues" * tag 'char-misc-4.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: ppdev: fix double-free of pp->pdev->name vmbus: make sysfs names consistent with PCI mei: bus: fix received data size check in NFC fixup
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core由 Linus Torvalds 提交于
Pull driver core fixes from Greg KH: "Here are two driver core fixes for 4.9-rc5. The first resolves an issue with some drivers not liking to be unbound and bound again (if CONFIG_DEBUG_TEST_DRIVER_REMOVE is enabled), which solves some reported problems with graphics and storage drivers. The other resolves a smatch error with the 4.9-rc1 driver core changes around this feature. Both have been in linux-next with no reported issues" * tag 'driver-core-4.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: driver core: fix smatch warning on dev->bus check driver core: skip removal test for non-removable drivers
-
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging由 Linus Torvalds 提交于
Pull staging/IIO fixes from Grek KH: "Here are a few small staging and iio driver fixes for reported issues. The last one was cherry-picked from my -next branch to resolve a build warning that Arnd fixed, in his quest to be able to turn -Wmaybe-uninitialized back on again. That patch, and all of the others, have been in linux-next for a while with no reported issues" * tag 'staging-4.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: iio: maxim_thermocouple: detect invalid storage size in read() staging: nvec: remove managed resource from PS2 driver Revert "staging: nvec: ps2: change serio type to passthrough" drivers: staging: nvec: remove bogus reset command for PS/2 interface staging: greybus: arche-platform: fix device reference leak staging: comedi: ni_tio: fix buggy ni_tio_clock_period_ps() return value staging: sm750fb: Fix bugs introduced by early commits iio: hid-sensors: Increase the precision of scale to fix wrong reading interpretation. iio: orientation: hid-sensor-rotation: Add PM function (fix non working driver) iio: st_sensors: fix scale configuration for h3lis331dl staging: iio: ad5933: avoid uninitialized variable in error case
-