- 21 11月, 2016 1 次提交
-
-
由 Paul Mackerras 提交于
When switching from/to a guest that has a transaction in progress, we need to save/restore the checkpointed register state. Although XER is part of the CPU state that gets checkpointed, the code that does this saving and restoring doesn't save/restore XER. This fixes it by saving and restoring the XER. To allow userspace to read/write the checkpointed XER value, we also add a new ONE_REG specifier. The visible effect of this bug is that the guest may see its XER value being corrupted when it uses transactions. Fixes: e4e38121 ("KVM: PPC: Book3S HV: Add transactional memory support") Fixes: 0a8eccef ("KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit") Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org> Reviewed-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 27 9月, 2016 1 次提交
-
-
由 Paul Mackerras 提交于
POWER8 has one virtual timebase (VTB) register per subcore, not one per CPU thread. The HV KVM code currently treats VTB as a per-thread register, which can lead to spurious soft lockup messages from guests which use the VTB as the time source for the soft lockup detector. (CPUs before POWER8 did not have the VTB register.) For HV KVM, this fixes the problem by making only the primary thread in each virtual core save and restore the VTB value. With this, the VTB state becomes part of the kvmppc_vcore structure. This also means that "piggybacking" of multiple virtual cores onto one subcore is not possible on POWER8, because then the virtual cores would share a single VTB register. PR KVM emulates a VTB register, which is per-vcpu because PR KVM has no notion of CPU threads or SMT. For PR KVM we move the VTB state into the kvmppc_vcpu_book3s struct. Cc: stable@vger.kernel.org # v3.14+ Reported-by: NThomas Huth <thuth@redhat.com> Tested-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 12 9月, 2016 2 次提交
-
-
由 Suresh Warrier 提交于
In existing real mode ICP code, when updating the virtual ICP state, if there is a required action that cannot be completely handled in real mode, as for instance, a VCPU needs to be woken up, flags are set in the ICP to indicate the required action. This is checked when returning from hypercalls to decide whether the call needs switch back to the host where the action can be performed in virtual mode. Note that if h_ipi_redirect is enabled, real mode code will first try to message a free host CPU to complete this job instead of returning the host to do it ourselves. Currently, the real mode PCI passthrough interrupt handling code checks if any of these flags are set and simply returns to the host. This is not good enough as the trap value (0x500) is treated as an external interrupt by the host code. It is only when the trap value is a hypercall that the host code searches for and acts on unfinished work by calling kvmppc_xics_rm_complete. This patch introduces a special trap BOOK3S_INTERRUPT_HV_RM_HARD which is returned by KVM if there is unfinished business to be completed in host virtual mode after handling a PCI passthrough interrupt. The host checks for this special interrupt condition and calls into the kvmppc_xics_rm_complete, which is made an exported function for this reason. [paulus@ozlabs.org - moved logic to set r12 to BOOK3S_INTERRUPT_HV_RM_HARD in book3s_hv_rmhandlers.S into the end of kvmppc_check_wake_reason.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Suresh Warrier 提交于
Currently, KVM switches back to the host to handle any external interrupt (when the interrupt is received while running in the guest). This patch updates real-mode KVM to check if an interrupt is generated by a passthrough adapter that is owned by this guest. If so, the real mode KVM will directly inject the corresponding virtual interrupt to the guest VCPU's ICS and also EOI the interrupt in hardware. In short, the interrupt is handled entirely in real mode in the guest context without switching back to the host. In some rare cases, the interrupt cannot be completely handled in real mode, for instance, a VCPU that is sleeping needs to be woken up. In this case, KVM simply switches back to the host with trap reason set to 0x500. This works, but it is clearly not very efficient. A following patch will distinguish this case and handle it correctly in the host. Note that we can use the existing check_too_hard() routine even though we are not in a hypercall to determine if there is unfinished business that needs to be completed in host virtual mode. The patch assumes that the mapping between hardware interrupt IRQ and virtual IRQ to be injected to the guest already exists for the PCI passthrough interrupts that need to be handled in real mode. If the mapping does not exist, KVM falls back to the default existing behavior. The KVM real mode code reads mappings from the mapped array in the passthrough IRQ map without taking any lock. We carefully order the loads and stores of the fields in the kvmppc_irq_map data structure using memory barriers to avoid an inconsistent mapping being seen by the reader. Thus, although it is possible to miss a map entry, it is not possible to read a stale value. [paulus@ozlabs.org - get irq_chip from irq_map rather than pimap, pulled out powernv eoi change into a separate patch, made kvmppc_read_intr get the vcpu from the paca rather than being passed in, rewrote the logic at the end of kvmppc_read_intr to avoid deep indentation, simplified logic in book3s_hv_rmhandlers.S since we were always restoring SRR0/1 anyway, get rid of the cached array (just use the mapped array), removed the kick_all_cpus_sync() call, clear saved_xirr PACA field when we handle the interrupt in real mode, fix compilation with CONFIG_KVM_XICS=n.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 09 9月, 2016 1 次提交
-
-
由 Suresh Warrier 提交于
Modify kvmppc_read_intr to make it a C function. Because it is called from kvmppc_check_wake_reason, any of the assembler code that calls either kvmppc_read_intr or kvmppc_check_wake_reason now has to assume that the volatile registers might have been modified. This also adds in the optimization of clearing saved_xirr in the case where we completely handle and EOI an IPI. Without this, the next device interrupt will require two trips through the host interrupt handling code. [paulus@ozlabs.org - made kvmppc_check_wake_reason create a stack frame when it is calling kvmppc_read_intr, which means we can set r12 to the trap number (0x500) after the call to kvmppc_read_intr, instead of using r31. Also moved the deliver_guest_interrupt label so as to restore XER and CTR, plus other minor tweaks.] Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 28 7月, 2016 2 次提交
-
-
由 Paul Mackerras 提交于
It turns out that if the guest does a H_CEDE while the CPU is in a transactional state, and the H_CEDE does a nap, and the nap loses the architected state of the CPU (which is is allowed to do), then we lose the checkpointed state of the virtual CPU. In addition, the transactional-memory state recorded in the MSR gets reset back to non-transactional, and when we try to return to the guest, we take a TM bad thing type of program interrupt because we are trying to transition from non-transactional to transactional with a hrfid instruction, which is not permitted. The result of the program interrupt occurring at that point is that the host CPU will hang in an infinite loop with interrupts disabled. Thus this is a denial of service vulnerability in the host which can be triggered by any guest (and depending on the guest kernel, it can potentially triggered by unprivileged userspace in the guest). This vulnerability has been assigned the ID CVE-2016-5412. To fix this, we save the TM state before napping and restore it on exit from the nap, when handling a H_CEDE in real mode. The case where H_CEDE exits to host virtual mode is already OK (as are other hcalls which exit to host virtual mode) because the exit path saves the TM state. Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
由 Paul Mackerras 提交于
This moves the transactional memory state save and restore sequences out of the guest entry/exit paths into separate procedures. This is so that these sequences can be used in going into and out of nap in a subsequent patch. The only code changes here are (a) saving and restore LR on the stack, since these new procedures get called with a bl instruction, (b) explicitly saving r1 into the PACA instead of assuming that HSTATE_HOST_R1(r13) is already set, and (c) removing an unnecessary and redundant setting of MSR[TM] that should have been removed by commit 9d4d0bdd9e0a ("KVM: PPC: Book3S HV: Add transactional memory support", 2013-09-24) but wasn't. Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 15 7月, 2016 1 次提交
-
-
由 Shreyas B. Prabhu 提交于
Functions like power7_wakeup_loss, power7_wakeup_noloss, power7_wakeup_tb_loss are used by POWER7 and POWER8 hardware. They can also be used by POWER9. Hence rename these functions hardware agnostic names. Suggested-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NShreyas B. Prabhu <shreyas@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 20 6月, 2016 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
When a guest is assigned to a core it converts the host Timebase (TB) into guest TB by adding guest timebase offset before entering into guest. During guest exit it restores the guest TB to host TB. This means under certain conditions (Guest migration) host TB and guest TB can differ. When we get an HMI for TB related issues the opal HMI handler would try fixing errors and restore the correct host TB value. With no guest running, we don't have any issues. But with guest running on the core we run into TB corruption issues. If we get an HMI while in the guest, the current HMI handler invokes opal hmi handler before forcing guest to exit. The guest exit path subtracts the guest TB offset from the current TB value which may have already been restored with host value by opal hmi handler. This leads to incorrect host and guest TB values. With split-core, things become more complex. With split-core, TB also gets split and each subcore gets its own TB register. When a hmi handler fixes a TB error and restores the TB value, it affects all the TB values of sibling subcores on the same core. On TB errors all the thread in the core gets HMI. With existing code, the individual threads call opal hmi handle independently which can easily throw TB out of sync if we have guest running on subcores. Hence we will need to co-ordinate with all the threads before making opal hmi handler call followed by TB resync. This patch introduces a sibling subcore state structure (shared by all threads in the core) in paca which holds information about whether sibling subcores are in Guest mode or host mode. An array in_guest[] of size MAX_SUBCORE_PER_CORE=4 is used to maintain the state of each subcore. The subcore id is used as index into in_guest[] array. Only primary thread entering/exiting the guest is responsible to set/unset its designated array element. On TB error, we get HMI interrupt on every thread on the core. Upon HMI, this patch will now force guest to vacate the core/subcore. Primary thread from each subcore will then turn off its respective bit from the above bitmap during the guest exit path just after the guest->host partition switch is complete. All other threads that have just exited the guest OR were already in host will wait until all other subcores clears their respective bit. Once all the subcores turn off their respective bit, all threads will will make call to opal hmi handler. It is not necessary that opal hmi handler would resync the TB value for every HMI interrupts. It would do so only for the HMI caused due to TB errors. For rest, it would not touch TB value. Hence to make things simpler, primary thread would call TB resync explicitly once for each core immediately after opal hmi handler instead of subtracting guest offset from TB. TB resync call will restore the TB with host value. Thus we can be sure about the TB state. One of the primary threads exiting the guest will take up the responsibility of calling TB resync. It will use one of the top bits (bit 63) from subcore state flags bitmap to make the decision. The first primary thread (among the subcores) that is able to set the bit will have to call the TB resync. Rest all other threads will wait until TB resync is complete. Once TB resync is complete all threads will then proceed. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
-
- 22 3月, 2016 1 次提交
-
-
由 Alexey Kardashevskiy 提交于
Upcoming in-kernel VFIO acceleration needs different handling in real and virtual modes which makes it hard to support both modes in the same handler. This creates a copy of kvmppc_rm_h_stuff_tce and kvmppc_rm_h_put_tce in addition to the existing kvmppc_rm_h_put_tce_indirect. This also fixes linker breakage when only PR KVM was selected (leaving HV KVM off): the kvmppc_h_put_tce/kvmppc_h_stuff_tce functions would not compile at all and the linked would fail. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 3月, 2016 1 次提交
-
-
由 Paul Mackerras 提交于
Thomas Huth discovered that a guest could cause a hard hang of a host CPU by setting the Instruction Authority Mask Register (IAMR) to a suitable value. It turns out that this is because when the code was added to context-switch the new special-purpose registers (SPRs) that were added in POWER8, we forgot to add code to ensure that they were restored to a sane value on guest exit. This adds code to set those registers where a bad value could compromise the execution of the host kernel to a suitable neutral value on guest exit. Cc: stable@vger.kernel.org # v3.14+ Fixes: b005255eReported-by: NThomas Huth <thuth@redhat.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 03 3月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
No code changes. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 16 2月, 2016 1 次提交
-
-
由 Alexey Kardashevskiy 提交于
This adds real and virtual mode handlers for the H_PUT_TCE_INDIRECT and H_STUFF_TCE hypercalls for user space emulated devices such as IBMVIO devices or emulated PCI. These calls allow adding multiple entries (up to 512) into the TCE table in one call which saves time on transition between kernel and user space. The current implementation of kvmppc_h_stuff_tce() allows it to be executed in both real and virtual modes so there is one helper. The kvmppc_rm_h_put_tce_indirect() needs to translate the guest address to the host address and since the translation is different, there are 2 helpers - one for each mode. This implements the KVM_CAP_PPC_MULTITCE capability. When present, the kernel will try handling H_PUT_TCE_INDIRECT and H_STUFF_TCE if these are enabled by the userspace via KVM_CAP_PPC_ENABLE_HCALL. If they can not be handled by the kernel, they are passed on to the user space. The user space still has to have an implementation for these. Both HV and PR-syle KVM are supported. Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 09 12月, 2015 2 次提交
-
-
由 Thomas Huth 提交于
In the old DABR register, the BT (Breakpoint Translation) bit is bit number 61. In the new DAWRX register, the WT (Watchpoint Translation) bit is bit number 59. So to move the DABR-BT bit into the position of the DAWRX-WT bit, it has to be shifted by two, not only by one. This fixes hardware watchpoints in gdb of older guests that only use the H_SET_DABR/X interface instead of the new H_SET_MODE interface. Cc: stable@vger.kernel.org # v3.14+ Signed-off-by: NThomas Huth <thuth@redhat.com> Reviewed-by: NLaurent Vivier <lvivier@redhat.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Paul Mackerras 提交于
As we saw with the TM Bad Thing type of program interrupt occurring on the hrfid that enters the guest, it is not completely impossible to have a trap occurring in the guest entry/exit code, despite the fact that the code has been written to avoid taking any traps. This adds a check in the kvmppc_handle_exit_hv() function to detect the case when a trap has occurred in the hypervisor-mode code, and instead of treating it just like a trap in guest code, we now print a message and return to userspace with a KVM_EXIT_INTERNAL_ERROR exit reason. Of the various interrupts that get handled in the assembly code in the guest exit path and that can return directly to the guest, the only one that can occur when MSR.HV=1 and MSR.EE=0 is machine check (other than system call, which we can avoid just by not doing a sc instruction). Therefore this adds code to the machine check path to ensure that if the MCE occurred in hypervisor mode, we exit to the host rather than trying to continue the guest. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 06 11月, 2015 1 次提交
-
-
由 Paul Mackerras 提交于
When handling a hypervisor data or instruction storage interrupt (HDSI or HISI), we look up the SLB entry for the address being accessed in order to translate the effective address to a virtual address which can be looked up in the guest HPT. This lookup can occasionally fail due to the guest replacing an SLB entry without invalidating the evicted SLB entry. In this situation an ERAT (effective to real address translation cache) entry can persist and be used by the hardware even though there is no longer a corresponding SLB entry. Previously we would just deliver a data or instruction storage interrupt (DSI or ISI) to the guest in this case. However, this is not correct and has been observed to cause guests to crash, typically with a data storage protection interrupt on a store to the vmemmap area. Instead, what we do now is to synthesize a data or instruction segment interrupt. That should cause the guest to reload an appropriate entry into the SLB and retry the faulting instruction. If it still faults, we should find an appropriate SLB entry next time and be able to handle the fault. Tested-by: NThomas Huth <thuth@redhat.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 21 10月, 2015 1 次提交
-
-
由 Gautham R. Shenoy 提交于
Currently a CPU running a guest can receive a H_DOORBELL in the following two cases: 1) When the CPU is napping due to CEDE or there not being a guest vcpu. 2) The CPU is running the guest vcpu. Case 1), the doorbell message is not cleared since we were waking up from nap. Hence when the EE bit gets set on transition from guest to host, the H_DOORBELL interrupt is delivered to the host and the corresponding handler is invoked. However in Case 2), the message gets cleared by the action of taking the H_DOORBELL interrupt. Since the CPU was running a guest, instead of invoking the doorbell handler, the code invokes the second-level interrupt handler to switch the context from the guest to the host. At this point the setting of the EE bit doesn't result in the CPU getting the doorbell interrupt since it has already been delivered once. So, the handler for this doorbell is never invoked! This causes softlockups if the missed DOORBELL was an IPI sent from a sibling subcore on the same CPU. This patch fixes it by explitly invoking the doorbell handler on the exit path if the exit reason is H_DOORBELL similar to the way an EXTERNAL interrupt is handled. Since this will also handle Case 1), we can unconditionally clear the doorbell message in kvmppc_check_wake_reason. Signed-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 16 10月, 2015 1 次提交
-
-
由 Mahesh Salgaonkar 提交于
For the machine check interrupt that happens while we are in the guest, kvm layer attempts the recovery, and then delivers the machine check interrupt directly to the guest if recovery fails. On successful recovery we go back to normal functioning of the guest. But there can be cases where a machine check interrupt can happen with MSR(RI=0) while we are in the guest. This means MC interrupt is unrecoverable and we have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. The current implementation do not handle this case, causing guest to crash with Bad kernel stack pointer instead of machine check oops message. [26281.490060] Bad kernel stack pointer 3fff9ccce5b0 at c00000000000490c [26281.490434] Oops: Bad kernel stack pointer, sig: 6 [#1] [26281.490472] SMP NR_CPUS=2048 NUMA pSeries This patch fixes this issue by checking MSR(RI=0) in KVM layer and forwarding unrecoverable interrupt to guest which then panics with proper machine check Oops message. Signed-off-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Acked-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 21 9月, 2015 1 次提交
-
-
由 Gautham R. Shenoy 提交于
In guest_exit_cont we call kvmhv_commence_exit which expects the trap number as the argument. However r3 doesn't contain the trap number at this point and as a result we would be calling the function with a spurious trap number. Fix this by copying r12 into r3 before calling kvmhv_commence_exit as r12 contains the trap number. Cc: stable@vger.kernel.org # v4.1+ Fixes: eddb60fbSigned-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 03 9月, 2015 2 次提交
-
-
由 Gautham R. Shenoy 提交于
The code that handles the case when we receive a H_DOORBELL interrupt has a comment which says "Hypervisor doorbell - exit only if host IPI flag set". However, the current code does not actually check if the host IPI flag is set. This is due to a comparison instruction that got missed. As a result, the current code performs the exit to host only if some sibling thread or a sibling sub-core is exiting to the host. This implies that, an IPI sent to a sibling core in (subcores-per-core != 1) mode will be missed by the host unless the sibling core is on the exit path to the host. This patch adds the missing comparison operation which will ensure that when HOST_IPI flag is set, we unconditionally exit to the host. Fixes: 66feed61 Cc: stable@vger.kernel.org # v4.1+ Signed-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Gautham R. Shenoy 提交于
The current dynamic micro-threading code has a race due to which a secondary thread naps when it is supposed to be running a vcpu. As a side effect of this, on a guest exit, the primary thread in kvmppc_wait_for_nap() finds that this secondary thread hasn't cleared its vcore pointer. This results in "CPU X seems to be stuck!" warnings. The race is possible since the primary thread on exiting the guests only waits for all the secondaries to clear its vcore pointer. It subsequently expects the secondary threads to enter nap while it unsplits the core. A secondary thread which hasn't yet entered the nap will loop in kvm_no_guest until its vcore pointer and the do_nap flag are unset. Once the core has been unsplit, a new vcpu thread can grab the core and set the do_nap flag *before* setting the vcore pointers of the secondary. As a result, the secondary thread will now enter nap via kvm_unsplit_nap instead of running the guest vcpu. Fix this by setting the do_nap flag after setting the vcore pointer in the PACA of the secondary in kvmppc_run_core. Also, ensure that a secondary thread doesn't nap in kvm_unsplit_nap when the vcore pointer in its PACA struct is set. Fixes: b4deba5cSigned-off-by: NGautham R. Shenoy <ego@linux.vnet.ibm.com> Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 22 8月, 2015 4 次提交
-
-
由 Sam bobroff 提交于
In 64 bit kernels, the Fixed Point Exception Register (XER) is a 64 bit field (e.g. in kvm_regs and kvm_vcpu_arch) and in most places it is accessed as such. This patch corrects places where it is accessed as a 32 bit field by a 64 bit kernel. In some cases this is via a 32 bit load or store instruction which, depending on endianness, will cause either the lower or upper 32 bits to be missed. In another case it is cast as a u32, causing the upper 32 bits to be cleared. This patch corrects those places by extending the access methods to 64 bits. Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Reviewed-by: NLaurent Vivier <lvivier@redhat.com> Reviewed-by: NThomas Huth <thuth@redhat.com> Tested-by: NThomas Huth <thuth@redhat.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds implementations for the H_CLEAR_REF (test and clear reference bit) and H_CLEAR_MOD (test and clear changed bit) hypercalls. When clearing the reference or change bit in the guest view of the HPTE, we also have to clear it in the real HPTE so that we can detect future references or changes. When we do so, we transfer the R or C bit value to the rmap entry for the underlying host page so that kvm_age_hva_hv(), kvm_test_age_hva_hv() and kvmppc_hv_get_dirty_log() know that the page has been referenced and/or changed. These hypercalls are not used by Linux guests. These implementations have been tested using a FreeBSD guest. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This builds on the ability to run more than one vcore on a physical core by using the micro-threading (split-core) modes of the POWER8 chip. Previously, only vcores from the same VM could be run together, and (on POWER8) only if they had just one thread per core. With the ability to split the core on guest entry and unsplit it on guest exit, we can run up to 8 vcpu threads from up to 4 different VMs, and we can run multiple vcores with 2 or 4 vcpus per vcore. Dynamic micro-threading is only available if the static configuration of the cores is whole-core mode (unsplit), and only on POWER8. To manage this, we introduce a new kvm_split_mode struct which is shared across all of the subcores in the core, with a pointer in the paca on each thread. In addition we extend the core_info struct to have information on each subcore. When deciding whether to add a vcore to the set already on the core, we now have two possibilities: (a) piggyback the vcore onto an existing subcore, or (b) start a new subcore. Currently, when any vcpu needs to exit the guest and switch to host virtual mode, we interrupt all the threads in all subcores and switch the core back to whole-core mode. It may be possible in future to allow some of the subcores to keep executing in the guest while subcore 0 switches to the host, but that is not implemented in this patch. This adds a module parameter called dynamic_mt_modes which controls which micro-threading (split-core) modes the code will consider, as a bitmap. In other words, if it is 0, no micro-threading mode is considered; if it is 2, only 2-way micro-threading is considered; if it is 4, only 4-way, and if it is 6, both 2-way and 4-way micro-threading mode will be considered. The default is 6. With this, we now have secondary threads which are the primary thread for their subcore and therefore need to do the MMU switch. These threads will need to be started even if they have no vcpu to run, so we use the vcore pointer in the PACA rather than the vcpu pointer to trigger them. It is now possible for thread 0 to find that an exit has been requested before it gets to switch the subcore state to the guest. In that case we haven't added the guest's timebase offset to the timebase, so we need to be careful not to subtract the offset in the guest exit path. In fact we just skip the whole path that switches back to host context, since we haven't switched to the guest context. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When running a virtual core of a guest that is configured with fewer threads per core than the physical cores have, the extra physical threads are currently unused. This makes it possible to use them to run one or more other virtual cores from the same guest when certain conditions are met. This applies on POWER7, and on POWER8 to guests with one thread per virtual core. (It doesn't apply to POWER8 guests with multiple threads per vcore because they require a 1-1 virtual to physical thread mapping in order to be able to use msgsndp and the TIR.) The idea is that we maintain a list of preempted vcores for each physical cpu (i.e. each core, since the host runs single-threaded). Then, when a vcore is about to run, it checks to see if there are any vcores on the list for its physical cpu that could be piggybacked onto this vcore's execution. If so, those additional vcores are put into state VCORE_PIGGYBACK and their runnable VCPU threads are started as well as the original vcore, which is called the master vcore. After the vcores have exited the guest, the extra ones are put back onto the preempted list if any of their VCPUs are still runnable and not idle. This means that vcpu->arch.ptid is no longer necessarily the same as the physical thread that the vcpu runs on. In order to make it easier for code that wants to send an IPI to know which CPU to target, we now store that in a new field in struct vcpu_arch, called thread_cpu. Reviewed-by: NDavid Gibson <david@gibson.dropbear.id.au> Tested-by: NLaurent Vivier <lvivier@redhat.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 07 6月, 2015 1 次提交
-
-
由 Anshuman Khandual 提交于
PACA_DSCR offset macro tracks dscr_default element in the paca structure. Better change the name of this macro to match that of the data element it tracks. Makes the code more readable. Signed-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 21 4月, 2015 10 次提交
-
-
由 Paul Mackerras 提交于
This uses msgsnd where possible for signalling other threads within the same core on POWER8 systems, rather than IPIs through the XICS interrupt controller. This includes waking secondary threads to run the guest, the interrupts generated by the virtual XICS, and the interrupts to bring the other threads out of the guest when exiting. Aggregated statistics from debugfs across vcpus for a guest with 32 vcpus, 8 threads/vcore, running on a POWER8, show this before the change: rm_entry: 3387.6ns (228 - 86600, 1008969 samples) rm_exit: 4561.5ns (12 - 3477452, 1009402 samples) rm_intr: 1660.0ns (12 - 553050, 3600051 samples) and this after the change: rm_entry: 3060.1ns (212 - 65138, 953873 samples) rm_exit: 4244.1ns (12 - 9693408, 954331 samples) rm_intr: 1342.3ns (12 - 1104718, 3405326 samples) for a test of booting Fedora 20 big-endian to the login prompt. The time taken for a H_PROD hcall (which is handled in the host kernel) went down from about 35 microseconds to about 16 microseconds with this change. The noinline added to kvmppc_run_core turned out to be necessary for good performance, at least with gcc 4.9.2 as packaged with Fedora 21 and a little-endian POWER8 host. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This replaces the assembler code for kvmhv_commence_exit() with C code in book3s_hv_builtin.c. It also moves the IPI sending code that was in book3s_hv_rm_xics.c into a new kvmhv_rm_send_ipi() function so it can be used by kvmhv_commence_exit() as well as icp_rm_set_vcpu_irq(). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
On entry to the guest, secondary threads now wait for the primary to switch the MMU after loading up most of their state, rather than before. This means that the secondary threads get into the guest sooner, in the common case where the secondary threads get to kvmppc_hv_entry before the primary thread. On exit, the first thread out increments the exit count and interrupts the other threads (to get them out of the guest) before saving most of its state, rather than after. That means that the other threads exit sooner and means that the first thread doesn't spend so much time waiting for the other threads at the point where the MMU gets switched back to the host. This pulls out the code that increments the exit count and interrupts other threads into a separate function, kvmhv_commence_exit(). This also makes sure that r12 and vcpu->arch.trap are set correctly in some corner cases. Statistics from /sys/kernel/debug/kvm/vm*/vcpu*/timings show the improvement. Aggregating across vcpus for a guest with 32 vcpus, 8 threads/vcore, running on a POWER8, gives this before the change: rm_entry: avg 4537.3ns (222 - 48444, 1068878 samples) rm_exit: avg 4787.6ns (152 - 165490, 1010717 samples) rm_intr: avg 1673.6ns (12 - 341304, 3818691 samples) and this after the change: rm_entry: avg 3427.7ns (232 - 68150, 1118921 samples) rm_exit: avg 4716.0ns (12 - 150720, 1119477 samples) rm_intr: avg 1614.8ns (12 - 522436, 3850432 samples) showing a substantial reduction in the time spent per guest entry in the real-mode guest entry code, and smaller reductions in the real mode guest exit and interrupt handling times. (The test was to start the guest and boot Fedora 20 big-endian to the login prompt.) Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, the entry_exit_count field in the kvmppc_vcore struct contains two 8-bit counts, one of the threads that have started entering the guest, and one of the threads that have started exiting the guest. This changes it to an entry_exit_map field which contains two bitmaps of 8 bits each. The advantage of doing this is that it gives us a bitmap of which threads need to be signalled when exiting the guest. That means that we no longer need to use the trick of setting the HDEC to 0 to pull the other threads out of the guest, which led in some cases to a spurious HDEC interrupt on the next guest entry. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This arranges for threads that are napping due to their vcpu having ceded or due to not having a vcpu to wake up at the end of the guest's timeslice without having to be poked with an IPI. We do that by arranging for the decrementer to contain a value no greater than the number of timebase ticks remaining until the end of the timeslice. In the case of a thread with no vcpu, this number is in the hypervisor decrementer already. In the case of a ceded vcpu, we use the smaller of the HDEC value and the DEC value. Using the DEC like this when ceded means we need to save and restore the guest decrementer value around the nap. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When running a multi-threaded guest and vcpu 0 in a virtual core is not running in the guest (i.e. it is busy elsewhere in the host), thread 0 of the physical core will switch the MMU to the guest and then go to nap mode in the code at kvm_do_nap. If the guest sends an IPI to thread 0 using the msgsndp instruction, that will wake up thread 0 and cause all the threads in the guest to exit to the host unnecessarily. To avoid the unnecessary exit, this arranges for the PECEDP bit to be cleared in this situation. When napping due to a H_CEDE from the guest, we still set PECEDP so that the thread will wake up on an IPI sent using msgsndp. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
We can tell when a secondary thread has finished running a guest by the fact that it clears its kvm_hstate.kvm_vcpu pointer, so there is no real need for the nap_count field in the kvmppc_vcore struct. This changes kvmppc_wait_for_nap to poll the kvm_hstate.kvm_vcpu pointers of the secondary threads rather than polling vc->nap_count. Besides reducing the size of the kvmppc_vcore struct by 8 bytes, this also means that we can tell which secondary threads have got stuck and thus print a more informative error message. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
* Remove unused kvmppc_vcore::n_busy field. * Remove setting of RMOR, since it was only used on PPC970 and the PPC970 KVM support has been removed. * Don't use r1 or r2 in setting the runlatch since they are conventionally reserved for other things; use r0 instead. * Streamline the code a little and remove the ext_interrupt_to_host label. * Add some comments about register usage. * hcall_try_real_mode doesn't need to be global, and can't be called from C code anyway. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This reads the timebase at various points in the real-mode guest entry/exit code and uses that to accumulate total, minimum and maximum time spent in those parts of the code. Currently these times are accumulated per vcpu in 5 parts of the code: * rm_entry - time taken from the start of kvmppc_hv_entry() until just before entering the guest. * rm_intr - time from when we take a hypervisor interrupt in the guest until we either re-enter the guest or decide to exit to the host. This includes time spent handling hcalls in real mode. * rm_exit - time from when we decide to exit the guest until the return from kvmppc_hv_entry(). * guest - time spend in the guest * cede - time spent napping in real mode due to an H_CEDE hcall while other threads in the same vcore are active. These times are exposed in debugfs in a directory per vcpu that contains a file called "timings". This file contains one line for each of the 5 timings above, with the name followed by a colon and 4 numbers, which are the count (number of times the code has been executed), the total time, the minimum time, and the maximum time, all in nanoseconds. The overhead of the extra code amounts to about 30ns for an hcall that is handled in real mode (e.g. H_SET_DABR), which is about 25%. Since production environments may not wish to incur this overhead, the new code is conditional on a new config symbol, CONFIG_KVM_BOOK3S_HV_EXIT_TIMING. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Ellerman 提交于
Some PowerNV systems include a hardware random-number generator. This HWRNG is present on POWER7+ and POWER8 chips and is capable of generating one 64-bit random number every microsecond. The random numbers are produced by sampling a set of 64 unstable high-frequency oscillators and are almost completely entropic. PAPR defines an H_RANDOM hypercall which guests can use to obtain one 64-bit random sample from the HWRNG. This adds a real-mode implementation of the H_RANDOM hypercall. This hypercall was implemented in real mode because the latency of reading the HWRNG is generally small compared to the latency of a guest exit and entry for all the threads in the same virtual core. Userspace can detect the presence of the HWRNG and the H_RANDOM implementation by querying the KVM_CAP_PPC_HWRNG capability. The H_RANDOM hypercall implementation will only be invoked when the guest does an H_RANDOM hypercall if userspace first enables the in-kernel H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 20 3月, 2015 1 次提交
-
-
由 Paul Mackerras 提交于
Commit 4a157d61 ("KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register") had the side effect that we no longer reset vcpu->arch.last_inst to -1 on guest exit in the cases where the instruction is not fetched from the guest. This means that if instruction emulation turns out to be required in those cases, the host will emulate the wrong instruction, since vcpu->arch.last_inst will contain the last instruction that was emulated. This fixes it by making sure that vcpu->arch.last_inst is reset to -1 in those cases. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 29 12月, 2014 1 次提交
-
-
由 Michael Ellerman 提交于
We have two arrays in kvm_host_state that contain register values for the PMU. Currently we only create an asm-offsets symbol for the base of the arrays, and do the array offset in the assembly code. Creating an asm-offsets symbol for each field individually makes the code much nicer to read, particularly for the MMCRx/SIxR/SDAR fields, and might have helped us notice the recent double restore bug we had in this code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NAlexander Graf <agraf@suse.de>
-
- 17 12月, 2014 2 次提交
-
-
由 Sam Bobroff 提交于
Currently the H_CONFER hcall is implemented in kernel virtual mode, meaning that whenever a guest thread does an H_CONFER, all the threads in that virtual core have to exit the guest. This is bad for performance because it interrupts the other threads even if they are doing useful work. The H_CONFER hcall is called by a guest VCPU when it is spinning on a spinlock and it detects that the spinlock is held by a guest VCPU that is currently not running on a physical CPU. The idea is to give this VCPU's time slice to the holder VCPU so that it can make progress towards releasing the lock. To avoid having the other threads exit the guest unnecessarily, we add a real-mode implementation of H_CONFER that checks whether the other threads are doing anything. If all the other threads are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER), it returns H_TOO_HARD which causes a guest exit and allows the H_CONFER to be handled in virtual mode. Otherwise it spins for a short time (up to 10 microseconds) to give other threads the chance to observe that this thread is trying to confer. The spin loop also terminates when any thread exits the guest or when all other threads are idle or trying to confer. If the timeout is reached, the H_CONFER returns H_SUCCESS. In this case the guest VCPU will recheck the spinlock word and most likely call H_CONFER again. This also improves the implementation of the H_CONFER virtual mode handler. If the VCPU is part of a virtual core (vcore) which is runnable, there will be a 'runner' VCPU which has taken responsibility for running the vcore. In this case we yield to the runner VCPU rather than the target VCPU. We also introduce a check on the target VCPU's yield count: if it differs from the yield count passed to H_CONFER, the target VCPU has run since H_CONFER was called and may have already released the lock. This check is required by PAPR. Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There are two ways in which a guest instruction can be obtained from the guest in the guest exit code in book3s_hv_rmhandlers.S. If the exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal instruction), the offending instruction is in the HEIR register (Hypervisor Emulation Instruction Register). If the exit was caused by a load or store to an emulated MMIO device, we load the instruction from the guest by turning data relocation on and loading the instruction with an lwz instruction. Unfortunately, in the case where the guest has opposite endianness to the host, these two methods give results of different endianness, but both get put into vcpu->arch.last_inst. The HEIR value has been loaded using guest endianness, whereas the lwz will load the instruction using host endianness. The rest of the code that uses vcpu->arch.last_inst assumes it was loaded using host endianness. To fix this, we define a new vcpu field to store the HEIR value. Then, in kvmppc_handle_exit_hv(), we transfer the value from this new field to vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness differ. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-